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 In the last decade, data analysis has become one of the popular tasks due to 

enormous growth in data every minute through different applications and 

instruments. MapReduce is the most popular programming model for data 

processing. Hadoop constitutes two basic models i.e., Hadoop file system 

(HDFS) and MapReduce, Hadoop is used for processing a huge amount of 

data whereas MapReduce is used for data processing. Hadoop MapReduce is 

one of the best platforms for processing huge data in an efficient manner such 

as processing web logs data. However, existing model This research work 

proposes memory aware optimized Hadoop MapReduce (MA-OHMR). MA-

OHMR is developed considering memory as the constraint and prioritizes 

memory allocation and revocation in mapping, shuffling, and reducing, this 

further enhances the job of mapping and reducing. Optimal memory 

management and I/O operation are carried out to use the resource inefficiently 

manner. The model utilizes the global memory management to avoid garbage 

collection and MA-OHMR is optimized on the makespan front to reduce the 

same. MA-OHMR is evaluated considering two datasets i.e., simple workload 

of Wikipedia dataset and complex workload of sensor dataset considering 

makespan and cost as an evaluation parameter. 

Keywords: 

Cloud computing 

Hadoop  

MapReduce 

Parallel computing 

This is an open access article under the CC BY-SA license. 

 

Corresponding Author: 

Vaishali Sontakke 

Department of Information Science and Engineering, East Point College of Engineering and Technology 

Bangalore, Karnataka, India 

Email: vaishalisontakke12345678@rediffmail.com 

 

 

1. INTRODUCTION 

Recent growth in the deployment of scientific applications, web application and sensor networks tend 

to generate a huge amount of data. Also, other organizations like industry, government and educational 

institutions generate a large amount of unstructured data. Hence, analyzing the unstructured data is one of the 

popular and eminent tasks. Moreover, the state-of-art technique fails to structure in a proper manner 

considering the real-time scenario enormous challenge. 

Google introduced a parallel computational framework named MapReduce [1] which offers the 

parallel execution through distributed approach. Moreover, Hadoop-MR (HMR) [2] is one of the popular and 

efficient frameworks adopted for parallel computing in comparison with another framework like Dryad [3], 

Mars [4], Phoenix [5] where Hadoop-MR is an open-access tool and comprises different steps as initialization, 

map, shuffle and reduce, further work model is presented in Figure 1. Hadoop-MR comprises two unique 

phenomena i.e., master node and computing nodes, jobs that are assigned Hadoop are distributed into map step 

and reduce step. Furthermore, in the initialization part, input data are fragmented into chunks for map nodes. 

Hadoop divides MapReduce jobs into different task sets where chunk data are processed through map worker. 

https://creativecommons.org/licenses/by-sa/4.0/
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The mapping step takes input in form of key and value as a pair and output is generated as (key, value) pair. 

Shuffle step gets initiated after map step completion where (key, value) generated from the map. The sorting 

task is carried out on the intermediate pair. Moreover, shuffling and sorting are integrated into shuffling. 

Further, reduce step is processed following defined function. At last, the result of the reduced step is stored in 

distributed file system (Hadoop-DFS). 

 

 

 
 

Figure 1. Typical Hadoop MapReduce architecture 

 

 

Figure 1 shows the Hadoop MapReduce architecture, here the map function uses the pairs of (key, 

value) to generate the intermediate pairs (key, value). This pair act as the input to Reduce function for producing 

the final output. MapReduce constitutes two steps: MAP and Reduce. Many platforms provide the flexibility 

to perform parallel computation, Azure HDInsight is one of them, here user initiates and implies the Hadoop 

based application to scale the cluster. Moreover, Azure-HD Insights provides the resource required to perform 

the particular task. However, it fails to provide flexibility and simultaneously also fails to support deadline-

based jobs. Moreover, an onus is utilized for the client-side to compute the resource required to meet the task 

deadline as it is the most challenging task [6]. Hadoop makespan becomes an eminent model in the computation 

of resources required to meet the task deadline; moreover, Hadoop involves different processing stages that 

comprise the three-step i.e., map, shuffle and reduces. In the case of the mapping phase, memory and 

Input/output operation is carried out whereas shuffle comprises sub-phases; first, sub-phase is performed with 

parallel operation of mapping phase and the second sub phase is carried out after completion Map Phase 

completion. Thus, it is required to utilize the cloud resource inefficient manner [7], [8]. However, existing 

approaches fail despite showing potential and fails to cope with efficiency and large overhead (computation) 

is observed. Moreover, large computation overhead is mainly due to not being able to differentiate between 

non-overlapping and overlapping. 

