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 Flocking is a behavior where a group of objects travel, move or collaborate 

together. By learning more about flocking behavior, we might be able to apply 

this knowledge in different contexts such as computer graphics, games, and 

education. A key steppingstone for understanding flocking behavior is to be 

able to simulate it. However, simulating behaviors of large numbers of objects 

is highly compute-intensive task because of the n-squared complexity of 

nearest neighbor for separating n objects. The work in this paper presents an 

efficient nearest neighbor method based on the k-dimensional trees (KD 

trees). To evaluate the proposed approach, we apply it using Unity-3D game 

engine, together with other conventional nearest neighbor methods. The 

Unity-3D game simulation engine allows users to utilize interaction design 

tools for programming and animating flocking behaviors. Results showed that 

the proposed approach outperform other conventional nearest neighbor 

approaches. The proposed approach can be used to enhance digital games 

quality and simulations. 
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1. INTRODUCTION 

Animal behavior has always been a source of study and amazement for mankind [1], [2]. Flocking is 

a behavior in which several objects work or move together as coherent entities [3] or behave in a unified manner 

while changing their direction and shape [4]. Examples of animal flocking behavior include birds (flies in 

swarms), sheep (moving as herds), and fish (swimming in schools) [5]. In recent years, studying and 

understanding animal flocking behavior through simulations has attracted researchers from various scientific 

and engineering fields [6]. Simulating flocking behavior has been widely studied in computer graphics [3], 

games [7], [8], mobile networks [9], road design [10] and education [11], [12]. Such simulations enable users 

to test complex scenarios that have no impact on a real environment. To produce flocking behavior in groups 

of computer characters (objects), three rules in section 2.1 were applied to all objects in the group with 

convincing flocking behavior results: Alignment (i.e. steer to mean heading of mates in a flock), Cohesion (i.e. 

steer to mean position of flock mates), and Separation (i.e. steer to avoid crowded mates) [3], [8], [13]. 

As the object arrangement in a flock change constantly, every object in the flock must update its view 

by cycling through all objects in the flock to collect the required data for each object. This is computationally 

expensive, particularly when the number of objects rapidly increases. Simulating large numbers of objects in 
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real time is a challenging task, particularly when the objects are realistically separated, and collisions are 

avoided. This requires the development of intelligent approaches to facilitate the separation of flocking 

behavior. A common method for approaching the separation rule is to use the nearest neighbor (NN)  

algorithm [4]. This algorithm calculates the distance between object 𝑥 and every other object in the training 

set. The NN algorithm sorts the calculated distances and then selects the 𝑘 samples closest to the object 𝑥 [14]. 

However, the complexity of the NN algorithm was 𝑂(𝑛2). This is because of the separation rule in which the 

distance of every object from other objects in the entire flock is calculated. Such high complexity makes it 

inefficient for use in modern applications, such as games [15], crowd mobility [16], mobile network  

mobility [17], and arial robots [18]. Therefore, an optimized NN is required to reduce complexity when 

performing the separation rule for flocking behavior. 

The work in [4] utilized the k-nearest neighbor (KNN) method to compute the nearest neighbors in 

Flocking Behavior, where the nearest object is found by the majority of flock objects within 𝑘 adjacent 

neighbors. However, two key issues are related to KNN [19]. The first concerns choosing parameter 𝑘, a user-

predefined parameter that represents the number of nearest neighbors. A straightforward method for 

determining the best 𝑘, is cross-validation (i.e., trying several 𝑘 values and choosing 𝑘 with the highest 

performance). The second issue with the KNN is its high computational complexity for large sets of objects. 

Therefore, the work in [19] introduced the extended nearest neighbor (ENN) method. Unlike the classification 

method in KNN, in which information about nearby neighbors is considered, the ENN method considers 

information from all available objects. The performances of the KNN and ENN methods were discussed  

in [20]. The results showed that the ENN method is less prone to errors, although both have a high 

computational complexity for large sets. The partial distance (PD) algorithm proposed in [21] uses a premature 

exit condition during the search process to terminate the distance calculation at an early stage. However, its 

efficiency depends on the initial distance (i.e. it is less useful for larger distances). For this purpose, an efficient 

method for identifying initial distances to the PD algorithm was proposed in [22]. An NN method based on PD 

was proposed in [23] to provide an enhanced version of the partial distance approach (EPD). 

