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 A neural network-based parking system with real-time license plate detection 

and vacant space detection using hyper parameter optimization is presented. 

When number of epochs increased from 30, 50 to 80 and learning rate tuned 

to 0.001, the validation loss improved to 0.017 and training object loss 

improved to 0.040. The model means average precision mAP_0.5 is improved 

to 0.988 and the precision is improved to 99%. The proposed neural network-

based parking system also uses a regularization technique for effective 

predictive modeling. The proposed modified lasso ridge elastic (LRE) 

regularization technique provides a 5.21 root mean square error (RMSE) and 

an R-square of 0.71 with a 4.22 mean absolute error (MAE) indicative of 

higher accuracy performance compared to other regularization regression 

models. The advantage of the proposed modified LRE is that it enables 

effective regularization via modified penalty with the feature selection 

characteristics of both lasso and ridge. 
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1. INTRODUCTION 

With the rapid increase of car users the need for parking system with predictive modeling that allows 

learning by analyzing past user information is becoming essential. Prediction models are required since 

machine learning algorithms can predict future parking demand and the behavior of the parking users. 

Moreover, with trained neural network-based parking system license plate detectors, the parking system license 

plate detection and classification will improve with you only look once (YOLO) neural-network algorithm. 

YOLO provides real-time license plate detection [1]–[5]. Du et.al. [1] published work emphasis the need to 

have a multi-plate processing and detection [1] where YOLO can do that with increased speed and accuracy 

[6]–[8]. Masood et.al. published [9] work presents license plate detection and recognition using convolution 

neural network (CNN) with only 93.4% accuracy. Silva and Jung [3] published work presents license plate 

detection and recognition using CNN without optimizing neural-network hyperparameters [3]. Hyperparameter 

optimization is performed on the proposed general-purpose graphic unit (GPU)-based neural-network real-time 

parking system object detection. Also, other published work [4], [10] do not include hyperparameter 

optimization in their neural network processing. Nyambal and Klein their automated parking space detection 

using CNN achieving a 95.5% accuracy without license plate detection [10]. Fukusaki et.al. [11] also presented 

their published work on parking space detection using CNN without license plate detection [11].  

Acharya et.al. [12] published work descirbes parking system with parking space neural network detection 
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achieving high accuracy of 99.7% without any predicitive modeling processing [12]. Lin et.al. [13] and  

Idris et.al. [14] and Sarangi et.al. [15] in their published work presented a survey of smart parking system 

without any proposed design implementation. Applying existing machine learning in smart parking 

applications is investigated in [16]–[20]. However, they look at the data analytics without proposing a system 

implementation. Other published work [21]–[23] do not propose a machine learning model algorithm.  

Simhon et.al. [24] present smart parking system with predictive modeling in their published work without 

neural network object detection [24]–[26] published work describes parking system with predicitive modeling 

without license plate and parking space neural network detection. Other published work [27], [28] propose 

parking system implementation without looking at the machine learning data analytics algorithms and do not 

propose predictive modeling in their post processing system. 

 

 

2. REAL-TIME NEURAL NETWORK OBJECT DETECTION WITH HYPERPARAMETER 

OPTIMIZATION 

Hyperparameter optimization is applied to determine the optimal values of hyperparmaters such as 

optimal learning rate and the number of epoch in order to improve precision and accuracy [29]–[32]. Figure 1 

shows neural network-based parking system real-time license plate detection with YOLO. YOLOv5 which is 

based on PyTorch framework provides real-time object detection with high accuracy and speed [6], [7]. 

 

 

 
 

Figure 1. Neural network-based parking system real-time license plate detection 

 

 

As shown in Figure 1 neural network-based parking system real-time license plate detection with 

YOLO is based on PyTorch framework provides real-time object detection with higher accuracy and speed [5], 

[7], [29]–[32]. YOLO takes the in a single instance by the framework and divides it into a grid with each grid 

having a dimension of n by n. Then places bounding box in the residual blocks and then determines the 

intersection over union (IOU). YOLO uses IOU to provide an output box that surrounds the object. YOLO 

then predicts the class probabilities for these boxes and their coordinates unlike CNN. After classification and 

localization are applied on each grid then the data that is labelled are passed to the model in order to train it. 

