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 Detecting troop camouflage on the battlefield is crucial to beat or decide in 

critical situations to survive. This paper proposed a hybrid model based on 

deep action learning for camouflage recognition and detection. To involve 

deep action learning in this proposed system, deep learning based on you only 

look once (YOLOv3) with SquezeeNet and the fourth steps on action learning 

were engaged. Following the successful formulation of the learning cycle, an 

instrument examines the environment and performance in action learning with 

qualitative weightings; specific target detection experiments with view angle, 

target localization, and the firing point procedure were performed. For each 

deep action learning cycle, the complete process is divided into planning, 

acting, observing, and reflecting. If the results do not meet the minimal 

passing grade after the first cycle, the cycle will be repeated until the system 

succeeds in the firing point. Furthermore, this study found that deep action 

learning could enhance intelligence over earlier camouflage detection 

methods, while maintaining acceptable error rates. As a result, deep action 

learning could be used in armament systems if the environment is properly 

identified. 
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1. INTRODUCTION 

Troop camouflage in military operations is indispensable to trick and move as close as possible to the 

opponent, while from the opponent's side constantly trying to extract field conditions from possible enemy 

camouflage. Separately, the development of artificial intelligence has provided many benefits for recognition 

and detection purposes [1]. However, the problem of camouflage detection is considered to be difficult to 

overcome because distinguishing between objects and the same background requires a different strategy [2]. 

The camouflage subdomains recognition includes segmentation, distance measurement, and troop recognition. 

The use of several approaches is required and even relatively new methods. 

Previous work by Shen et al. [3] introduced rapid camouflage detection using polarization and deep 

education. Unfortunately, the testing of this work uses artificial targets. It is similar with using deep learning; 

you only look once (YOLOv3) with an average accuracy of 91.55% [1]. Furthermore, it turns out that  

Xiao et al. [1] used a camouflage dataset that was not considered as a vague, for example, a fighter plane with 

a sky background or a frigate with an ocean background. However, the interesting point lies within how to 

camouflage the detected object according to the background, even though it is not necessary for the attacking 

troops in battle. A recent study introduced deep learning using camouflaged object detection with cascade and 

feedback fusion (CODCEF) [4] which can detect within 37 ms using an NVIDIA Jetson Nano device. Another 

https://creativecommons.org/licenses/by-sa/4.0/


                ISSN: 2252-8938 

Int J Artif Intell, Vol. 11, No. 3, September 2022: 859-871 

860 

study [5] used data augmentation to perform camouflage detection. This method is considered adequate with 

99% accuracy, superior in a lightweight but does not specify the computer specifications used. 

Although research [6], [7] had used many datasets, the detection results were not exceptionally good. 

Experiments conducted by [8] claimed that as the rapid camouflage detection using deep learning, this work 

still needs 0.82 seconds for a single detection process. A quite unique method is tried by Yan et al. [9]. 

According to [9], which offers the MirrorNet, it is effective for camouflage patterns detection with an accuracy 

up to 87%. Basically, deep learning that has been implemented in general still has some flaws. Examples of 

merging deep learning with several scenarios are becoming more common and have been widely applied, such 

as Shi et al. [10] and Tsai et al. [11], who used reinforcement learning (RL) and deep convolutional neural 

network (DCNN) for mobile robots, respectively [12]. Chen et al. [13] combined recurrent neural network 

(RNN), deep reinforcement learning (DRL), and long short-term memory (LSTM) in a comparable way; 

however, their capability was only around 47%. Visible weaknesses, the level of accuracy is determined during 

previous training. Where the number of datasets, learning rate, and epoch greatly affect performance. Another 

weakness is due to the nature of camouflage, which tends to have the same texture or pattern between objects 

against the background. Therefore, it is presumed that the current use of deep learning is no longer able to 

overcome the problem of camouflage detection. For this reason, other deep learning methods are needed, either 

as supervised or unsupervised learning [10], [14]–[17]. 

Current works by [11], [18]–[20] showed the use of deep learning followed by generative adversarial 

networks (GAN). Although GAN has gained popularity after being combined with other techniques in the 

camouflage concern, there is no improvement in its intelligence because the environment is examined from 

each perspective separately, and the system is trained with static data, which is insufficient for upgrading the 

knowledge itself [21], [22]. We are trying to decipher the weakness of GAN or deep learning, which is 

commonly used in camouflage problems. The key idea offered in this study is the ability to upgrade the 

intelligence of a deep learning for satisfactory detection. The concept was adopted from the educational world 

where action learning has long been applied, but for the fields of artificial intelligence, image processing or 

robotics, it has not been widely reported in scientific publications [14], [23]–[25]. 