This paper presents an enhanced version of the partial-distance approach proposed in [23] to solve the 

flocking fish problem. We propose an efficient NN method based on the k-dimensional trees (KD trees) 

algorithm. The KD trees algorithm is a multidimensional binary tree, which is a specific storage structure that 

efficiently represents training data [14]. The proposed approach, together with other conventional NN methods, 

was applied using a Unity-3D game engine. Unity-3D allows users to use a set of powerful animation and 

interaction design tools to visually program and animate flocking behavior. The experimental results show that 

the performance of the proposed KD trees is better than that of the conventional NN methods. The remainder 

of this paper is organized as follows. Section 2 provides information related to the flocking simulation together 

with the main algorithms used in this paper. Section 4 describes the implementation of the proposed method. 

Section 5 presents the results, and section 6 concludes the paper.  

 

 

2. METHOD 

An efficient NN method based on the KD trees algorithm was proposed in this paper. Flocking 

simulation models and main classification algorithms were presented to better understand the research context. 

We also describe the implementation of the proposed method using Unity-3D game engine. 

 

2.1.  Flocking simulation models 

Simulations are important for understanding flocking behavior [5]. The first flocking-behavior 

simulation (called ‘Birds’) was performed in 1986 by Craig Reynolds [3]. The simulation program was made 

after the simple agents in the system. Three conducts [24] (i.e. steering rules) were used in the simulation to 

determine how birds would move, namely cohesion, alignment, and separation. Another flocking simulation 

model was proposed by Heppner in 1990 [25]. This model consists of three conducts: Homing (every object 

aims to stay in the roosting area), Velocity regulation (every object aims to fly at a particular predefined flight 

speed, which aims to return to that speed if perturbed), and Interaction (two flock entities try to move apart 

when they are too close to one another). This paper focuses on the first simulation model proposed by  

Reynolds [3]. The Reynolds model is the simplest model for simulating animal behavior, such as that of birds. 

It is the most widely used simulation model [5]. Figures 1(a) to 1(c) illustrates the three rules of Reynolds’ 

model [8]. 

– Cohesion rule: Figure 1(a) [8] shows the cohesion rule, which implies that all flock objects remain together 

in a group without going on a separate way away from the group. To obtain this rule, every object must 

steer towards the average position of its neighbors in the flock (i.e., steer towards the center of a mass). 

Assume we have 𝑁 objects (𝑜1, 𝑜2 , … , 𝑜𝑁) and the position of an object is denoted by 𝑜. 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛, then the 

'center of mass' 𝑐 of all 𝑁 objects is given by (1). 



                ISSN: 2252-8938 

Int J Artif Intell, Vol. 12, No. 4, December 2023: 1628-1635 

1630 

𝑐 = (𝑜1. 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 + 𝑜2. 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 + ⋯ +  𝑜𝑁 . 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛)/𝑁 (1) 

 

– Alignment rule: Figure 1(b) [8] illustrates the alignment rule, which implies that all objects in a flock 

generally head in the same direction. Every object in the flock must steer towards a heading that is 

determined by the unit's velocity vector [5] and is equal to the average heading of the object’s neighbors. 

Normalizing the velocity vector for every unit gain unit heading vector makes the steering force a linear 

function of the angle between the current unit heading and the average heading of its neighbors. 

– Separation rule: Figure 1(c) [8] shows the separation rule that aims to avoid collisions between objects. 

Although objects may try to get closer to each other because of the alignment and cohesion rules, the 

separation rule aims to maintain objects at a minimum distance from each other. 

 

 

   
(a) (b) (c) 

 

Figure 1. Shows three flocking rules: (a) cohesion, (b) alignment, and (c) seperation [8] 

 

 

2.2.  Nearest neighbor 

The NN algorithm is a well-known supervised machine learning algorithm used for classification and 

regression problems in different contexts. An NN was proposed in 1967 by Cover and Hart [26]. The 

identification of the nearest neighbors depends on the distance between the tested and training data samples. 

