
IAES International Journal of Artificial Intelligence (IJ-AI)
Vol. 11, No. 3, September 2022, pp. 1049∼1056
ISSN: 2252-8938, DOI: 10.11591/ijai.v11.i3.pp1049-1056 ❒ 1049

Machine learning modeling of power delivery networks
with varying decoupling capacitors

Yeong Kang Liew1, Nur Syazreen Ahmad2, Azniza Abd Aziz2, Patrick Goh2

1Intel Corporation, Penang, Malaysia
2School of Electrical and Electronic Engineering, Universiti Sains Malaysia, Nibong Tebal, Malaysia

Article Info

Article history:

Received Jul 8, 2021
Revised Mar 8, 2022
Accepted Apr 5, 2022

Keywords:

Artificial neural network
Gaussian process regression
Power delivery network

ABSTRACT

This paper presents modeling of power delivery network (PDN) impedance with vary-
ing decoupling capacitor placements using machine learning techniques. The use of
multilayer perceptron artificial neural networks (ANN) and gaussian process regres-
sion (GPR) techniques are explored, and the effects of the hyperparameters such as
the number of hidden neurons in the ANN, and the choice of kernel functions in the
GPR are investigated. The best performing networks in each case are selected and
compared in terms of accuracy using test data consisting of PDN impedance responses
that were never encountered during training. Results show that the GPR models were
significantly more accurate than the ANN models, with an average mean absolute error
of 5.23 mΩ compared to 11.33 mΩ for the ANN.
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1. INTRODUCTION
Power integrity (PI) is a field of engineering which strives to ensure the quality of power delivered

to integrated circuit components through a network known as the power delivery network (PDN) [1], [2].
Poorly designed PDN can induce serious noise problems to the board and affect the signal quality, which can
impair data throughput and results in reduced performances. Good PDN designs should satisfy the given target
impedances in a circuit in order to minimize direct current (DC) effects such as IR drop, and also alternating
current (AC) effects such as simultaneous switching noise and ground bounce [3].

To minimize the impedance of a PDN, one of the most common approach is to place decoupling
capacitors on the PDN, especially at locations close to the power pins of the devices on the network [4], [5].
The decoupling capacitors are used to provide low impedance paths from the power source to the power sinks
and also to filter or guide the noise away to the ground. However, the design and placements of these decoupling
capacitors on a PDN is not a trivial task. Too few or poorly placed decoupling capacitors would result in PDNs
which fail to meet the target specifications, while too many decoupling capacitors would increase the size
and cost of the design. In addition, all physical capacitors have associated parasitic inductances, which are
negligeable at lower frequencies, but can dominate the performance at higher frequencies, depending on the
value of the capacitors. Thus, proper sizing of the capacitors also play an important role in satisfying the target
impedance over the range of the operating frequency in the design.

Many previous work exists on optimizing the placement, sizing, and selection of decoupling capacitors
on a PDN [6]-[9]. However, these work are based on theories and rule of thumbs which can vary from design
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to design and are usually not easy to generalize and implement practically, without an expert knowledge in
the field. In addition, they require extensive time and effort to study and optimize the design repeatedly, often
relying on computationally expensive computer-aided design simulations [10]-[12].

Recently, machine learning (ML) techniques have seen considerable success in various engineering
fields [13], [14], particularly also in the closely related signal integrity (SI) field [15]-[18]. As a result, re-
searchers have explored the use of ML techniques for the solution of PI and PDN problems [19]-[21]. This
includes work utilizing particle swarm optimization, genetic algorithm, and Q-learning to optimize the place-
ment, sizing, and selection of the decoupling capacitors on a PDN [22]-[26]. The general purpose of these
research works is to optimize the design to lower down the input impedance such that it is lower than the target
or desired impedance value with the least number of decoupling capacitors used in PDN. However, while these
researches focus on the optimization of the PDN, they do not help in the impedance response prediction of
these designs. This is important as well as designers often prefer to look at the actual impedance response plots
of the PDNs to gain insight into their performances. The work in [27] applies a recurrent neural network to
predict the impedance response curve but it is related to extrapolations of the impedance response beyond the
training frequency by learning the correlation of the existing impedance values. Thus, this method cannot be
applied directly to obtain the impedance response from a physical design.

This paper presents a study of ML techniques to model and predict the impedance response curves of
PDNs with varying decoupling capacitor placements. Artificial neural network (ANN) and Gaussian process
regression (GPR) are applied to model the PDN from a physical design with different decoupling capacitor
model and values. Effects of different training methods in the ANN and kernel functions in the GPR are also
investigated, and the accuracy of the various networks in both methods are compared. The fundamentals of
ANN and GPR are assumed to be well known to the reader, and are not repeated in this paper for the benefit of
brevity.