In the last few years, Hadoop application has observed performance enhancement, few effective 

methods are developed [9], [10], like scheduling technique Elastciser based on virtual machine for resource 

allocation, however, this leads to over-prediction in makespan and huge overhead is observed. Developed 

starfish model which gathers Hadoop task profile [11], [12] uses non-overlapping and overlapping phenomena 

for task prediction. The designs a mechanism CRESP for task execution and it allows the resource allocation 

on slots use by [13]. Researchers used educed jobs kept constant that leads memory overhead and I/O which 

further lead to failed data locality [14]–[16]. Moreover, Soualhia et al. [17] used centralized caching and the 

improvisation is observed [18]–[20]. In developed a mechanism named CRESP for task execution prediction 

and further allows resource allocation based on MR slots. However, here reduced jobs effects are often 

discarded. Moreover, reduced jobs are kept constant which leads to the I/O and memory overhead and thus 

fails to provide awareness regarding data locality [21], [22]. Hence, to address such issues and challenges,  

Yao et al. [23] designed a centralized caching machine and further enhancement and distribution is shown in 

[24], [25] with distributed caching and shared caching. Wu et al. [26] developed a model that provides lockless 

First in First Out which integrates HMR and external applications; these models were designed for an 

architecture that is homogeneous and hence they perform unsatisfactorily in heterogeneous architecture as it 

requires memory and I/O optimization approach. 

In traditional HMR, the task is scheduled considering the CPU cores and ignoring resources like 

memory as it acts as the bridge among the CPU and Input/output device; also memory size available for 

different phases like mapping and reducing is set in the static configuration, this causes the buffers not to use 

for reduce task even if they are completed with another phase, also in different phases optimization can be 
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carried out to reduce the total execution time and cost, hence motivated by the application of Hadoop 

architecture and problem identification. This research work proposed MA-optimized HMR and further 

contribution of research work is highlighted below. 

i. This research work proposes MA-optimized HMR, in here memory is taken into consideration as a resource 

and HMR is designed where memory allocation is carried out to enhance the MR jobs. 

ii. Memory aware optimized Hadoop MapReduce (MA-OHMR) utilized global memory management which 

avoids the issue of garbage collection. 

iii. Further, optimization is carried out in each phase considering memory as the constraint in each phase i.e., 

mapping, reducing, and shuffling. This optimality helps in efficiently sharing resources and the optimal 

make span model is introduced to minimize the total execution time. 

iv. MA-optimized HMR is evaluated considering make span and computational cost parameter on two 

distinctive datasets of simple and complex, further evaluation is carried out by varying the workload size. 

This particular research is designed as the first section discusses the issue of big data and its 

processing, further the Hadoop framework is discussed along with its three phases. Furthermore, recent 

development and challenges are discussed. The first section ends with motivation and contribution of research 

work. In the second section, different HPMR architecture is discussed along with their shortcomings, the third 

section proposes MA- optimized Hadoop-P MapReduce along with their architecture and mathematical model. 

MA-optimized HPMR is evaluated in the fourth section of the research work. 

 

 

2. RELATED WORK 

The last decade has observed evolution in data processing and a variety of approaches is developed 

and adopted by different researchers, hence this section discusses multiple available scheduling designs for 

HMR framework, as proposed recently. In an optimization framework has been developed which is designed 

with cloud computing system for accomplishing data locality and to meet application requirements within 

deadline prerequisite [9]. Overall, a heuristic way of approach is developed to provide the service level 

agreements (SLA) tasks for cloud users. Apart from this, an optimization mechanism to reduce the node size 

required to process the task is developed; at the same time, a single node failure issue is fixed and the tradeoff 

between the locality constraint and deadline reduction is provided. It is also capable of reducing the makespan 

and the storage space, but the task deadline constraint is ignored considering the scheduling in data-based 

applications. The HMR scheduler, location-aware is designed in [10]. The scheduling design depends upon the 

distance between the processing nodes and the input information which is provided. However, this particular 

system overcomes several issues like the demand of storage capacity, keeping high overhead and minimum cost 

in real-time. Although this system works reasonably well but may induce scheduling delay which affects the 

overall system performance. 