We determine YOLO loss function with (1). 

 

 𝜆𝑐𝑜𝑜𝑟𝑑 ∑ ∑ 1𝑖𝑗
𝑜𝑏𝑗(𝑥𝑖 − 𝑥′𝑖)2 + (𝑦𝑖 − 𝑦′𝑖)2B

𝑗=0
𝑆2

𝑖=0  (1) 

 

Then the bounding box location (x, y) is determined with (2), when there is object the 1𝑖𝑗

𝑜𝑏𝑗
is 1 and 0 when 

there is no object. 

 

+ 𝜆𝑐𝑜𝑜𝑟𝑑 ∑ ∑ 1𝑖𝑗
𝑜𝑏𝑗[(√𝑤𝑖 − √𝑤′𝑖)

2

+ (√ℎ𝑖 − √ℎ′𝑖)
2

B
𝑗=0

𝑆2

𝑖=0 ] (2) 

 

The bounding box size (w, h) when there is object can be determined with (3). 

 

+ ∑ ∑ 1𝑖𝑗
𝑜𝑏𝑗(𝐶𝑖 − 𝐶′𝑖)

2B
𝑗=0

𝑆2

𝑖=0  (3) 

 

The confidence when there is object is determined with (4).  

 

+ 𝜆𝑐𝑜𝑜𝑟𝑑 ∑ ∑ 1𝑖𝑗
𝑛𝑜𝑜𝑏𝑗(𝐶𝑖 − 𝐶′𝑖)

2B
𝑗=0

𝑆2

𝑖=0   (4) 
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1𝑖𝑗

𝑛𝑜𝑜𝑏𝑗
is 1 when there is no object, 0 when there is object. The class probabilities when there is object is 

determined with (5). 

 

+ ∑ 1𝑖𝑗
𝑜𝑏𝑗𝑆2

𝑖=0 ∑ (𝑝𝑖(𝑐) − 𝑝′
𝑖
(𝑐))

2
𝑐 є 𝑐𝑙𝑎𝑠𝑠𝑒𝑠   (5) 

 

 

3. REAL-TIME OBJECT DETECTION WITH HYPERPARAMETER OPTIMIZATION 

In training neural network algorithm during learning model, it is important to look at the loss function 

in order to get intuition about how the neural network detection and classification are learning. Hyperparameter 

optimization is applied to determine the optimal values of hyperparmaters such as optimal learning rate and 

the number of epochs in order to improve precision and accuracy [33]. In training algorithm, epoch training 

setting start with 10 epochs then 50 and then 80 epochs. Epoch can be defined as how many times you pass 

once for learning the entire complete dataset through the neural network. The model is incrementally trained 

with more epoch which is increased in intervals of 10, 30, 50 and 80. Figure 2 shows the loss function with 

optimized hyperparameter learning rate as the number of epochs is increased. If we train the model with a lot 

of epochs this leads to overfitting of training model, whereas if we train the model with little epochs this leads 

to underfit model. 

 

 

 
 

Figure 2. Loss function with optimized hyperparameter learning rate and number of epochs [33] 

 

 

The learning-rate parameter decided how big step should be taken when searching for an optimal 

solution. The learning rate is tuned during hyperparameter optimization to improve the loss-function as shown 

in Figure 2 less learning-rate would require lots of epochs which increase the training time, however more 

learning-rate require fewer epochs. We adjust the learning rate during training incrementely from high to low 

once we get closer to the optimal solution. We adjust the learning rate during training from high to low once 

we get closer to the optimal solution. 

Validation loss is the loss calculated on the validation set, when the data is split using cross-validation 

[33]. If validation loss gets worse that indicates overfitting as can be seen in Figure 2. As long as the validation 

loss and training loss continues to improve, we keep optimizing the hyperparameters. The objective is to make 

the validation loss as low as possible to improve model accuracy. Learning rate adjust the weights and it will 

converge slower with lower value of the learning. 