The principle of action learning imitates human learning, where the learner will try to achieve the 

passing grade, and if he failed to achieve it and try to repeat [23], [25], [26]. For every effort to achieve passing 

grade, an evaluation is carried out by the instructor, which resulted to a need of an assessment instrument in 

action learning [27], [28]. In this light, action learning will have a repeated cycle and updates the evaluation of 

vision at different angles until it meets a certain level of passing grade. Besides the deep learning primary 

intelligence, it also learns to improve its capabilities by introducing the action learning. In practice, we will 

apply to troop camouflage for recognition and detection. Therefore, we expect that our system driven by deep 

action learning will be more accurate in detecting. Specifically, we propose to develop a rapid detection system 

using action learning that is robust in camouflage, which are frequently confronted while identifying troops for 

battlefield. This paper contains the following information: 

− A deep action learning is employed to estimate troop camouflage, which is a pretty homogonous pattern, 

vary in battlefield environment, also various military uniform. 

− We strive to be accurate in recognizing and detecting troop camouflage with deep action learning as basic 

detection.  

− We occupied an action learning to update system knowledge independently. Self-correction for troop 

camouflage detection in the battlefield was given and assessed; it might contribute as alternative routes 

to military devices. 

In section 2 of this rest article, we introduced our proposed system, and we examined the research method 

in section 3. Results and discussion on deep action learning applied to troop camouflage detection will be 

presented in section 4. Finally, in section 5, we conclude up the work and provide suggestions for future projects. 

 

 

2. PROPOSED SYSTEM 

Figure 1 depicts our entire system; the dashed line box represents the deep learning process in which 

YOLOv3 is combined with SquezeeNet. The image outside the dashed line is a chart of action learning. The 

combination of both is called a deep action learning, while the system is without preprocessing step on targets 

detection. Since we do not use preprocessing, we are worried about the detection precision. For this reason, action 

learning in camouflage detection optimizes the self-correction method; if the detection precision does not match 

the specified passing grade, the system will see the input image from a different alternative point of view. The 

red-green-blue (RGB) images with a resolution of 275×183 pixels ~ 640×480 pixels are used as inputs. The 

detection process in action learning occurs in the acting phase, where previously, the output of YOLOv3 was used 

as input in the planning phase. After the detection process is known, it will continue with the observation process; 

the detected target is observed again and its perspective is checked from a certain angle as a reflection discussion. 
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Figure 1. Overall architecture diagram 

 

 

In action learning theory, there is no limit to when the cycle will end, and it depends on the 

performance of the ability to reach the passing grade. Therefore, in our proposed deep action learning may 

depend on the hardware specification that our proposed system is running on. The system built for deep action 

learning is ultimately run on a central processing unit (CPU) with a Core i5-6200 CPU@ 2.4 GHz (4 CPUs) 

processor speed and random-access memory (RAM) of 16 GB capacity with onboard high definition (HD) 

Graphics 520, 4 GB of memory. Meanwhile, the deep action learning algorithm was developed using 

MATLAB. 

The deep action learning offered in this study was purely intended for detecting troops camouflage on 

the battlefield without the help of preprocessing or digital image processing intervention. In other words, the 

output of this system is the actual result of detection with a confidence value, then compared with various 

optimizers. There are three optimizers used in this study, stochastic gradient descent with momentum (SGDM), 

root mean square propagation (RMSProp), and adaptive moment optimization (ADAM). The findings were 

presented as a confidence level with a bounding box. The target will be determined using the square shape of 

the bounding box as a reference. Hence, detection utilizing deep action learning is a hybrid method, so it can 

be easy to describe separately in section 3. 

 

 

3. METHOD 

3.1.  Proposed approach in deep action learning 

Deep action learning was developed based on a combination of deep learning and action learning. 