Given a query vector 𝑥0 and a set of 𝑁 labeled instances, the aim is to predict the class label of 𝑥0 on a 

predefined set of classes. One way to find the NN efficiently is to conduct a three-dimensional bucket sort and 

then check the neighbors’ adjacent buckets. The bucket positions of the objects with excessive deviation from 

the center of the bucket were adjusted incrementally as the buckets were transformed along with the flock. The 

bucket size involves a time-space trade-off: the smaller the buckets, the more buckets are needed, but the fewer 

members per bucket on average. Nevertheless, the 𝑂(𝑛2) problem is not completely eliminated because of the 

worst-case distributions [4], [5], [27]–[29].  

 

2.3.  KD trees 

The KD trees algorithm is a multidimensional generalization of binary trees designed to handle spatial 

data in a simple manner [14], [30]. The root of the KD trees represents the k-dimensional space that contains a 

set of data points. Every node is a subset of the data points. Each nonterminal node has two child nodes, left 

and right, which are obtained by partitioning the subset of the node into two parts using a hyperplane orthogonal 

to one of the k coordinates axes (called the discriminating axis). The position of the hyperplane was selected 

such that each child contained approximately half of the parent’s data points. The discriminating axis is 

determined by selecting the most dispersed coordinates. Each terminal node defines a cell (called a bucket) in 

a multidimensional space containing a subset of data points with bucket size less than a predefined threshold. 

To find the nearest neighbor for a query point (q), we first find a bucket that contains q by traversing the tree. 

We then find the nearest point to q in the bucket. This will result in finding a “candidate” nearest neighbor, but 

there is still the possibility of a nearest point. Therefore, we traverse backward and start finding the distance 

from the other points in the neighboring boxes. The point with the nearest distance to q is the nearest neighbor 

that we are looking for. The KD trees data structure provides an effective method for examining the objects 

closest to the query objects, thereby significantly reducing the computation required to find the best  

matches [30]. The complexity of the KD trees is 𝑂(𝐾 log 𝑛) (expected) lookup times for the 𝐾 nearest objects 

to a query object [31], [32]. Based on [32], the object nearest to the query object is determined by applying the 

following steps,  

– Start by exploring the bucket that contains the query object. 

– Compute distance to each other objects at bucket. 
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– Backtrack and find the nearest neighbor to the query object by finding the point with the shortest distance 

in adjacent buckets. 

 

2.4.  Implementation 

Computer game developers usually face the problem of developing games that are fun, without having 

to program directly in low-level languages [33]. For this, game engines with graphical editors were developed 

not only to create visual artwork but also to animate it and scripting interactions with users. Several game 

engines have recently become available for educational and research purposes. Among several game engines, 

such as unreal engine, CryEngine, and Unity-3D, we utilized the latter in this research. In [8], de Byl and Penny 

used a Unity-3D game engine with the C# programming language to develop a computer game that simulated 

fish flocking behavior. Figure 2 shows a flock of 50 fish simulated by [8]. The figure shows a clear separation 

between the fish. 

 

 

 
 

Figure 2. A flock of 50 fish simulated by [8] 

 

 

Fish flocking in [8] was implemented using the Unity-3D game engine. Subsequently, we implement 

our approach to enhance the algorithm [8]. The Unity-3D game engine provides important features for studying 

flocking behavior, such as an easy-to-use graphical user interface for animating objects and controlling the 

interaction between objects. Furthermore, the Unity-3D game engine has a strong professional community that 

supports its progress, and is freely available for education and research. Figure 3 shows a snapshot (in C#) of 

how the NN computes the distances between fish objects. The figure shows that we have a value for the 

neighbor distance, which is the maximum distance that the fish need to be in order for them to flock. If they 

are outside this distance from each other, they will not take notice of each other, so they will only go to flock 

if they are near each other. To apply the separation rule, each fish needs to know all the other fish. An avoidance 

vector (vavoid) was created to avoid any nearby body. If we obtain within a small distance (1.0 unit), we want 

to avoid it; therefore, we calculate the (vavoid) vector as a vector that is facing off in the other direction. Our 

focus is on the (Vector3.Distances) function in Figure 3, which computes distances between fish 60 times per 

second with a complexity of 𝑂(𝑛2). However, this is a time-consuming process. To reduce this time, we applied 

KD trees with a complexity of 𝑂(𝐾 log 𝑛) lookup times for the 𝐾 nearest objects to a query object.  

