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 An investment portfolio implies the assortment of assets invested in the 

commodity market and equity funds across global markets. The critical issue 

associated with any portfolio under its optimization entails the achievement 

of an optimal Sharpe ratio related to risk-return. This issue turns complex 

when risk budgeting and other investor preferential constraints are weighed 

in, rendering it difficult for direct solving via conventional approaches. As 

such, this present study proposes a novel technique that addresses the 

problem of constrained risk budgeted optimization with multiple crossovers 

(binomial, exponential & arithmetic) together with the hall of fame (HF) via 

differential evolution (DE) strategies. The proposed automated solution 

facilitates portfolio managers to adopt the best possible portfolio that yields 

the most lucrative returns. In addition, the outcome coherence is verified by 

monitoring the best blend of evolution strategies. As a result, imminent 

outcomes were selected based on the best mixture of portfolio returns and 

Sharpe ratio. The monthly stock prices of Nifty50 were included in this 

study. 
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1. INTRODUCTION 

A meta-heuristic framework, namely differential evolution hall of fame (DEHOF), was deployed by 

Pai and Michel [1] to resolve the issue of equity market neutral portfolio (EMNP) with specific bounding 

constraints imposed on long-short positions and high-risk assets with a penalty system to manage intricate 

forces for maintaining excellent portfolios within a limited time. Meanwhile, Wang and Hu [2] prescribed a 

set of evolutionary algorithms to generate the best outcomes for variance and co-variance optimization 

frameworks. Alternatively, sinusoidal differential evolution (Sin DE) has been introduced by Draa et al. [3]. 

The recommended approach is studied against the linear parameter shifting DE, the classical model of DE. 

Kamili and Riffi [4] analyzed the application of metaheuristics in portfolio optimization. It comprises particle 

swarm optimization (PSO), bat algorithm (BA), and cat swarm optimization (CSO). Zaheer et al. [5] have 

considered the mean semi-variance portfolio optimization model given by Markovitz, solved with the help of 

DE, which is a population-based metaheuristic. Jia and Bai [6] discussed an uncertain portfolio selection 

problem considering background risk and asset liquidity. 

The role of DE in electricity markets for resolving the issue of portfolio optimization was elaborated 

by Faia et al. [7]. Smart grid technologies were discussed by Lezama et al. [8] to integrate and manage the 

distributed energy sources. Meanwhile, Sethia [9] compared performance and convergence time of varying 

https://creativecommons.org/licenses/by-sa/4.0/
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swarm-intelligence-based methods for two types of objective functions. The objective functions refer to 

Sharpe ratio maximization and maximization of value at risk-weighted portfolio return. Cortés et al. [10] 

built a dynamic portfolio to identify the most efficient parameters of the PSO framework by employing 

artificial intelligence that applies PSO in addition to genetic algorithm (GA). 

A new decision-making approach regarding multiple risks involved in portfolio optimization was 

initiated by Salehpoor and Zavardehi [11] by endorsing cardinality restraints, which are referred to as hybrid 

or mixed meta-heuristic algorithms. Next, Fernandez et al. [12] proposed a model of time-related effects 

under imperfect knowledge and its impact on selecting optimal new product development portfolios.  

Hu et al. [13] conducted comparative experiments on multi-swarm multi-objective optimization evolutionary 

algorithms based on p-optimality criteria (p-MSMOEAs), while several multiple objective evolutionary 

algorithms (MOEAs) were evaluated based on six mathematical benchmarking functions with two portfolio 

samples. A linear portfolio selection method was initiated by Khan et al. [14] by weighing in the cardinality 

inhibitors and the cost of transaction. Next, Costa and Kwon [15] proposed an approach that relaxed the 

generalized risk parity model into a convex semidefinite program. 