2. RESEARCH METHOD
2.1. Data generation

The data used in this work is obtained by simulation of actual impedance profiles of power delivery
networks obtained from Intel Corporation. The PDN is driven by a voltage regulator module (VRM) and has
a total of 17 locations for decoupling capacitor placements. Four different decoupling capacitor models are
considered and this is tabulated in Table 1. Due to the different models and location proximity to the VRM
on the PDN, each decoupling capacitor location is restricted to only receive one type of capacitor. However,
note that it is not necessary for a location to have a capacitor, and instead, it can be left empty if necessary.
Table 2 tabulates the possible locations for each of the decoupling capacitor, where the 17 locations are labeled
from A to Q. Next, the impedance profiles of the PDN with varying decoupling capacitor placements are
simulated in Cadence Allegro Sigrity OptimizePI.

Table 1. Decoupling capacitor models used in this work
ID Model name Manufacturer Model type Capacitance (µF) Area (mil2) Rated Self resonance

voltage (V) freq. (MHz)
1 GRM155R61E104KA87 Murata SPICE 0.1 800 25 26.0
2 LMK105BBJ475MVLF Taiyo Yuden SPICE 4.7 800 10 3.98
3 CL05A106MQ5NUN Samsung SPICE 10 800 6.3 2.51
4 GRM21BR60J476ME15 Murata SPICE 47 4000 6.3 1.00

Table 2. Possible locations for each of the capacitor model
Capacitor ID Possible locations

1 D, F, H, I, J, K, L, M, N, O
2 E, G
3 A
4 B, C, P, Q

Two different sampling methods are considered in this work. In the first method, a fine sampling is
performed with a total of 236 points over the frequency range of 10 kHz to 200 MHz, while in the second
method, a coarse sampling is performed with a total of 29 points over the frequency range of 100 kHz to
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200 MHz. The fine sampling is naturally more accurate, but is also computationally more expensive in both
the training data generation and machine learning training processes. A comparison will be drawn based on the
results in both sampling methods in the next section. Once the training data has been generated based on the
two sampling methods, two machine learning modeling techniques are investigated to model the impedance
profiles of the PDN. The first utilizes a multilayer perceptron neural network, while the second utilizes a
Gaussian process regression model. The following subsections describe the process and parameter used in both
methods.

2.2. ANN modeling method
A three layered multilayer perceptron neural network is used model the PDN to predict the impedance

response over the frequency range of interest. The inputs are the decoupling capacitor placements and combi-
nations, while the outputs are the impedance response of the PDN. A hyperbolic tangent sigmoid function is
used as the activation function for the input layer, while a linear activation function is used for the output layer.
To avoid overweighting the larger data values, the input and output data values are normalized to be between -1
and 1. Two different backpropagation training algorithms are considered, which are the Levenberg-Marquardt
and the Bayesian regularization training functions. Early stopping is used to prevent overfitting. In order to
determine the optimal number of hidden neurons, a linear sweep is performed from 10-50 hidden neurons, with
an increment of 5 neurons per iteration. Finally, the best performing neural network is selected based on the
lowest mean absolute error.

2.3. GPR modeling method
The GPR model has the same modeling goals, and input and output targets as the ANN in the pre-

vious subsection. The main hyperparameter in the GPR is the choice of kernel or covariance function. For
that, 10 different kernel functions are considered, ranging from exponential, squared exponential, Matérn with
parameters 3/2 and 5/2, and rational quadratic kernels, and all are considered with the same or a separate length
scale per predictor. Thus, 10 separate GPR models are trained, one for each kernel. In each case, Bayesian
optimization is used to optimize the remaining hyperparameters by exploring the search space and minimizing
the cross-validation loss. Finally, the best performing GPR model is selected based on the lowest mean absolute
error.

3. RESULT AND DISCUSSION
3.1. ANN modeling results

The mean absolute error (MAE) for the ANN trained using the Levenberg-Marquardt and Bayesian
regularization training algorithms with varying number of hidden neurons are shown in Table 3 for the case of
a fine sampling with 236 points over the frequency range of interest, and in Table 4 for the case of a coarse
sampling with 29 points over the frequency range of interest. It can be seen that the fine sampling produces
a more consistent result across all the number of hidden neurons, while the results from the coarse sampling
shows more fluctuations. This is due to the fact that the coarse sampling data has less overall points across
the frequency range, and thus more variability between the points. However, the coarse sampling data models
can yield better results than the fine sampling data models at the optimal number of hidden neurons. The best
performing network is selected as the ANN with 35 hidden neurons trained with Bayesian regularization for the
fine sampling model, and the ANN with 20 hidden neurons trained with Levenberg-Marquardt for the coarse
sampling model.