 

 

 
 

Figure 3. A snapshot of how the NN works to compute the distances between fish objects 
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3. RESULTS AND DISCUSSION 

To examine the effectiveness of the KD trees approach, fish flocking in [8] was implemented together 

with the conventional NN [19], PD [22] and EPD [23] approaches using the Unity-3D game engine. The frames 

per second (FPS) were measured using different numbers of objects. Figures 4(a) and 4(b) show screenshots 

of the simulation results for the conventional nearest neighbor NN and the KD trees approach, respectively, 

when the number of objects is N=100 (minimum number of objects). The performance of the conventional NN 

in Figure 4(a) provided a lower FPS (111.2) than that of the KD trees (123.6 FPS), as shown in Figure 4(b). 

Furthermore, Figures 5(a) and 5(b) show screenshots of the simulation results for the conventional nearest 

neighbor NN and the KD trees approach, respectively, when the number of objects is N=1000 (the highest 

number of objects). The Results show that the performance of the conventional NN (9.8 FPS) in Figure 5(a) is 

much lower than that of the KD trees approach (102.2 FPS), as shown in Figure 5(b). 

 

 

  
(a) (b) 

 

Figure 4. Simulation results representing FPS values when the number of objects (N=100) for:  

(a) the conventional NN approach and (b) the proposed KD approach 

 

 

  
(a) (b) 

 

Figure 5. Simulation results representing FPS values when the number of objects (N=1000) for: 

(a) the conventional NN approach and (b) the proposed KD approach 

 

 

Figure 6 shows the graphical performance of all the methods (average results of 10 runs). The results 

show that the performance of the KD trees approach proposed in this study is better than that of other 

approaches. The KD trees approach provided higher FPS rates compared to NN, PD, and EPD, while increasing 

the number of objects. The FPS using the KD trees approach remained at the same level for 100 and 200 objects 

and then slightly decreased as the number of objects increased, whereas the FPS rates for other approaches 

dropped at 200 and 600 object sizes. This indicates that the KD trees approach provides a more stable and 

consistent gaming quality. Furthermore, the NN, PD, and EPD approaches provided FPS rates lower than 60 

compared with the KD trees, which maintained FPS rates above 80, while the number of objects increased. 

This shows that using KD trees is better for interactive games compared to other approaches that can suffer 

from noticeable motion "flickering" artifacts. To test whether there was a significant difference between the 

performance of the KD trees approach and other approaches, the Mann-Whitney U test was applied in Table 
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1. Notably, the difference between the KD method and NN, PD, and EPD approaches was significant (P<0.05), 

and the difference was higher than that of the EPD method (P<0.05); this difference was positive (i.e. median 

of KD > medinas of NN, PD, and EPD). 

 

 

 
 

Figure 6. Graphical results (FPS) of the fish flock 

 

 

Table 1. Statistically significant differences of the performance values in Figure 6 (Mann-Whitney, 1-tail, 

Na=Nb=10, Median of KD=92.5) 
Difference in performance values Z-score p Median values 

KD > NN 3.25 P<0.001 NN=42 

KD > PD 3.25 P<0.001 PD=50 

KD > EPD 2.985 P<0.05 EPD=57.5 

 

 

Furthermore, the Pearson correlation coefficient was applied to test the correlation between the 

number of objects and FPS for each approach in Table 2. The results showed a strong negative correlation 

between each of the given flocking methods and the number of objects in the training set (-1<R<0). Hence, the 

performance of the algorithms (i.e., FPS) is influenced by the number of objects in the flock. 

 

 

Table 2. Pearson correlation coefficient R-values 
Approach  R-value 

No of objects > KD -0.95 

No of objects > NN -0.97 
No of objects > PD -0.95 

No of objects > EPD -0.95 

 

 

4. CONCLUSION 

Virtual reality has been used in learning for the last two decades, such as immersive technology that 

focuses on increasing interaction with the world to aid learners in learning new knowledge. Learners can create 

scenarios that are not possible in the real world and test the results. For example, learners interested in the fish 

industry can use digital technologies to create scenarios to better understand and learn how fish behave in 

flocks. Flocking behaviors have been applied in different yet related research fields such as gaming and 

computer vision. However, utilizing a large number of objects in a real-time simulation environment is highly 

demanding in terms of the computing power. This is because of the high NN complexity (n squared) required 

to separate the n objects. We propose an efficient flocking algorithm and its application to fish flocking 

behavior. The KD trees method for computing the nearest neighbors was presented. The experimental results 

showed that the proposed algorithm provided better results than other algorithms when applied to the flocking 

fish problem. To evaluate the proposed approach, we applied it together with other conventional NN methods 

using the Unity-3D game engine, which allows users to visually program and animate flocking behavior. The 

results demonstrate that the proposed approach outperforms the conventional NN approaches. 