One of the most common evaluation metrics that is used in neural network object detection is 'mAP', 

which stands for 'mean average precision. A good mAP indicates a stable consistent model. Figure 3(a) and 

Figure 3(b) show the precision and the mean average precision for both training loss and validation loss 

performance as epoch is increased. We want to make the validation loss as low as possible to improve model 

accuracy. Figure 3(a) shows precision performance and Figure 3(b) shows mAP performance as the number of 

epochs is increased. As can be seen in Figure 3 when number of epochs increased from 30 to 50 and then to 80 

the model mean average precision mAP_0.5 is improved to 0.99 and the precision is improved to 99%.  

Figure 4(a) shows training object loss and Figure 4(b) shows training class loss performance as the number of 

epochs is increased. 
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Figure 3. Accuracy performance as the number of epochs is increased (a) precision and (b) mAP 

 

 

 
 

 
 

Figure 4. Accuracy performance as the number of epochs is increased (a) training object and  

(b) training class loss 
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As can be seen in Figures 5(a) and 5(b) when number of epochs increased from 30 to 50 and then to 

80 and learning rate tuned to 0.001, the validation object loss improved to 0.017 and training object loss 

improved to 0.040. Figure 5(a) shows validation object loss and Figure 5(b) shows validation class loss 

performance as the number of epochs is increased. As can be seen in Figures 6(a) and 6(b) when number of 

epochs increased from 30 to 50 and then to 80 and learning rate tuned to 0.001, the validation box loss improved 

to 0.018 and training box loss improved to 0.017. Figure 6(a) shows training object loss and Figure 6(b) shows 

validation object loss performance as the number of epochs increased. 

 

 

 
 

 
 

Figure 5. Accuracy performance as the number of epochs is increased (a) validation object loss and  

(b) validation class loss 

 

 

The GPU-based neural network parking system real-time license plate detection with hyper parameter 

optimization model accuracy performance is shown in Table 1. When number of epochs increased from 30 to 

50 and then to 80 and learning rate tuned to 0.001, the validation loss improved to 0.017 and training object 

loss improved to 0.040. Model mean average precision mAP_0.5 is improved to 0.988 and the precision is 

improved to 99%. 

 

 

Table 1. Real-time neural-network object detection accuracy performance 
Epoch Learning Rate mAP Validation Object Loss Training Object Loss Precision 

30 0.00001 0.652 0.030 0.060 0.50 
50 0.0001 0.966 0.014 0.034 0.91 

80 0.001 0.988 0.017 0.040 0.99 
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Figure 6. Accuracy performance as the number of epochs is increased (a) training box loss and (b) validation 

box loss 

 

 

4. PREDICTIVE MODELING WITH REGULARIZATION TECHNIQUES 

Figure 7 shows the proposed parking system with GPU processing using Nvidia Jetson Nano 

connected to artificial intelligence (AI) camera. The machine learning linear models provide a simple approach 

to predictive modeling. An overfit model is a model that fits the training dataset well but not the testing dataset 

as shown in Figure 8. The proposed parking system shown in Figure 7 uses Nvidia Jetson Nano connected to 

AI camera ce IMX 219 module. The AI camera connected to the Jetson board. A live video from the AI camera 

provides the real-time feed for vacant space detection. The 128-core Maxwell architecture-based GPU process 

the real-time processing analytics on the Jetson nano. Machine learning linear models provide a simple 

approach to predictive modeling [34]. An overfit model is a model that fits the training dataset well but not the 

testing dataset as shown in Figure 8. Overfitting causes low model accuracy. Regularization techniques solve 

the problem of overfitting [33], [35]–[37]. 

 

 

 
 

Figure 7. Proposed neural network-based parking system with real-time parking space detection and 

predictive modeling 
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4.1.  Regularization techniques and overfitting 

The objective is to have a machine learning model that has low bias and has low variability to produce 

consistent predictions across different datasets. Regularization is used in the proposed model to find the sweet 

spot between a simple model and a more complex model. Figure 8 shows the trade off between variance and 

bias in minimizing the prediction error [33], [35]–[37]. 

 

 

 
 

Figure 8. Regularization techniques solve the problem of overfitting 

 

 

5. PROPOSED REGRESSION REGULARIZATION TECHNIQUE 

Multiple linear regression uses a set of predictor variables and a response variable to fit a model of 

the form [33], [35]–[37]. 