Glushkova et al. [11] developed a scheduling design for Hadoop-MR framework to reduce the delay 

and the contention in the provided network to increase the performance; it helps to minimize the synchronization 

lags and scheduling multiple tasks at once, moreover, theoretical tests were designed to show the fair efficiency 

over a text-mining application like word-count applications. However, the system is capable to minimize the 

makespan. The test is not conducted using a cloud-computing environment and how the model will be 

performing when it is used to execute the complex iterative application is not known experimentally or 

mathematically. Alshammari et al. [12] with metadata information of interrelated tasks modelled improvised 

HMR framework, in this part, name node is designed to search the block which is preset to the given group to 

store the specific data. This system is proven to be more efficient than the traditional way of Hadoop-MR model, 

to test the given model, bioinformatics applications are taken into consideration, and it provides some makespan 

time reduction and I/O cost minimization, but it will not consider the more complex application and perform 

only with lower sensitive bioinformatics applications. The narrator developed a prediction intensive model for 

analyzing the run time of tasks as well as resource allocation to accomplish the task within provided time [13], 

this helps to achieve the deadline constraint. Also, it takes various sub-phases of the shuffle phase; based on 

evaluation of the model on Tera-sort as well as Wordcount applications, it is capable of achieving fair efficiency 

in terms of cost optimization and performance accuracy; at the same time, it possesses high overhead to 

accomplish the task for complex iterative applications like bioinformatics as well as clustering applications. 

Ehsan et al. [14] author designed an application called Afford-Hadoop to reduce the effective cost, 

schedule the task and allocation the data to increase the performance and accuracy; Furthermore, Afford-Hadoop 

goes with the NP-hard problem of scheduling diversified tasks. For referring such kind of issue mathematical 

programming model called integer programming, heuristic, and optimization approach is taken into 

consideration to enable realistic performance. However, performance tests were done on various applications 

like Tera-sort and Word count; Afford-Hadoop has shown fair minimization of cost, but it failed to provide for 

other metrics like memory as well as computational core resource utilization. Xiao et al. [15] author developed 
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a scheduling strategy to execute relative large-scale data-based applications for minimization of cost with the 

help of geo-distributed data centers. Moreover, this particular method helps in identifying the parameter to 

choose the data-center; in this part, a framework is presented to analyses the accuracy information exchange as 

well as resource allocation, at the same time, task deadline constraint is not taken into consideration. Particle 

swarm optimization (PSO) based scheduling design is adopted for the HMR framework [16]; the PSO method 

helps to find the optimal parameters in the HMR framework for the provided task. However, the test is conducted 

over simple application on the local cluster. It has been seen that 3-phases of MapReduce inclusive of mapping, 

shuffling, and reducing [23]. Map phase is known to be CPU sensitive whereas I/O intensive and all these phases 

are performed at the same time. Also, Narrator has tested joint scheduling for overlapping mapping and shuffling 

for optimization of the makespan. Well, the novel concept of weak and strong pair is introduced. The pair is 

called strong if the map and shuffle workloads of one job are of equal value to the other. Similarly, it is called 

weak, if the overall map workload of a given job is of equal value to the shuffle workloads. However, based on 

strong and weak pairs the jobs are scheduled. 

The adopted method is related to the dynamic scheduling for lowering the shuffle traffic as many 

existing methods failed to include the effect of data centers [24]. In this section, hierarchical topology (HIT) 

aware MR is introduced to reduce the overall traffic cost which also reduces the execution time taken. Along 

with that, topology aware assignment (TAA) is adopted considering dynamic communication as well as 

computation resources in particular cloud with hierarchical architecture. Thereafter, a synergistic strategy is 

designed to fix the TAA problem through a stable matching mechanism that takes care of in-house preference 

of hosting as well as individual task machines. Lastly, the use of scheduler as a pluggable module on Y-ARN 

and performance are tested at the same. Similarly carried out a fair number of surveys and presented the YARN 

mechanism combined with resource management for scheduling of jobs and it is observed that fairness and 

efficiency are the main concerns in resource management because resources are shared by various applications 

[27]. Parallelly, the present scheduling mechanism from YARN will not provide the optimal resource 

management, therefore, this framework excludes the dependency among the defined that was one of the main 

matters of concern for resource utilization as well as heterogeneous properties in real-time cases. Apart from 

this, an improved YARN scheduler is introduced for reducing the makespan time by extra-marginalizing 

requested information of dependency and resource capacities within tasks. Moreover, it is observed that the 

scheduler could be extended by job iteration information for scheduling. 