                ISSN: 2252-8938 

Int J Artif Intell, Vol. 12, No. 4, December 2023: 1628-1635 

1634 

REFERENCES 
[1] A. Kifouche and A. Guessoum, “Tracking times in temporal patterns embodied in intra-cortical data for controling neural prosthesis 

an animal simulation study,” International Journal of Electrical and Computer Engineering (IJECE), vol. 10, no. 5, pp. 4721–4737, 

2020, doi: 10.11591/ijece.v10i5.pp4721-4737. 

[2] L. E. Beaver and A. A. Malikopoulos, “An overview on optimal flocking,” Annual Reviews in Control, vol. 51, pp. 88–99, 2021, 
doi: 10.1016/j.arcontrol.2021.03.004. 

[3] C. W. Reynolds, “Flocks, herds and schools: A distributed behavioral model,” in Proceedings of the 14th annual conference on 

Computer graphics and interactive techniques - SIGGRAPH ’87, 1987, pp. 25–34, doi: 10.1145/37401.37406. 
[4] J. M. Lee, “An efficient algorithm to find k-nearest neighbors in flocking behavior,” Information Processing Letters, vol. 110,  

no. 14–15, pp. 576–579, 2010, doi: 10.1016/j.ipl.2010.04.024. 

[5] M. Sajwan, D. Gosain, and S. Surani, “Flocking behaviour simulation : Explanation and enhancements in boid algorithm,” 
International Journal of Computer Science and Information Technologies, 2014. 

[6] B. Wiandt, A. Kokuti, and V. Simon, “Application of collective movement in real life scenarios: Overview of current flocking 

solutions,” Scalable Computing: Practice and Experience, vol. 16, no. 3, 2015, doi: 10.12694/scpe.v16i3.1099. 
[7] M. Joselli et al., “A flocking boids simulation and optimization structure for mobile multicore architectures,” pp. 83–92, 2012. 

[8] P. B. Byl, Holistic game development with Unity : An all-in-one guide to implementing game mechanics, art, design, and 

programming, AK Peters/. CRC Press, 2017. 
[9] G.-G. Wang, C.-L. Wei, Y. Wang, and W. Pedrycz, “Improving distributed anti-flocking algorithm for dynamic coverage of mobile 

wireless networks with obstacle avoidance,” Knowledge-Based Systems, vol. 225, p. 107133, 2021,  

doi: 10.1016/j.knosys.2021.107133. 
[10] J. M. Lee and S. Kim, “A simulation of multiple grouping movements for pedestrians,” International Journal of Computational 

Vision and Robotics, vol. 7, no. 3, pp. 276–284, 2017, doi: 10.1504/IJCVR.2017.083445. 

[11] B. Kawan and S. Alaliyat, “3D virtual fish population world for learning and training purposes,” 2018, pp. 487–494,  
doi: 10.3384/ecp17142487. 

[12] N. T. H. Giang and L. H. Cuong, “Evaluating feasibility and effectiveness of digital game-based instructional technology,” 

International Journal of Emerging Technologies in Learning (iJET), vol. 16, no. 16, 2021, doi: 10.3991/ijet.v16i16.23829. 
[13] E. Adams, Fundamentals of game design third edition. Pearson Education, Limited, 2014. 

[14] W. Hou, D. Li, C. Xu, H. Zhang, and T. Li, “An advanced K Nearest Neighbor classification algorithm based on KD-tree,” in IEEE 

International Conference of Safety Produce Informatization (IICSPI), 2018, pp. 902–905, doi: 10.1109/IICSPI.2018.8690508. 
[15] M. Bardi and P. Cardaliaguet, “Convergence of some Mean field games systems to aggregation and flocking models,” Nonlinear 

Analysis, vol. 204, p. 112199, 2021, doi: 10.1016/j.na.2020.112199. 