YOLOv3 was selected as the method for deep learning using SqueezeNet as a feature extractor. The rectified 

linear unit (ReLU) function used in fire modules, kept the original SqueezeNet activation settings [19], [29]. The 

fully connected (FC) layers will follow the leaky ReLU function. Leaky ReLU is a modified version of ReLU 

with a bit of slope in the function output for negative data. As a result, the derivative is never zero; it can limit 

the appearance of silent neurons, resolving the issue of ReLU failing to learn when negative intervals are 

encountered. As (1), the term of Leaky ReLU is explained in (1). 
 

ϕ(x) = f(x) = {
x, x > 0

0.1x, x < 0
 (1) 

 

The categorical cross-entropy loss function in (2) will be used to tune our design during training. While 

training, we would utilize the categorical cross-entropy loss function in (2) to improve our model: 
 

loss = -∑ ŷi1 log yi1 + ŷi2 log yi2 + ⋯ + ŷim log yim
n
i=1   (2) 

 

where the numbers n and m denote the number of samples and categories, respectively. The real value is 

represented by y, whereas the estimated value is represented by ŷ. 



                ISSN: 2252-8938 

Int J Artif Intell, Vol. 11, No. 3, September 2022: 859-871 

862 

In practice, it is crucial to pay more attention to the categories with small samples when having the 

loss function, since it aims to resolve the problem of sample imbalance. We add loss components to the loss 

function, as shown in (3), to let the model training proceed smoothly and avoid overfitting. 
 

loss = -∑ λ1ŷi1 log yi1 + λ2ŷi2 log yi2 + ⋯+ λmŷim log yim
n
i=1   (3) 

 

For each target category, the values of loss factor 𝜆 have been computed as presented in (4). 
 

𝜆𝑖 =
𝐶𝑛

𝑛𝑁𝑖
 

 (4) 
 

where the total number of samples is represented by 𝐶𝑛. The number of target categories is n, and 𝑁𝑖 denotes 

the sample amount of class I. 

Although action learning was presented, RL was a source of inspiration. RL used the Bellman 

equation to calculate a discounted value from the goal point; the multiple paths were trained to achieve supreme 

value. The value of each state in RL was defined in advance. On the other hand, with action learning, the value 

was eliminated and substituted with a real-time assessment based on the instrument, also known as a passing 

grade for students (system). At the same time, the passing grade is expressed by 𝛽𝑝. The assessment of the 

environmental value is derived from the eight evaluation indicators in Table 1. 

 

 

Table 1. Assessment of the environment on deep action learning 

Aspect (Indicators) 
Scale/Probability (n) 

ω 
0 1 2 3 

Planning and action 

Measure the YOLOv3 detection on an image 𝛿 (%) >50 ≤80 81~95 ≥96 12 

Assess the current passing grade 𝛽 - ≤75 76~90 ≥91 3 

Adjust view an input image 𝜃 - - - - 9 

Suspect the appearance of bounding box 𝜀 No - - Yes 3 

Observing and reflecting 

Confirm on previous 𝛿 camouflage detection  No - - Yes 8 

Ensure firing point is visible  No - - Yes 5 

Compare the 𝛽𝑝 versus 𝛽 - ≤𝛽𝑃 𝛽 = 𝛽𝑃 ≥𝛽𝑃 5 

Compare the result of 𝛽 versus 𝛽0 (%) - ≤𝛽0 𝛽 = 𝛽0 ≥𝛽0 5 

 

 

To verify self-correction algorithm using deep action learning, the targeted images were performed 

with the following details. Where the output of YOLOv3 detection is 𝛿 and 𝜀 is the result of bounding box, 

and 𝛿, 𝜀 ∈ ℝ. In addition to using scales or probabilities, we used weighting to ascertain the influence 

composition in deep action learning. The weights were intuitive in their settings, with a maximum total score 

of 50. The assessment indicators result in Table 1 can be represented as (5). 
 

β =  ∑ niωi
8
i=1 + ni+1ωi+1 + ⋯+ ni+6ωi+6 (5) 

 

As a function, the first cycle's plan can be stated as (6), where the planning is denoted by 𝑝𝑡 , acting by 𝑎𝑡, 

observing by 𝑜𝑡, and reflecting by 𝑟𝑡.  
 

𝑝𝑡 = 𝛽 ∧ 𝛿 ∧ 𝜀 ⟹ 𝑎𝑡 (6) 
 

If the 𝑝𝑡  has satisfied the states by 𝛽, 𝛿, 𝜀, it will proceed to the 𝑎𝑡  procedure, which will include conditions 

such as (7). 
 