Through the survey, it is noticeable how effective handling of memory resource help in lowering 

makespan and the overall cost of processing data-based application on similar computational framework 

adopting cloud computing mechanism. From the survey, it is concluded that it is necessary to develop a 

scheduling technique that minimizes I/O, memory overhead, and reduce makespan with consideration of 

intermediate task failure for the HMR framework. Extensive survey is conducted where it was observed that 

slow shuffling is a major reason for any degradation in MR Job execution and only a notable amount of work 

has been performed for shuffle phase speed optimization [28]. Therefore, a novel procedure was presented for 

stabilizing the network loads on multiple cross rack links in shuffling phase for various sampling applications 

and there random processing generates accurate results. It also presents multiple other tasks which provide 

various choices to select a task while shuffling; At the same time these schemes are developed specifically for 

sampling-based applications, and they are not properly suitable for general applications where overall data is 

being processed. Side by side, it is recorded that to consider the high map locality, over shuffling phase networks 

are saturated, however, in the map phase, it is free. Hence, the conclusion is taken that small sacrifice in Map 

locality helps in fair shuffling. Thus, a mechanism is designed named shadow only for the general application, 

which is shuffle constrained and strikes tradeoff between shuffling load balance as well as map locality. In this 

part, the mechanism selects the original map task in the iterative method from the loaded rack and generates 

duplicate tasks on the light loaded rack. At the same time, while processing shadow selects option between 

replicated and the original version by pre-approximation of job makespan. 

 

 

3. PROPOSED METHODOLOGY 

In this section of research, the improvised Hadoop model is designed and developed. Moreover, the 

execution process is carried out through a virtual machine. Figure 2 represents the architecture of improvised-

Hadoop. The proposed Hadoop framework processes the task inside the execution process; further like any 

other Hadoop framework it has integrated task map, shuffle and reduce (MSR). Proposed architecture retains 

upper cluster management (CM) i.e., 𝐽𝑂𝑏𝑀𝑂𝑛𝑖𝑡𝑜𝑟𝑠 which acts as the master manages the 𝑇𝑎𝑠𝑘𝑀𝑂𝑛𝑖𝑡𝑜𝑟𝑠. 

Moreover, when the 𝑇𝑎𝑠𝑘𝑀𝑜𝑛𝑖𝑡𝑜𝑟𝑠 receives a new task, when it is assigned to the engine through the 

procedure call. Moreover, in the execution engine task assigned interacts with cache scheduler which is mainly 

responsible for memory allocation and coordination of memory. Moreover, scheduler 1 is utilized for fetching 

the data from the disk and distributing the data to the disk. The proposed Hadoop model utilizes the global 

memory management using the public pool that contains the basic data structure which helps in enabling 
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efficient memory management. Furthermore, it comprises an element pool that has elements that further 

consists of a structure of 𝐼𝑛𝑝𝑢𝑡, 𝑂𝑢𝑡𝑝𝑢𝑡 and a pair of keys and values. Elements store unsorted pair of key and 

value that is collected by the map function whereas the cache pool holds the sorted intermediate data which is 

generated by other components in the MR-task. Furthermore, multiBuffer is used by the I/O scheduler where 

data can be read. 