[16] D. S. Noonan, S. M. Breznitz, and S. Maqbool, “Flocking to the crowd: Cultural entrepreneur mobility guided by homophily, market 
size, or amenities?,” Arts, Entrepreneurship, and Innovation. Springer Nature Switzerland, pp. 577–611, 2021, doi: 10.1007/978-

3-031-18195-5_4. 

[17] T. A. Assegie, T. Suresh, R. Subhashni, and D. M, “Mobility models for next generation wireless mesh network,” Indonesian 
Journal of Electrical Engineering and Computer Science, vol. 22, no. 1, p. 379, 2021, doi: 10.11591/ijeecs.v22.i1.pp379-384. 

[18] G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A. E. Eiben, and T. Vicsek, “Optimized flocking of autonomous drones in 

confined environments,” Science Robotics, vol. 3, no. 20, p. 3536, 2018. 
[19] M. M. R. Khan, R. B. Arif, M. A. B. Siddique, and M. R. Oishe, “Study and observation of the variation of accuracies of KNN, 

SVM, LMNN, ENN algorithms on eleven different datasets from UCI machine learning repository,” in International Conference 

on Electrical Engineering and Information & Communication Technology (iCEEiCT), 2018, pp. 124–129,  
doi: 10.1109/CEEICT.2018.8628041. 

[20] B. Tang and H. He, “ENN: Extended nearest neighbor method for pattern recognition [research frontier],” IEEE Computational 

Intelligence Magazine, vol. 10, no. 3, pp. 52–60, 2015, doi: 10.1109/MCI.2015.2437512. 
[21] S.-H. Chen, “Fast algorithm for VQ codebook design,” IEE Proceedings I (Communications, Speech and Vision), vol. 138, no. 5, 

pp. 357–362, 1991, doi: 10.1049/ip-i-2.1991.0048. 

[22] M. B. A.- Zoubi, A. Hudaib, A. Huneiti, and B. Hammo, “New efficient strategy to accelerate k-means clustering algorithm,” 
American Journal of Applied Sciences, vol. 5, no. 9, pp. 1247–1250, 2008, doi: 10.3844/ajassp.2008.1247.1250. 

[23] O. Adwan, “Efficient method to find nearest neighbours in flocking behaviours,” Signal & Image Processing : An International 
Journal, vol. 10, no. 6, pp. 1–7, 2019, doi: 10.5121/sipij.2019.10601. 

[24] R. C, “Boids,” p. 324, 2001. 

[25] F. Heppner and U. Grenander, “A stochastic nonlinear model for coordinated bird flocks,” The Ubiquity of Chaos, 1990. 
[26] T. Cover and P. Hart, “Nearest neighbor pattern classification,” IEEE Transactions on Information Theory, vol. 13, no. 1,  

pp. 21–27, 1967, doi: 10.1109/TIT.1967.1053964. 

[27] R. Parent, “Computer animation algorithms and techniques,” 2012. 
[28] B. Chazelle, “The convergence of bird flocking,” Journal of the ACM, vol. 61, no. 4, pp. 1–35, 2014, doi: 10.1145/2629613. 

[29] M. Moussaïd, D. Helbing, and G. Theraulaz, “How simple rules determine pedestrian behavior and crowd disasters,” Proceedings 

of the National Academy of Sciences of the United States of America, vol. 108, no. 17, pp. 6884–6888, 2011, doi: 
10.1073/PNAS.1016507108. 

[30] J. L. Bentley, “Multidimensional binary search trees used for associative searching,” Communications of the ACM, vol. 18, no. 9, 

pp. 509–517, Sep. 1975, doi: 10.1145/361002.361007. 
[31] J. H. Friedman, J. L. Bentley, R. A. Finkel, and J. H. Frmdman, “An algorithm fQr finding best in logarithmic expected time,” 

ACYL Transactions on Mathematical Software, vol. 3, no. 3, pp. 209–226, 1977. 

[32] R. A. Brown, “Building a balanced k-d tree in o (kn log n) time,” 2014. 
[33] C. Bartneck, M. Soucy, K. Fleuret, and E. B. Sandoval, “The robot engine-making the unity 3D game engine work for HRI,” in 

IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), 2015, pp. 431–437,  

doi: 10.1109/ROMAN.2015.7333561. 
 