𝑎𝑡 ≠ 0 ⟹ 𝑜𝑡   (7) 
 

We can write (7) from (8), and the reflection value result is determined by 𝑜𝑡 with binary properties, 
 

{
𝑜𝑡 = 𝛽 ∧ 𝛿 ⟹ 𝑟𝑡;    𝛽, 𝛿 ≠ 0   

𝑟𝑡 = 𝑜𝑡 ,     𝑜𝑡 ∈ {0,1}                   
   (8) 

 

If 𝑟𝑡 = 1, the cycle will come to a halt; if 𝑟𝑡 = 0, it will scroll to the next cycle to evaluate 𝛽(t+1) and 

return its value. When observation 𝑜𝑡 receives inputs from value β ∧ δ in (8), deep action learning works a 

second time to assess if the camouflaged target has been detected or not, and the cycle continues. 
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3.2.  The system limitation 

The detailed deep action learning for troop camouflage is limited to detecting for the trained classes 

of 1249, and the cycle number episodes in deep action learning cannot be predicted. In this paper, the number 

of cycles is natural (unlimited) and depends on deep action learning performance. We fulfilled this because it 

does not involve hardware such as rifles, cannons, or other battle equipment, but there will be a limit on the 

cycles number if later apply hardware. Additional explanations are discussed in section 3. 

 

 

4. RESULTS AND DISCUSSION 

Testing the detection results of troops camouflaged in the forest battlefield using a deep action 

learning approach was conducted separately. This separate test can be understood comprehensively considering 

that the process combines detection using deep learning YOLOv3 while self-correction used action learning. 

Three results will be presented: first, evaluating the detection results with a comparison of the optimizer, then 

evaluating the performance of action learning, and evaluating deep action learning. 

 

4.1.  Results 

4.1.1. Camouflage targets detection 

The testing was conducted separately, and Figure 2 shows the results of camouflage detection with 

the SGDM optimizer in various viewing angles. Figure 2(a) rotating target -0.2° can detect three targets with 

confidence values of 0.804, 0.785, and 0.807, respectively. The next confidence value when the target is rotated 

-0.1° experiences a significant increase as presented in Figure 2(b); for example, from 0.804 as shown in  

Figure 2(c), it increases to 0.899. However, as shown in Figure 2(d), there is a downward trend and increases 

again when rotated +0.2°, as can be seen in Figure 2(e). Through a series of experiments, the optimal rotation 

limit was -1°<θ <1°, over this limit, the recall was not quite perfect, as shown in Figure 2(f). 

 

 

   
(a) (b) (c) 

   
(d) (e) (f) 

 

Figure 2. Camouflage detection results (a) rotated image 𝜃 − 0.2°, (b) rotated image 𝜃 − 0.1°, (c) original 

image 𝜃 − 0°, (d) rotated image 𝜃 + 0.1°, (e) rotated image 𝜃 + 0.2°, and (f) rotated image 𝜃 + 1.5° 
 

 

As seen in the value of > 𝜃 ± 1°, the detection results did not show a significant improvement. 

However, it does not mean that the value of (𝜃 + 𝑡) ≈ 0° was the best. This assumption needed to be confirmed 

with various approaches, as manifested in Figure 2(c), the second bounding box toward Figure 2(d). Let us 

observe the differences in inconsistent perspectives; for instance, for a certain angle, the value of 𝜃 > (𝜃 + 𝑡), 

and the result is not always better. It means that through this stage, a decision-maker needs another method to 

adjust image rotation to get an optimal result, and action learning will work for this purpose. Another argument 

is that the optimizer of a detector has a significant role as well; and it needs to be disclosed. Figure 3 shows a 

comparison of the detection results of the three optimizers; SGDM, RMSProp, and ADAM are shown in red, 

green, and blue, respectively. Prior to that phase, the three optimizers were trained to generate each detector 

with SquezeeNet. Parameter details during training using initial learning rate 0.0001, mini-batch size of 16, 

maximum epochs of 200, and verbose frequency of 30. After being tested on one of the same image inputs, the 

results are presented in Figure 3. Figure 3(a) shows an original image with 𝜃 − 0° detected by RMSProp 

optimizer, while Figure 3(b) shows rotated image 𝜃 − 0.1° detected by the same optimizer. Figures 3(c) and 

3(d) are detected by ADAM optimizer rotated image 𝜃 − 0°, 𝜃 − 0.1° with confidence values of 0.980 and 

0.971, respectively. If compared between Figure 3(e) original image 𝜃 − 0° detected by SGDM optimizer and 

Figure 3(f) rotated 𝜃 − 0.1°, Figure 3(f) is significantly better with a confidence value of 0.960. 
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(a) (b) (c) 

   
(d) (e) (f) 

 

Figure 3. Troops camouflage detection results with different optimizers without rotating image. 