 

Y = β0 + β1 X1 + β2 X2 + … + βp Xp  (6) 

 

Y is the response variable and X is the predictor variable and βj is the slope. The values for β coefficients are 

chosen using the least square method which minimizes the residual sum of squares (RSS) [33], [35]–[37]. 

Regularization techniques function by penalizing the magnitude of coefficients along with minimizing the error 

between predicted and actual observations [38]. LASSO refers to least absolute shrinkable and selection 

operator [25]–[29], [31]. LASSO regularization is the process of adding a small modification to the cost 

function prevent the over-fitting problem as shown in (7) [33], [35]–[37]. 

 

J(m) = Σ (yi – ŷi)2 + λ.|slope|  (7) 

 

Where λ is the tuning parameter. 

Least squares regression attempts to find coefficient estimates that minimize the RSS. The yi is the actual and 

ŷi is the predicted value for the ith observation based on the multiple linear regression model [33], [35]–[37]. 

 

RSS = Σ (yi – ŷi)2  (8) 

 

Linear regression loss function is represented with Mean Squared Error function given by (9) 

 

RSS =
1

𝑛
 Σ (yi – ŷi)2 (9) 

 

Lasso is analogous to linear regression however it shrinks the coefficients of determination towards 

zero [33], [35]–[37]. Lasso lets you shrink and regularize these coefficients work on multiple datasets. Lasso 

regression seeks to minimize the following. Lasso lets you regularize these coefficients to work on different 

datasets. The second term in (5) is known as a shrinkage penalty. Lasso regression performs L1 regularization 

value. Ridge regularization is a variation of LASSO as the term added to the cost function is depicted (10) and 

(11). Ridge regression cost function model is given by[33], [35]–[37]. 
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RSS + λ. Σ |βj| (10) 

 

J(m) = Σ (yi – ŷi)2 + λ.|slope|2 (11) 

 

Ridge regression instead tries to minimize (12) 

 

RSS + λ. Σ βj
2 (12) 

 

Ridge regression performs L2 regularization as shown in (7). A generalization of the ridge and lasso 

penalties, called the elastic net, combines the two penalties in (5) and (7). Elastic net regression seeks to 

minimize the following. The proposed modified lasso ridge elastic (LRE) regression model combines together 

both L1 and L2 regularization instead tries to minimize (13) and (14). 

 

RSS + λ. Σ βj
2 + λ. Σ |βj|  (13) 

 

RSS + λ2. Σ βj
3/2 + λ. Σ |βj| (14) 

 

The advantage of the modified LRE penalty is that it enables effective regularization via modified penalty with 

the feature selection characteristics of lasso and ridge penalty. 

 

 

6. REGRESSION MODAL PARTIAL DERIVATIVES 

Linear regression equations needed to calculate the partial derivatives with respect to parameters of 

the loss function [38]. The values of model parameters m and b are updated using (15) and (16) [33], [35]–

[37]. The updated values will be the values with which each step reduces the difference between the true and 

predicted values. 

 
𝜕

𝜕𝑚
=

2

N
∑ −𝑥𝑖(𝑦𝑖  – (𝑚𝑥𝑖 + 𝑏))𝑁

𝑖=1   (15) 

 
𝜕

𝜕𝑏
=

2

N
∑ −(𝑦𝑖  – (𝑚𝑥𝑖 + 𝑏))𝑁

𝑖=1   (16) 

 

The values of model parameters m and b are updated using (17) to (20) [33], [35]–[37]. The updated 

values will be the values with which each step reduces the difference between the true and predicted values. 

Ridge regression equations needed to calculate the partial derivatives with respect to parameters of the loss 

function [33], [35]–[37]. 