 

 

 
 

Figure 2. Proposed architecture model 

 

 

3.1.  Optimal mapping phase 

In the mapping phase, a component named reader is introduced that reads the input from the Hadoop 

file structure and fed to a multi-buffer. The mapper demands an empty cell from the pool reads the data from 

the multi-buffer and gathers the pair. In case, if the element is full then the pair gets sorted, elements that hold 

the sorted data are proceeded in the queue and thus queue increases when more elements are added. Further, 

𝑆𝑜𝑟𝑡𝑒𝑟 is used to request the numbers from the pool and data is stored in cache-based units, this is known as a 

cache file. In the mapping phase, the Reader component reads the input from the Hadoop file structure to the 

buffer and mapper requests for the 𝑀𝑜𝑢𝑡𝑝𝑢𝑡
  is the computed average output data size (DS) of the map task, 

𝑀𝑖𝑛𝑝𝑢𝑡
  is the size of input data(Map Function ), 𝑅𝑖/𝑝

𝑖/𝑝
 is the defined ratio of reduced output to the reduced input. 

 

𝑀𝑜𝑢𝑡𝑝𝑢𝑡
 = 𝑀𝑖𝑛𝑝𝑢𝑡

  X 𝑅𝑖/𝑝
𝑖/𝑝

 (1) 

 

𝑀𝑇𝐸
 = 

𝑀𝐴𝑇𝐸
 𝑋 𝑀𝑡𝑎𝑠𝑘

𝑀𝑠𝑙𝑜𝑡
  (2) 

 

i. In the proposed model of Hadoop, the mapper sends a request from the pool reads the given data and gathers 

the key and value to the new element. 

ii. Here the reader reads the input and parts into the various buffer and Mapper sends the particular request for 

the data and reads from the buffer and stores the information such as key value in the new process, when 

this is overloaded, it starts sorting once it reaches its thresholds and then the data are sorted in the cache 

units. 

iii. Once the Mapping and Sorting are done then it merges all the files and sends them to the buffer. 

 

3.2.  Optimal shuffling 

In the existing model data generated through the map, the process gets written in the local disk.𝑆𝑎𝑣𝑔 

is the average data size of shuffle phase, 𝑀𝑡𝑎𝑠𝑘 and 𝑅𝑡𝑎𝑠𝑘 are the number of tasks in the map phase and reduce 

phase task, respectively. 𝑆𝑇𝐸
  is the total execution time, 𝑅𝑇𝐸

  is the total execution time reduced and 𝑅𝑠𝑙𝑜𝑡
  is the 
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number of the slot at reduce. The main difference between the traditional shuffle phase and MA-optimized 

HMR is that in the traditional approach data generated in the earlier phase are written to local disk and data is 

pulled by reducing phase from the local disk. However, in MA-OHMR, further data generated by the map are 

intentionally pushed to reduce the phase. Thus, when there is insufficient memory, the buffer holds intermediate 

data. 

 

𝑆𝑎𝑣𝑔= 
𝑆𝑜𝑢𝑡𝑝𝑢𝑡
  𝑋 𝑀𝑡𝑎𝑠𝑘

𝑅𝑡𝑎𝑠𝑘
 (3) 

 

𝑆𝑇𝐸
 = 

𝑅𝑇𝐸
  𝑋 𝑅𝑡𝑎𝑠𝑘

𝑅𝑠𝑙𝑜𝑡
  (4) 

 

3.3.  Optimal reducing 

In a typical Hadoop model, all the data to be reduced exist in memory and formulated as:𝑅𝑜𝑢𝑡𝑝𝑢𝑡
  is 

the computed average output DS of map function, 𝑅𝑖𝑛𝑝𝑢𝑡
  is input data (reduce function), 𝑅𝑖/𝑝

𝑖/𝑝
 is the defined 

ratio of reduced output to the reduced input. 

 

𝑅𝑜𝑢𝑡𝑝𝑢𝑡
 = 𝑅𝑖𝑛𝑝𝑢𝑡

  X 𝑅𝑖/𝑝
𝑖/𝑝

 (5) 

 

𝑅𝑇𝐸
 = 

𝑅𝐴𝑇𝐸
 𝑋 𝑅𝑡𝑎𝑠𝑘

𝑅𝑠𝑙𝑜𝑡
  (6) 

 

𝑅𝑇𝐸
  is the total time taken to execute the map function, 𝑅𝐴𝑇𝐸

  is the total average execution time, 𝑅𝑠𝑙𝑜𝑡
  is the 

total number of configured slots. In the MA-optimized HPMR Model, the intermediate data are sorted and then 

the key, value uses the Reduce Function to process the aggregation and the final output is pushed to Hadoop 

file system (HDFS). 