(a) original image 𝜃 − 0° detected by RMSProp optimizer, (b) rotated image 𝜃 − 0.1° detected by RMSProp, 

(c) original image 𝜃 − 0° detected by ADAM optimizer, (d) rotated image 𝜃 − 0.1° detected by ADAM 

optimizer, (e) original image 𝜃 − 0° detected by SGDM optimizer, and (f) rotated image 𝜃 − 0.1° detected 

by SGDM optimizer 
 

 

Figure 3 shows that the ADAM optimizer has a reasonably good detection result for images that fused 

with the background. On the other hand, the SGDM optimizer has the lowest. The detection results presented 

in Figure 3 are pure detection results from a YOLOv3 detector on an image repeated three times without any 

interference from other methods such as rotating, zooming in, and zooming out the image. Several tests, 

including those in Figures 3(c) and 3(d), have a saturation detection where the test value will stagnate at a 

particular value after several repetitions of the test as can be seen in Table 2. The comparison between optimizer 

performance is significantly different for each optimizer as we have italicized. It means that the probability of 

testing remains to be valid in this case, although sometimes it is not significant. 
 

 

Table 2. Bechmarking of optimizer’s performance 
Optimizers Parameters 

Confidence Accuracy Precission Recall F1 mAP Time (s) 

RMSProp 0.80 0.97 0.99 0.99 0.99 0.99 0.40 
SGDM 0.86 0.92 1 0.92 0.96 0.88 0.39 

ADAM 0.82 0.94 1 0.94 0.97 0.93 0.41 

 

 

Now, we focus on the test results; Table 2 shows 25% of the tested samples from the dataset or about 

288 of 1,153 images. The SGDM optimizer in terms of confidence value is 0.86 or superior to other optimizers. 

However, in terms of accuracy, precision, recall, performance, and mean average precision (mAP), RMSProp 

is superior while the SGDM detection time is 0.01 seconds or 0.39 seconds faster. On the other hand, the 

ADAM and SGDM optimizers have perfect precision of 1. 
 

4.1.2. Deep action learning for self-correction detecting 

It is critical to understand the principles of the existing general learning approaches to adopt deep action 

learning in artificial intelligence, and it must be stressed that action learning is different from other learning 

approaches. While there are several syntactical similarities between RL, active learning, experimental learning, 

and metacognitive learning, the process for instant planning, acting, assessing, reflecting, evaluating, or reviewing 

are different. Dick et al. and Altricther et al. were the first to introduce action learning [26], [27], [30] in general, 

while Aldridge, Bell, Norton, Mc Niff, Stringer et al. Whitehead, and others modified it and called it classroom 

action research [28], [31]–[33]. It resulted in no scholarly articles in engineering about the development of deep 

action learning in machine learning, and its application remains restricted to the educational field [28], [31]–[33]. 

Deep action learning consists of deep learning and action learning; let us go into detail about action 

learning separately. The proposed action learning is similar with that offered by Dick et al. and Altricther et 

al. consisted of four cycles. The first cycle is the planning step, where the input image is observed from the 

perception of =0° to be detected using YOLOv3. In this status, the output of YOLOv3 is provided as input for 

planning. Next on the acting step, the possible value of the highest confidence level will be observed by using 
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image playback, selecting the type of optimizer, and providing alternative shooting points from the detection 

results. Followed by the third step, observing, in which this section compares the interim detection results to 

the passing grade. The results of the comparison at the observing step are delivered to the reflecting section to 

make decisions. If the detection value or confidence level being compared has not reached the passing grade, 

the cycle is repeated until it meets the passing grade value. The overview ofthe entire series of deep action 

learning procedures is presented in Figure 4. We try to evaluate the same image in Figure 4(a) with an original 

input 𝜃 + 0°. After deep action learning was run for the first cycle with the detection results using the ADAM 

optimizer as can be seen in Figure 4(b), the result was unable to detect. Deep action learning rolled to the 

second cycle with the SGDM optimizer 𝜃 − 1° as shown in Figure 4(c) with a confidence value of 0.6441; 