 

𝑚 = m − 𝐿𝑟 .
𝜕𝐿

𝜕𝑚
  (17) 

 

𝑏 = b − 𝐿𝑟 .
𝜕𝐿

𝜕𝑏
   (18) 

 
𝜕𝐿

𝜕𝛽𝑜
= − ∑ 2(𝑦𝑖  –  𝛽𝑜 − ∑ 𝛽𝑗𝑥𝑗

𝑝
𝑗=1 )𝑁

𝑖=1    (19) 

 
𝜕𝐿

𝜕𝛽𝑗
= − ∑ 2(𝑦𝑖  –  𝛽𝑜 − ∑ 𝛽𝑗𝑥𝑗

𝑝
𝑗=1 )𝑁

𝑖=1 𝑥𝑖 + 2𝜆𝛽𝑗    (20) 

 

The proposed modified LRE regression model equations needed to calculate the partial derivatives 

with respect to parameters of the loss function. The advantage of the modified LRE penalty is that it enables 

effective regularization via modified penalty with the feature selection characteristics of lasso and ridge penalty 

as shown in Figure 9. Jupyter python was used for coding the machine learning regularization regression 

modified LRE model algorithm. Figure 9 shows the proposed modified LRE regression model with dataset and 

with different tuning parameter. 

 
𝜕𝐿

𝜕𝛽𝑜
= − ∑ 2(𝑦𝑖  –  𝛽𝑜 − ∑ 𝛽𝑗𝑥𝑗

𝑝
𝑗=1 )𝑁

𝑖=1    (21) 

 
𝜕𝐿

𝜕𝛽𝑗
= − ∑ 2(𝑦𝑖  –  𝛽𝑜 − ∑ 𝛽𝑗𝑥𝑗

𝑝
𝑗=1 )𝑁

𝑖=1 𝑥𝑖 + 1.5𝜆2𝛽𝑗
1/2

+ 𝜆  (22) 
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Figure 9. Proposed modified LRE regression model with dataset and with different tuning parameter 

 

 

Figure 10 shows the linear regression predictive modeling forecasts in orange and green. The orange 

and green curves in both Figure 10 and Figure 11 are the future forcasts of the proposed predictive model the 

modified LRE indicating its effectiveness. Figure 11 shows proposed modified LRE regression predictive 

modeling forecasts in orange and green. Table 2 shows the proposed modified LRE regularization technique 

accuracy of 5.21 root mean square error (RMSE) and an R-Square of 0.71 with a 4.22 mean absolute error 

(MAE) compared to other regularization models. 

 

 

 
 

Figure 10. Linear regression predictive modeling forecasts in orange and green for test predictions 

 

 

The neural network-based parking system with real-time license plate detection and vacant space 

detection using hyper parameter optimization is presented. When number of epochs increased from 30, 50 to 

80 and learning rate tuned to 0.001, the validation loss improved to 0.017 and training object loss improved to 

0.040. The model mean average precision mAP_0.5 is improved to 0.988 and the precision is improved to 
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99%. The proposed neural network-based parking system also uses a regularization technique for effective 

predictive modeling. The proposed modified LRE regularization technique provides a 5.21 RMSE and an R-

square of 0.71 with a 4.22 MAE indicative of higher accuracy performance compared to other regularization 

regression models. The advantage of the proposed modified LRE is that it enables effective regularization via 

modified penalty with the feature selection characteristics of both lasso and ridge. 

 

 

 
 

Figure 11. Proposed modified LRE regression predictive modeling forecasts in orange and green for test 

predictions 

 

 

Table 2. Machine learning regression model accuracy performance for test predictions 
Regression model RMSE R-Squared MAE 

Lasso Regression 5.45 0.66 4.52 

Ridge Regresson 5.48 0.65 4.54 

Elastic net Regresson 5.37 0.68 4.42 
Linear Regression 5.72 0.63 4.67 

Proposed Modified LRE Regression 5.21 0.71 4.22 

 

 

7. CONCLUSION 

The A neural network-based parking system with real-time license plate detection and vacant space 

detection using hyper parameter optimization has been presented. The model means average precision 

mAP_0.5 is 0.988 and the precision is 99%. The proposed neural network-based parking system uses a 

regularization technique for effective predictive modeling. The proposed modified LRE regularization 

technique provides a 5.21 RMSE and an R-square of 0.71 with a 4.22 MAE indicative of higher accuracy 

performance compared to other regularization regression models. The advantage of the proposed modified 

LRE is that it enables effective regularization via modified penalty with the feature selection characteristics of 

both lasso and ridge. 
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