As opined by Harrison et al. [16], in the case of a defined set of projects, selecting and scheduling 

the optimum subset of projects are challenging issues recognized as nondeterministic polynomial time  

(NP)-Hard and addressed as project portfolio selection and scheduling problem. It was demonstrated by 

Kalayci et al. [17] that an effective mixed metaheuristic algorithm blends the significant elements of an 

artificial bee colony (ABC), consistent optimization of an ant colony, and GAs to resolve the issue of 

cardinality restricted portfolio optimization. Escobar-Anel et al. [18] prescribed two approaches: First, the 

optimization problem is reduced to an associate problem with constraints independent of wealth and a 

different utility function. Second, a change of control is applied. Following the 2008 financial crisis in the 

US, the equal risk contribution of the asset allocation model was developed by Davallou et al. [19], in which 

special attention as a risk factor. Another metaheuristic, adaptive multi-population optimization, was studied 

by Li et al. [20] to yield consistent optimization. Higher entropy values generate higher portfolio 

diversifications, which can minimize portfolio risk. As such, Lam et al. [21] introduced a multi-objective 

optimization model, namely a mean-absolute deviation-entropy model. Meanwhile, Meng et al. [22] revisited 

the bi-criteria portfolio optimization model with permissible short selling. Next, Cura [23] developed a 

heuristic approach to the portfolio optimization problem by using the ABC technique. 

Both GA and PSO have been commonly deployed as issue-solving methodologies for risk budgeting 

optimization. Metaheuristic optimization with DEHOF can address a range of quality implications linked 

with risk-budgeted portfolio optimization. Turning to this present study, a novel technique is proposed to 

overcome the problem of constrained risk-budgeted optimization with multiple crossovers along with 

DEHOF. This proposed automated solution helps portfolio managers to adopt the best possible portfolio that 

yields the greatest return. The study outcomes may guide risk management and investors to select the most 

viable asset for optimum returns. The rest of this paper is described: i) The theoretical background is 

described in detail in section 2 and explains the proposed solution, an adaptive metaheuristic approach for 

risk-budgeted portfolio optimization; ii) Section 3, results, and discussion of its  implementation by selecting 

the Nifty50 portfolio was presented; and iii) Section 4, the conclusion of this study is offered. 

 

 

2. THEORITICAL BACKGROUND–RISK-BUDGETED PORTFOLIO OPTIMIZATION 

2.1.  Risk-budgeted portfolio optimization model 

The risk budgeting investment, commonly referred to as risk contribution, implies a technique of 

value investment that enhances the exposure to investment and market protection through the segregation of 

aggregate risks of the portfolio into component risks. Consequently, wealth distribution entails harmonizing 

with risk budgets based on the risk-taking capacity of the investors. Risk budgeting could be effected through 

what is known as marginal contribution to risk (MCR). MCR is defined as the partial derivative of the 

portfolio risk with respect to its weights and is given by, 

 

�̅� = (𝑚1, 𝑚2, . . . , 𝑚𝑛)′ =
𝑉.�̅�

√𝑤′.̅̅ ̅̅ ̅𝑉.�̅�
 (1) 

 

 �̅̅̅�′ = (𝑤1 , 𝑤2, . . . , 𝑤𝑁) implies the weight set, whereas V defines the variance-covariance matrix of 

asset returns. The absolute contribution to total risk is given by, 

 

�̅�𝑖 . 𝑚𝑖 , 𝑖 = 1,2,3, . . . 𝑁, (2) 

 

and the percentage contribution to total risk is given by, 
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𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒  𝐶𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛  𝑡𝑜  𝑇𝑜𝑡𝑎𝑙  𝑅𝑖𝑠𝑘

𝑇𝑜𝑡𝑎𝑙  𝑅𝑖𝑠𝑘
=

𝑤𝑖.𝑚𝑖

√𝑤′ .̅̅ ̅̅ ̅𝑉.�̅�
, 𝑖 = 1,2, . . . , 𝑁 (3) 

 

It is an investor's prerogative to stretch the risk budgeted portfolio to the maximum limit by 

investing in an advantageous long-term fund and optimizing the Sharpe ratio of the portfolio by constraints 