Figure 4(d) showed a slight increase when using the RMSProp optimizer, and the input was rotated 𝜃 − 0.2°. 
When we tried to detect in the fourth cycle of Figure 4(e) with the ADAM optimizer and the angle at 𝜃 − 0.1°, 
the result dropped to 0.6051, whereas when the SGDM optimizer was used again with the angle at 𝜃 + 0.2°, 
as can be seen in Figure 4(f), the confidence level increased and continued to do so as presented in Figure 4(g) 

using RMSProp optimizer at 𝜃 − 0.1°. Finally, Figure 4(h) with RMSProp optimizer and angle 𝜃 + 0.1° was 

saturated at 0.9148 was considered as the best at that time. 

As shown in Figure 4, the results of deep action learning showed a variable increase that cannot be 

predicted on the way to reaching the specified passing grade = 0.9. From 0.64 to 0.91, it took seven cycles, and 

detection speed took 1.14 seconds. Optimizer settings and rotation angle selection were purely made by the 

system that had been built, which will be discussed in the discussion subsection. 
 
 

    
(a) (b) (c) (d) 

    
(e) (f) (g) (h) 

 

Figure 4. Sequence of camouflage detection using deep action learning (a) an original input 𝜃 + 0°, result of 

detecting with, (b) ADAM optimizer, (c) SGDM optimizer 𝜃 − 0.1°, (d) RMSProp optimizer 𝜃 − 0.2°, (e) 

ADAM optimizer 𝜃 − 0.1°, (f) SGDM optimizer 𝜃 + 0.2°, (g) RMSProp optimizer 𝜃 − 0.1°, (h) RMSProp 

optimizer 𝜃 + 0.1° 
 

 

4.2.  Discussion 

4.2.1. Detection targets in camouflaged object (CAMO) dataset 

The detection results for the experiments to detect objects was similar to the background from CAMO 

dataset with some extended data. After being observed, significant differences were found in the detection 

results, for example, bright and dark images. There is a tendency for dark images to have low confidence 

values. Figure 5 depicts the confidence value of the histogram. Therefore, the bounding box alone is not 

enough, and it is necessary to add the centroid of the target for target aiming purposes. If only the results of the 

confidence value are pure, the detection results with deep learning are less valuable. 

Calculating the centroids from the bounding box, as presented in (9), is the simplest method. 
 

𝐵𝑏𝑜𝑥 =

[
 
 
 
 
𝑛11 𝑛12 𝑛13 𝑛14

𝑛21 𝑛22 𝑛23 𝑛24

𝑛31 𝑛32 𝑛33 𝑛34

⋮ ⋮ ⋮ ⋮
𝑛𝑛1 𝑛𝑛2 𝑛𝑛3 𝑛𝑛4]

 
 
 
 

 (9) 
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The first line in the (9) matrix shows the first bounding box and the second line is the second bounding box. If 

𝑛11, 𝑛12, are denoted for 𝑋𝑐 , 𝑌𝑐  while 𝑎 =  𝑛13 and 𝑏 =  𝑛14. The bounding box matrix 𝐵𝑏𝑜𝑥 comprises of four 

columns a[1…,4] and the number of rows depends on the number of detected targets 𝑛[𝑛,4] on each coordinate. 

So, we could find the centroids (𝑋𝑐𝑒𝑛 , 𝑌𝑐𝑒𝑛) from (9) as follows. 
 

{
𝑋𝑐𝑒𝑛 = 𝑋𝑐 +

𝑎

2
 

𝑌𝑐𝑒𝑛 = 𝑌𝑐 +
𝑏

2

 (10) 

 

The centroid can be determined using (10) and serves as the target's firing reference point. 