 

3.4.  Optimal memory allocation 

In the Hadoop model, the memory allocation is distributed dynamically since the demand of memory 

may vary in various stages of the process and an optimized HPMR model provides these strategies to tackle 

the memory: i) To share the memory dynamically terminology is developed which analyzes the memory use 

over time and ii) (Key, value) follows the flow of sorting, sending and receiving through each buffer this forms 

stream hence the priority is set. Moreover, the memory scheduler of MA-OHMR is designed under the 

condition that MR will have different requirements and buffers size will be varied in size, which aims to design 

the dynamic memory allocation. Buffers size is computed through cache list with 𝑉↑ representing the maximum 

threshold of data, 𝐺𝑙𝑖𝑠𝑡𝑉  indicating the list size and 𝑃𝐹𝑉
 presenting the memory usage through an input-output 

based scheduler, 

 

𝑤𝑉 = 𝑉↑ − 𝐺𝑙𝑖𝑠𝑡𝑉  
− 𝜕 (7) 

 

Further, in mapping 𝑀𝑝𝐶 i.e., map controller utilizes memory size to perform mapping with ℘ as buffer size 

of input-output, 

 

𝑀𝑝𝐶 = min(𝜕 +  ℘,𝑤𝑉) (8) 

 

Similarly, we formulate the buffer size of the sorting process given with ℋ↑ indicating the maximal size 

requires for task execution and ℇ∗ buffer size of the sorting process, 

 

= {
ℋ↑ ∗ 𝑃𝑜   ℋ

↑ 𝑖𝑠 𝑛𝑜𝑡 𝑒𝑞𝑢𝑎𝑡𝑙 𝑡𝑜 0

ℇ∗          ℋ↑ 𝑖𝑠 𝑒𝑞𝑢𝑎𝑙𝑡 𝑡𝑜 0
 (9) 

 

At last, we compute the reduce controller denoted as ℵ, 

 

ℵ = 𝒯𝒮 − 𝑀𝑀𝐶𝒮 (10) 

 

MA-OHMR is designed in a way that model keeps memory available for task execution, which avoids the 

frequency cycling of input-output resources, and memory. 
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3.5.  Optimization of input/output terminology in HPMR model 

In the MA-optimized HPMR model, the input/output follows dual-mode operation i.e., two types of 

operation are performed Indirect and direct operation. In Indirect, operation occurs when intermediate data 

cannot be placed in any buffer. The second operation is known as direct operation i.e., when the input is read 

from the HDFS, and output is written in HDFS. Direct operation is given more priority than indirect one as 

direct operation runs jobs that are more important. In the case of indirect operation buffer that has higher 

allocation is given higher read and lower spill priority. For instance, if the sort of buffer is given higher priority 

than the send buffer, then send buffer has a high spill for memory generation. 

 

3.6.  Optimization of makespan model 

Further, we design an optimal way of total execution time for mitigation of task failure in the proposed 

model, let us consider any parameter 𝐸 indicating total execution time (TET) and job execution is formulated 

using the (11) where, 𝐸𝑖𝑛𝑖𝑡𝑖𝑎𝑙  indicates work initialization, 𝐸𝑚𝑓 indicates mapping job and 𝐸𝑟𝑓 indicates 

reduction job. Consider another parameter 𝑞 which indicates the worker that comprises 𝑝 core with 𝑧 memory 

size. Average makespan is formulated as: 

 

𝐸 = 𝐸𝑖𝑛𝑖𝑡𝑖𝑎𝑙 + 𝐸𝑚𝑓 + 𝐸𝑟𝑓 (11) 

 

𝐸𝑚𝑓 = ∑ 𝐸𝑎𝑣𝑔𝑚𝑓
𝑠
𝑐=1  (𝑠)−1 (12) 

 

In the case of the reducing phase, the average makespan is formulated as: 

 

𝐸𝑟𝑓 = ∑ 𝐸𝑎𝑣𝑔𝑟𝑓
𝑐
𝑐=1  (𝑠)−1 (13) 

 

Thus, using the above two equations, the total execution time can be formulated as: 

 