(4), a risk budget of r% is imposed over the absolute contribution to total risk for each asset i in the portfolio, 

that is, 

 

 𝑤𝑖 . 𝑚𝑖 ≤ 𝑟%    𝑜𝑓    𝜎𝑃, 𝑖 = 1,2, . . . , 𝑁 (4) 

 

where 𝑚𝑖 is the marginal contribution to the risk linked with the asset i, 𝑤𝑖  implies the weight of asset i, and 

𝜎𝑝  the portfolio's risk. The portfolio is fully invested, that is, 

 

∑𝑁
𝑖=1 𝑊𝑖 = 1 (5) 

 

unbounded inequality constraints are imposed on specific assets, especially the ones with the positive 

premium, which indicates the extent of leveraging permitted to the portfolio, that is, 

 

𝑤𝑖 > 0  𝑜𝑟  𝑤𝑗 ≥ 0, 𝑖 ≠ 𝑗 (6) 

 

a constraint enforced on selected assets for defining the leveraging limit of a set of the long-short portfolio, 

that is,  

 

−𝑎𝑖 ≤ 𝑤𝑖 ≤ 𝑏𝑖 (7) 

 

where (𝑎𝑖 ,  𝑏𝑖) are upper and lower limits accepted by the investor to boost a leveraged portfolio. 

 

Thus the risk-budgeted portfolio which is a leveraged long-short portfolio comprises three asset 

classes with specific constraints imposed on each of these asset classes. Some are positive premia holding 

compulsory and beneficial investment (𝑤𝑖 > 0), other positive premia assets with optional and leveraged 

investment (𝑤𝑗 > 0), other assets with free bounds but leveraged and long-short (−𝑎𝑖 ≤ 𝑤𝑖 ≤ 𝑏𝑖). Let 𝑊+, 

𝑊𝑆𝑝𝑙, and 𝑊𝐹𝑟𝑒𝑒  reflect the three categories of assets. The mathematical formulation of the problem model is 

described as, 

 

𝑚𝑎𝑥 (
𝑝.̅�̅�

√𝑤′.̅̅ ̅̅̅𝑉.�̅�
)         (𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑆ℎ𝑎𝑟𝑝𝑒 𝑅𝑎𝑡𝑖𝑜) (8) 

 

where �̅� corresponds with the premia (returns) of the assets in the portfolio, �̅� implies the weights and 𝑉 

means variance-covariance matrix of asset returns, �̅��̅� defines the expected portfolio return, 𝜎𝑃 = √𝑤′.̅̅ ̅̅ 𝑉. �̅� 

symbolizes the portfolio risk and 
�̅�.�̅̅̅�

√𝑤′.̅̅ ̅̅ ̅𝑉.�̅�
 computes the Sharpe ratio, subject to the constraints, 

 

𝑤𝑖 . 𝑚𝑖 ≤ 𝑟%  𝑜𝑓  𝜎𝑝, 𝑖 = 1,2, . . . , 𝑁      (𝑟𝑖𝑠𝑘  𝑏𝑢𝑑𝑔𝑒𝑡𝑖𝑛𝑔  ) (9) 

 

where �̅� = (𝑚1, 𝑚2, . . . , 𝑚𝑁)′ =
𝑉.�̅�

√𝑤′ .̅̅ ̅̅ ̅𝑉.�̅�
 indicate the marginal contributions to risk and 𝑟% is the limit of the 

risk, 

 

∑𝑁
𝑖=1 = 1      (𝑓𝑢𝑙𝑙𝑦  𝑖𝑛𝑣𝑒𝑠𝑡𝑒𝑑) (10) 

 

𝑤𝑗
+ > 0    (𝑓𝑖𝑛𝑎𝑛𝑐𝑖𝑎𝑙  𝑙𝑒𝑣𝑒𝑟𝑎𝑔𝑒) (11) 

 

 where 𝑤+ imply the weights of selected assets of positive premia 𝑊+, 

 