The centroid point in this state was still in the 2D, as for the detection results obtained using (9) and (10)  

can be seen in Figure 5. Figures 5(a) and 5(b) show troop camouflage with more than one target, while  

Figures 5(c) and 5(d) show one target camouflage only. Observed from the histogram side, the top two images 

represented in Figures 5(e) and 5(f) are images with dark dominance, while the second bottom two images 

shown in Figures 5(g) and 5(h) had a relatively normal histogram distribution. The two groups of images could 

show empirical evidence that the tendency for the normal curve to dominate was lower in detection accuracy 

even with the same optimizer. 
 

 

    
(a) (b) (c) (d) 

 

  
(e) (f) 

  
(g) (h) 

 

Figure 5. Shooting targets based on ADAM optimizer; (a)-(b) a dark input images, (c)-(d) a balance input 

image with each image hitogram distribution. The dark image (e)-(f) tends to have a left skewed histogram 

while the balanced image (g)-(h) has a normal curve and the detection rate results tend to be stable 
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4.2.2. Deep action learning evaluation 

Before starting with the target detection technique and localization for firing target, the parameter 

settings for YOLOv3 as a deep learning approach should be understood. The results of deep learning were 

undoubtedly influenced by the differences in parameters. The starting mini-batch size, learning rate, and the 

maximum epoch used will all hold a major impact on detection accuracy and training duration. The training 

results on the three optimizers (SGDM, ADAM, and RMSProp) are presented in Figure 6. If the learning rate 

is too low, for example, training may take a longer process. If the learning rate is too high, however, the training 

may provide a suboptimal or diverge output. The centroid can be determined using (10) and serves as the 

target's firing reference point. 

A detector constructed during training can be seen in general performance based on the training loss 

over iteration numbers. The training loss of the YOLOv3 detector is depicted in Figure 6 using the SGDM, 

ADAM, and RMSProp optimizers. In contrast to the other two, RMSProp was found to be the best, as seen in 

Figure 6. The value of training loss was virtually nil in the 500th iteration and tended to stagnate until the 600th 

iteration, while the ADAM and SGDM optimizers were close to each other in the 800th iteration. This detector's 

precision was critical for overall system testing verification. At all recall levels, the precision should ideally be 

one. 

 

 

 
 

Figure 6. RMSEs of training loss during iteration in a YOLOv3 detector; training loss for SGDM optimizer 

(solid line), ADAM optimizer (dashed-cross line), and RMSProp optimizer (dashed line) 

 

 

Comparisons were also made to compare deep action learning with other methods. As presented in 

Table 3, the system can perform self-correction to achieve a minimum passing grade 𝛽0. The duration of 

passing grade achievement varies according to the cycles, and of course, the more cycles, the longer the time 

required. We set 𝛽0 = 0.88 with the developed algorithm and were able to detect as seen in the second row of 

Table 3 quickly; the detection result was 0.97, meant that it did not require self-correction using deep action 

learning. Meanwhile, self-correction dynamics occurred in the first, third, fourth, and fifth rows with each 

detection result. Focusing on the first row, shows in Table 3 with 𝜃 = 0.2° was unable to detect the target in 

the first cycle, and in the second cycle, the target was detected at 0.79 and 0.92. Deep action learning tried to 

find another optimizer alternative using RMSProp, and the result was able to exceed 𝛽0 with a result of 0.94. 

The fourth line was almost similar with the first line, while the last line had two cycles with the same optimizer 

in detecting improvements with 0.58 seconds for both cycles. 

In this paper, RMSProp was found as the best optimizer, as shown in Figure 6, but we only use it as 

a single option. The selection of detectors was completely determined by deep action learning through the 

assessment mechanism in Table 1. Due to this reason, we need to compare the results of camouflage detection 

using deep action learning with other methods such as Unet++, CPD, SINet, and MirrorNet, which at least use 

CAMO dataset. 

Obviously, the deep action learning annotation procedure for determining the firing target will be 

more accurate than the existing methods, as presented in Table 4. We compare SqueezeNet's performance to 

state-of-the-arts stated in [34] to establish a fair comparison. Table 4 compares the E-measure (Eφ) [35], S- 

measure (Sα) [36], weighted F-measure (𝐹𝛽
𝜔) [37], and MAE performance of several approaches [38]. As can 

be seen, the strategies introduced recently tend to produce superior results. Deep action learning with 

SqueezeNet, our suggested method, achieved the greatest results in terms of Eφ, Sα, 𝐹𝛽
𝜔, and MAE. In every 

metric, deep action learning with the SqueezeNet backbone outperformed state-of-the-art approaches by a 

significant margin. 
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Table 3. Self-correction process sequence on camouflage detection using deep action learning 