𝐸 = 𝐸𝑖𝑛𝑖𝑡𝑖𝑎𝑙 + ∑ (𝐸𝑎𝑣𝑔𝑚𝑓 + 𝐸𝑎𝑣𝑔𝑟𝑓)(𝑠)
−1𝑠

𝑐=1  (14) 

 

Also, job execution of different phases varies in the proposed model. Hence upper bound and lower bound is 

computed for job 𝑀. The total execution time of job 𝑀 for best-case scenario is formulated through (15). In 

the (15) and (16), the least execution time required for performing on job 𝑀 is denoted through 𝑊𝑚𝑎𝑝
𝑁𝑙𝑖𝑚, further 

minimum execution time required for map and reduce task are denoted as: 

 

𝑊 𝑀
𝑁𝑙𝑖𝑚 = 𝑊𝑚𝑎𝑝

𝑁𝑙𝑖𝑚 + 𝑊𝑟𝑒𝑑𝑢𝑐𝑒
𝑁𝑙𝑖𝑚 − (𝑊𝑚𝑎𝑝

𝑤𝑙𝑖𝑚 − 𝑊𝑚𝑎𝑝
𝑁𝑙𝑖𝑚) (15) 

 

𝑊 𝑀
𝑁𝑙𝑖𝑚 = 𝑊 𝑚𝑎𝑝

𝑊𝑙𝑖𝑚 + 𝑊 𝑟𝑒𝑑𝑢𝑐𝑒
𝑊𝑙𝑖𝑚 − (𝑊 𝑚𝑎𝑝

𝑊𝑙𝑖𝑚 − 𝑊 𝑚𝑎𝑝
𝑁𝑙𝑖𝑚) (16) 

 

Thus, the total execution time of job 𝑀 in the proposed model is computed using by (17). 

 

W⃗⃗⃗ 
M = 0.5(𝑊𝑀

𝑤𝑙𝑖𝑚 + 𝑊𝑀
𝑁𝑙𝑖𝑚) (17) 

 

Further, using best-case and worst-case scenarios, total execution time is formulated: 

 

W⃗⃗⃗ 
M = o. 5(

(𝑊 𝑚𝑎𝑝
𝑊𝑙𝑖𝑚 + 𝑊 𝑟𝑒𝑑𝑢𝑐𝑒

𝑊𝑙𝑖𝑚 − (𝑊 𝑚𝑎𝑝
𝑊𝑙𝑖𝑚 − 𝑊𝑚𝑎𝑝

𝑁𝑙𝑖𝑚)) +

(𝑊𝑚𝑎𝑝
𝑁𝑙𝑖𝑚 + 𝑊 𝑟𝑒𝑑𝑢𝑐𝑒

𝑁𝑙𝑖𝑚 − (𝑊 𝑟𝑒𝑑𝑢𝑐𝑒
𝑊𝑙𝑖𝑚 − 𝑊𝑚𝑎𝑝

𝑁𝑙𝑖𝑚))
) (18) 

 

The above equation (18) can be simplified and formulated as mention below in equation (19): 

 

W⃗⃗⃗ 
M = 0.5 (3𝑊𝑚𝑎𝑝

𝑁𝑙𝑖𝑚 + 𝑊𝑟𝑒𝑑𝑢𝑐𝑒
𝑁𝑙𝑖𝑚 + 𝑊 𝑟𝑒𝑑𝑢𝑐𝑒

𝑊𝑙𝑖𝑚 − 𝑊 𝑟𝑒𝑑𝑢𝑐𝑒
𝑊𝑙𝑖𝑚 )  (19) 

 

The linear regression approach is used as discussed in Institute of Electrical and Electronics Engineers, 

for data dependency, proposed model is designed to reduce the cost and total execution time for two distinctive 

applications i.e., text mining and iterative application [29]. Performance evaluation of both applications 

considering the existing Hadoop model is carried out in the next section. 
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4. PERFORMANCE EVALUATION 

Hadoop is open-source data storage framework that provides the combination of storage and 

processing; for storage, HDFS is utilized and MapReduce for processing. It provides flexibility to hold a large 

chunk of data that can be accessed. Thus, Hadoop MapReduce model is one of the popular models for data 

processing, hence utilizing the traditional architecture, this research work proposes MA-OHMR. In this section, 

the proposed method is evaluated considering the different parameters and constraints which is discussed later 

in the same section, Evaluation system parameter includes system configuration of Ubuntu 16 packed with 

dual-core 16 GB RAM. Furthermore, the Hadoop cluster along with two slaves and the master node is utilized 

to HDInsight Azure instance [29]. Performance evaluation is carried out on the standard dataset of Wikipedia, 

which varied up to 1024 MB, also further evaluation is carried out on complex sensor data up to 400 MB. 