 

 
 

 

 



Int J Artif Intell  ISSN: 2252-8938  

 

Efficient method for finding nearest neighbors in flocking behaviors … (Marwan Al-Tawil) 

1635 

BIOGRAPHIES OF AUTHORS 

 

 

Marwan Al-Tawil     is currently an Assistant Professor with the University of 

Jordan, King Abdullah II School for Information Technology, Computer Information 

Systems Department. Dr. Marwan holds a B. Sc in Computer Information Systems (Al-

Hussein Bin Talal University, 2006) and a M.Sc. in Information Systems (The University of 

Jordan, 2011), and a Ph. D in Computer Science (The University of Leeds, 2018). He is 

currently the Dean Assistant for Automated exams at the University of Jordan. His current 

areas of interest include Knowledge Graphs and Data Exploration and visualization. He can 

be contacted at e-mail: m.altawil@ju.edu.jo. 

  

 

Moh'd Belal Al-Zoubi     is a Professor with the University of Jordan, King 

Abdullah II School for Information Technology, Computer Information Systems 

Department, Prof. Moh'd received a B.S. in Cybernetics from University of Belgrade in 

1983, M.S. in Computer Information Systems from Detroit University and Ph.D. in 

Computer Science from the University of Leeds. Dr al-Zoubi research interests are in Image 

Processing, Machine Learning and GIS. He can be contacted at e-mail: mba@ju.edu.jo. 

  

 

Omar Y. Adwan      is currently a Professor with the University of Jordan, King 

Abdullah II School for Information Technology, Computer Information Systems 

Department. Dr. Omar holds a B. Sc in Computer Science (Eastern Michigan University, 

1987) and a M.Sc. in Computer Science (The George Washington University, 1998), and a 

Ph. D in Computer Science (The George Washington University, 2008). He served as a 

chairman to CIS Dept. of KASIT during 2012-2016. He is currently the Dean of the Faculty 

of Information Technology in Al-Ahliyya Amman University. His current areas of interest 

include Software Engineering, System Engineering Tools, and Databases. He can be 

contatacted at e-mail: adwanoy@ju.edu.jo. 

  

 

Ammar M. Huneiti      is currently a Professor with the University of Jordan, 

King Abdullah II School for Information Technology, Computer Information Systems 

Department. Prof. Ammar holds a B. Sc in Computer Science (University of Wales College 

of Cardiff, 1991) and a M.Sc. in Information Systems Technologies (The University of 

Wales College of Cardiff, 1992), and a Ph. D in Intelligent Information Systems (Cardiff 

University, 2004). He served as Vice Dean of KASIT during 2015-2016, and Dean of 

KASIT during 2020-2021. His current areas of interest include Intelligent Information 

Systems, Data Mining, Performance Support Systems, Multimedia, Geographic Information 

Systems, Spatial Databases, Adaptive Hypermedia. He can be contacted at e-mail: 

a.huneiti@ju.edu.jo. 

  

 

Reem Q. Al Fayez     is currently an Assistant Professor with the University of 

Jordan, King Abdullah II School for Information Technology, Computer Information 

Systems Department. Dr. Reem holds a B. Sc in Computer Information Systems (The 

University of Jordan, 2009) and a M.Sc. in Information Systems (The University of Jordan, 

2011 and a Ph. D in Computer Science (The University of Warwick, 2016). She served as 

the Dean Assistant for Student Affairs at the University of Jordan during 2020. Her current 

areas of interest include Linked Data, Graph Databases and its application in data 

management. She can be contacted at e-mail: r.alfayez@ju.edu.jo. 

 

mailto:m.altawil@ju.edu.jo
mailto:alfayez@ju.edu.jo
https://orcid.org/0000-0002-5547-9691
https://scholar.google.co.uk/citations?user=AFodnj0AAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=56790049800
https://orcid.org/0000-0003-4282-9506
https://scholar.google.com/citations?user=rzZZHCwAAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=13805301400
https://orcid.org/0000-0003-3967-2456
https://scholar.google.com/citations?user=IS_2z0sAAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=54413902600
https://orcid.org/0000-0002-8717-6193
https://scholar.google.com/citations?user=--mc83MAAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=23985059400
https://orcid.org/0000-0002-5257-3973
https://scholar.google.com/citations?user=HUFYK3EAAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=57195279782