𝑤𝑘
𝑠𝑝𝑙

≥ 0,   𝑗 ≠ 𝑘 (𝑜𝑝𝑡𝑖𝑜𝑛𝑎𝑙  𝑖𝑛𝑐𝑙𝑢𝑠𝑖𝑜𝑛  𝑜𝑓  𝑠𝑝𝑒𝑐𝑖𝑎𝑙  𝑙𝑒𝑣𝑒𝑟𝑎𝑔𝑒𝑑  𝑎𝑠𝑠𝑒𝑡) (12) 

 

where 𝑤𝑘
𝑠𝑝𝑙

 define the weights of specific assets 𝑊𝑆𝑝𝑙 whose inclusion is not compulsory but, if inclusive, 

can be leveraged to an unlimited extent. 
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−𝑎𝑖 ≤ 𝑤𝑖
𝐹𝑟𝑒𝑒 ≤ 𝑏𝑖     (𝑙𝑜𝑛𝑔 − 𝑠ℎ𝑜𝑟𝑡  𝑚𝑖𝑥, 𝑝𝑟𝑜𝑚𝑜𝑡𝑖𝑛𝑔  𝑙𝑒𝑣𝑒𝑟𝑎𝑔𝑖𝑛𝑔) (13) 

 

where (−𝑎𝑖 ,  𝑏𝑖) are free limits for 𝑎𝑖, 𝑏𝑖 accepted by the investor for selected assets belonging to 𝑊𝐹𝑟𝑒𝑒  and 

are promoting a beneficial long-short portfolio. In (8)–(13) define a single objective non-linear constrained 

fractional programming model which is difficult to solve using analytical methods and hence the need for 

metaheuristic methods. However, to tackle the non-linear constraints represented by (9) together with the 

linear constraints (bounded and unbounded) represented by (10)–(13), it is essential that metaheuristic 

methods adopt specialized methods which may involve transformation of the original problem model. The 

constraint management strategies implemented under metaheuristic techniques are given below. 

 

2.2.  Constraint management 

Considering the integration of combined metaheuristic models, one of the key barriers is the need to 

overpower the restrictions placed on the problems. Therefore, metaheuristic models must generate feasible 

solutions to comply with each paradigm restriction before attaining an appropriate solution. Thus, the literary 

studies focus on multiple approaches for mitigating the issue of constraint management. 

 

2.3.  Strategy of repair 

The set of chromosomes or individuals having genes or gene components reflecting the individual's 

set of optimization solutions has been examined to ascertain if they represent feasible sets of problems. In 

case they violate either of the defined restrictions, they are termed as "infeasible". The well-structured repair 

techniques pursue repairing the infeasible individuals or chromosomes to transform them into feasible sets of 

solutions. However, the fact that no standard repair technique is likely applicable for all issues is quite 

complex makes it disadvantageous. It can hamper the process of evolution of problem solutions. 

 

2.4.  Strategy of penalty function 

The penalty function strategy is based on similar methods adopted in conventional constrained 

optimization, where solutions that are infeasible are penalized using what are called penalty coefficients. The 

strategy of penalty function focuses on comparative approaches launched in traditional constrained 

optimization; wherein infeasible techniques are subjected to penalty through the usage of penalty 

coefficients. Thus, given a constrained optimization problem, which is a minimization problem as described 

as, 
 

𝑚𝑖𝑛(𝑓(�̅�)), �̅� = (𝑥1, 𝑥2, . . . , 𝑥𝑛)

𝑔𝑘(�̅�)) ≤ 0, 𝑘 = 1,2, . . . , 𝐾)

ℎ𝑚(�̅�)) = 0, 𝑚 = 1,2, . . . , 𝑀)

𝑥𝑖 ∈ 𝑑𝑜𝑚(𝑥𝑖)

 (14) 

 

where �̅� = (𝑥1, 𝑥2, . . . , 𝑥𝑛) are the decision variables with 𝑑𝑜𝑚(𝑥𝑖) as the domain of the decision variable 𝑥𝑖, 