Moreover, parameters such as execution cost and total execution time, also known as makespan [30], [31].  

 

4.1.  Computational cost 

Computational cost is nothing, but the cost required to complete the task. Figure 3 shows the 

computational cost on simple workload and complex workload. Evaluation is carried out on different 

workloads i.e., 200, 400, 800, and 1600. In the case of the workload of size 200, 400, 800 and 1600 cost of the 

existing model is 0.3406, 0.4363, 0.7220, and 1.4934 respectively whereas the computational cost of the 

proposed model is 0.3115, 0.3809, 0.6479, and 1.3805, respectively. Similarly, Figure 4 shows complexed 

workload, 50, 100, 250, and 500 sizes are considered; in the case of workload size 50, execution cost for this 

size is 0.3282, 0.5143, 1.0506 and 1.9612 for discussed size through the existing model in a respective manner 

whereas proposed model execution cost for these workloads are 0.3046, 0.4696, 0.9848, and 1.7500, 

respectively. 

 

 

 
 

Figure 3. Cost comparison on simple workload 

 

 

 
 

Figure 4. Cost comparison on the complex dataset 
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4.2.  Total execution time 

Total execution time is the total time taken to complete the task, less TET is required for the model to 

be more efficient and optimal for real-time adoption. Considering the TET parameter, we evaluate the simple 

and complex task, Figures 5 and 6 shows the evaluation of simple and complex workflow, respectively. In 

Figure 5, various sizes of workload as 200, 400, 800, and 1600 are considered and the existing model observed 

TET of 310000, 397000, 65700, and 1358900 whereas the proposed model achieves 284520, 347904, 591549.6 

and 1260900, respectively. In Figure 6, various sizes of workload as 50, 100, 250 and 500 are considered and 

the existing model observes TET of 298656, 468000, 956000, and 1784500 whereas the proposed model 

observes 278283.84, 428928, 899500, and 1598400, respectively. 

 

 

 
 

Figure 5. Total execution time (makespan) on simple workload 

 

 

 
 

Figure 6. Comparison of makespan on complex workload 

 

 

4.3.  Comparative analysis and discussion 

This section discusses improvisation of the proposed model over the existing model through 

comparative analysis, moreover, the comparison is carried out on two datasets simple and complex considering 

makespan execution cost as a parameter; in the case of simple workload, the proposed model improvises by 

8.21%, 12.36%, 9.91%, and 7.21% for 200, 400, 800, and 1600 respectively for makespan and 8.56%, 12.69%, 

10.25%, and 7.56% improvisation observed in terms of execution cost. Similarly, in case of complex dataset 

for workload size of 50, 100, 250, and 500 proposed model improvises by 7.17%, 8.69%, 6.26%, and 10.76% 

for execution cost and 6.82%, 8.34%, 5.91%, and 10.42%, respectively. 
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5. CONCLUSION 

A huge quantum of data is continuously generated through various instruments and networks and to 

address that MapReduce is a commonly used tool and models which is adapted by various datacenters deployed 

across globe. However still improvisation is needed to optimize its performance even with at most precision. 

In order to answer this challenge, the author has come up with MA-OHMR architecture for efficient data 

processing. MA-OHMR utilizes global memory management and memory utilization with at most precision 

as well optimal make span model is designed considering the memory which reduces the total execution time 

of jobs which terms minimize the computation cost. To evaluate, simple workload and complex workload are 

considered as a dataset. Moreover, data processing evaluation shows the marginal improvisation of up to 10% 

in terms of cost-efficient and total execution time aka make span. MapReduce model architecture has been 

exploited for quite a long, this research tries to solve memory issues through optimization. In the real scenario, 

data might be more complicated and in huge quantity, hence different aspect has to be looked including more 

parameter. The proposed model tries to optimize the overall performance and make the MapReduce model 

even more competitive. 
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