Table 3. MAE for the ANN models with varying number of hidden neurons for fine sampling
No. of hidden neurons Levenberg-marquardt MAE (mΩ) Bayesian regularization MAE (mΩ)

10 15.80 14.83
15 15.97 14.93
20 15.30 14.60
25 15.37 14.80
30 14.93 14.93
35 15.27 14.43
40 15.97 14.77
45 14.97 14.90
50 14.77 14.80
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Table 4. MAE for the ANN models with varying number of hidden neurons for coarse sampling
No. of hidden neurons Levenberg-marquardt MAE (mΩ) Bayesian regularization MAE (mΩ)

10 35.2 11.4
15 9.1 11.0
20 5.6 8.6
25 22.6 9.2
30 16.6 30.3
35 31.1 9.5
40 41.9 87.1
45 10.1 34.7
50 21.4 24.2

3.2. GPR modeling results
The MAE for the GPR trained using different kernel functions are shown in Table 5 for the case of the

fine sampling and Table 6 for the case of the coarse sampling. It can be seen that the GPR models show less
fluctuations with varying kernel functions, compared to the ANNs with varying number of hidden neurons. In
addition, using a same length scale per predictor produces better results on average than using a separate length
scale per predictor. The best performing model is selected as the GPR with an exponential kernel function and
a same length scale for each predictor, in both cases.

Table 5. MAE for the GPR models with varying kernel functions for fine sampling
Kernel function Length scale per predictor MAE (mΩ)

Squared exponential Same 15.27
Exponential Same 12.07
Matern 3/2 Same 15.63
Matern 5/2 Same 15.60

Rational quadratic Same 15.50
Squared exponential Separate 58.00

Exponential Separate 58.00
Matern 3/2 Separate 58.00
Matern 5/2 Separate 58.00

Rational quadratic Separate 58.00

Table 6. MAE for the GPR models with varying kernel functions for coarse sampling
Kernel function Length scale per predictor MAE (mΩ)

Squared exponential Same 5.07
Exponential Same 4.80
Matern 3/2 Same 5.00
Matern 5/2 Same 5.03

Rational quadratic Same 5.00
Squared exponential Separate 24.37

Exponential Separate 24.47
Matern 3/2 Separate 21.50
Matern 5/2 Separate 24.57

Rational quadratic Separate 23.80

3.3. Comparison between ANN and GPR
In order to perform an unbiased testing and comparison between the ANN and GPR models, two

additional PDN impedance profiles are simulated using Cadence Allegro Sigrity OptimizePI with decoupling
capacitor placement combinations that were never seen during training. The best performing models of the
ANN and GPR depicted in the previous subsections were selected, and the models were used to predict the
impedance profiles in both the fine and coarse sampling frequency range. Figure 1 shows a comparison of the
predicted results from the ANN and GPR models for test case 1, where Figure 1(a) shows the result using fine
sampling, while Figure 1(b) shows the result using coarse sampling. Similarly, Figure 2 shows a comparison of
the predicted results from the ANN and GPR models for test case 2, where Figure 2(a) shows the result using
fine sampling, while Figure 2(b) shows the result using coarse sampling.

From the figures, it can be seen that the GPR models produce the more accurate prediction on the
testing datasets, for both the fine and coarse sampling data. While the performance of both the ANN and
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GPR models during training were comparable to each other, the GPR is able to generalize much better when
presented with new datasets that were not encountered during training. This can be attributed to the non-
parametric nature of the GPR that predicts outcomes in a probabilistic manner, compared to the parametric
ANNs. The MAE values for both models on the testing datasets are summarized in Table 7.
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Figure 1. Comparison of the impedance profile predicted results from the ANN and GPR models for
test case 1 (a) fine sampling and (b) coarse sampling
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Figure 2. Comparison of the impedance profile predicted results from the ANN and GPR models for
test case 2 (a) fine sampling and (b) coarse sampling

Table 7. MAE for the ANN and GPR models for the testing data
Model Test case 1 MAE (mΩ) Test case 2 MAE (mΩ)

Fine sampling Coarse sampling Fine sampling Coarse sampling
ANN 14.1 12.4 5.8 13.0
GPR 8.3 2.5 6.2 3.9

4. CONCLUSION
In this paper, machine learning methods are explored for the modeling of power delivery network

impedance with varying decoupling capacitor placements. The applications of artificial neural networks and
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Gaussian process regression techniques were demonstrated, and the effects of the number of hidden neurons
in ANN, and the kernel function in GPR were investigated. The best performing networks were compared in
terms of the accuracy in modeling a real PDN for both a fine and a coarse sampling frequency range. It is
found that the GPR greatly outperforms the ANN in this regard with an average MAE of 5.23 mΩ compared to
11.33 mΩ for the ANN, on new test data that were never encountered during training. Future work will focus
on optimization of search space exploration techniques to improve the training data generation process, such
that it can better represent the PDN and frequency range of interest. In addition, improved hyperparameter
optimization techniques can also be pursued to further improve the generalization ability of the models.
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