Input (𝜽 = 𝟎°) 𝓒𝒏+𝟏 𝓒𝒏+𝟐 𝓒𝒏+𝟑 𝜽 𝜷𝟎 | 𝜷𝒏 
T 

(s) 

    

−0.2° n/a 

1.03 
−0.1° 

0.79 | 
0.92 

0.1° 
0.96 | 

0.94 

  

na na 

0.1° na 

0.35 - 0.97 

- - 

    

0° na 

1.12 
0.1° na 

0.2° 0.76 

    

−0.1° 0.87 

1.04 
0.0° 0.67 

0.1° 0.88 

   

na 

−0.2° 0.88 

0.58 

0.1° 0.98 

- - 

 

 

Table 4. Comparison of methods performance on CAMO dataset 

Method Year Training Setting 
Evaluation Metrics 

𝑆𝛼 ⇑ 𝐸∅ ⇑ 𝐹𝛽
𝜔 ⇑ 𝑀𝐴𝐸 ⇓ 

Unet++ [39] 2018 CAMO [38] + COD [34] 0.599 0.653 0.392 0.149 

CPD [34] 2019 CAMO [38] + COD [34] 0.726 0.729 0.550 0.115 

SINet [34] 2020 CAMO [38] 0.708 0.706 0.476 0.131 
MirrorNet [9] 2020 CAMO [38] 0.741 0.804 0.652 0.100 

SquezeeNet  2021 CAMO [38] + extended  0.782 0.856 0.657 0.083 

 

 

4.2.3. Experiments of self-correction on deep action learning 

In this subsection, we will discuss the self-correction process using deep action learning. As presented 

in the preceeding subsection, in Figure 5, the detection results held values that were upgraded by the system. 

Self-correction uses deep action learning, while the passing grade was set at 𝛽0=0.95 in Figure 7(a) at the 

beginning of the system detected the target using SGDM optimizer which resulted in 0.89, 0.86, 0.92, and 0.90 

at 𝜃 + 0.2°, because it failed to reach 𝛽0=0.95, the system wastried to be updated this time using the ADAM 

optimizer at 𝜃 + 0° as shown in Figure 7(b), and the detection results were 0.92, 0.90, 0.90, and 0.90. The 

cycle was added from cycle two to cycle three, where this time the input image was set at 𝜃 − 0.1° and back 

to SGDM optimizer and now successfully passed 𝛽0 as shown in Figure 7(c), which was set with detection 

results of 0.97, 0.95, 0.95, and 0.95 for each target. 
 

 

 

Figure 7. A sequence of self-correction in deep action learning, firstly, detection using SGDM optimizer (a), 

changed to ADAM optimizer (b) and switched back to SGDM optimizer (c) with internal assessment 

   
(a) (b) (c) 
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The exciting notion about self-correction using deep action learning is that the shift in the bounding 

box localization results is insignificant. The target firing point is approximately the same if compared to the 

optimizer and viewing angle variations. In fact, Figure 7 structurally has a histogram pattern like  

Figures 5(a) to (c) with a relatively even distribution of histograms. A quarter of the approximately 1249 images 

trained in deep action learning utilizing CAMO datasets was used for testing in this study. However, in addition 

to the testing of CAMO dataset, accuracy is beyond the scope of this paper. 

 

 

5. CONCLUSION  

This study has established an effective deep action learning for troop camouflage recognition detection 

in the CAMO dataset. A deep action learning designed with deep learning (YOLOv3) and action learning can 

detect and make firing points camouflaged in 2D image workspace. Inside, the YOLOv3 is equipped with 

SquezeeNet and modified the view angle on the input image driven by deep action learning. The processes of 

detecting troops in deep action learning include planning, acting, observing, and reflecting on whole steps 

without preprocessing. However, the results showed a value at 0.97 and 0.99 for accuracy and recall, 

respectively. Within a passing grade of 0.88, this evaluation mechanism calculated with an indefinite cycle in 

deep action learning. In the future, we intend to investigate the problem of camouflaged instance segmentation. 

For the experiment, we will improve video-based detection using YOLOv4 or YOLOv5 with a preprocessing 

approach. 
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