𝑔(�̅�) reflect the inequality constraints, 𝑓(�̅�) implies the minimization objective function and ℎ𝑚(�̅�) are the 

equality constraints. The penalty function strategy transforms the constrained optimization problem model 

into an unconstrained optimization problem model by reconstructing the objective function as, 
 

𝜙(�̅�, 𝑟) = 𝑓(�̅�) + 𝑟 ∑𝑀
𝑚=𝑖 (ℎ𝑚(�̅�))2 + 𝑟 ∑𝐾

𝑘=1 𝐺𝑘(𝑔𝑘(�̅�))2  (15) 
 

where 𝐺𝑘 is the heavier operator such that: 
 

𝐺𝑘 = {
0, 𝑔(�̅� ≤ 0)
1, 𝑔𝑘(�̅�) > 0

 (16) 

 

and r is a positive magnifier that restricts the magnitude of the penalty function. In the case of a restricted 

optimization problem that can become an issue of maximization, the change may be influenced by using the 

principle of duality as, 
 

𝑚𝑎𝑥(𝑓(�̅�)) = −𝑚𝑖𝑛(−𝑓(�̅�)) (17) 
 

2.5.  Joines and Houck's penalty function method 

A penalty-oriented approach to constraint management was proposed by Joines and Houck, which 

increases the penalty coefficient with the enhancing number of generations, thus explaining the function of 

the penalized objective in 𝑡𝑡ℎ generation is described as, 
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𝜙(�̅�, 𝑡) = 𝑓(�̅�) + (𝐶. 𝑡)𝛼(∑𝑀
𝑚=1 (ℎ𝑚(�̅�))𝛽 + ∑𝐾

𝑘=1 𝐺𝑘(𝑔𝑘(�̅�))𝛽) (18) 

 

where (𝐶, 𝛼, 𝛽) are referred to as constants, and penalty term (𝐶. 𝑡)𝛼 increases consistently with the count of 

each generation. Nonetheless, the continuity of solutions is based on the selection of (𝐶, 𝛼, 𝛽) and 

conclusively, the acceptable substitute to the constants is (𝐶 = 0.5, 𝛼 = 2, 𝛽 = 2). The increasing penalty 

term of (𝐶. 𝑡)𝛼 with each generation results in a situation where the infeasible chromosomes / individuals 

during the last few generations receive death penalty and thus the method tends to converge early. 

 

2.6.  Transformed risk budgeted portfolio optimization framework 

To tackle the non linear risk-budgeting constraint, Joines and Houck’s Penalty function method is 

employed, which transforms the original objective function (maximization) to its dual (minimization), using 

the principle of duality. The revised formulations of the objective function and the risk budgeting constraints 

are as, 

−𝑚𝑖𝑛(−
𝑝.̅�̅�

√𝑤′.̅̅ ̅̅ ̅𝑉.�̅�
+ 𝜓(�̅�, �̅�, 𝑡)) (19) 

 

where 𝜓(�̅�, �̅�, 𝑡) known as the function of constraint violation is explained as: 

 

𝜓(�̅�, �̅�, 𝑡) = (𝐶. 𝑡)𝛼(∑
𝑁

𝑘=1
𝐺𝑘(𝜑𝑘(𝑤𝑘 , 𝑚𝑘))𝛽) 

 

  𝜑𝑘(𝑤𝑘 , 𝑚𝑘) = 𝑤𝑘𝑚𝑘 − 𝑥%  𝑜𝑓  𝜎𝑃 and 

 

  𝐺𝑘 is the Heaviside Operator such that: 

 

  𝐺𝑘 = {
0, 𝑓𝑜𝑟  𝜑(𝑤𝑘 , 𝑚𝑘) ≤ 0, 𝑎𝑛𝑑
1, 𝑓𝑜𝑟  𝜑(𝑤𝑘 , 𝑚𝑘) > 0

 

 

 �̅� = (𝑚1, 𝑚2, . . . , 𝑚𝑁)′ =
(𝑉.�̅�)

√𝑤′.̅̅ ̅̅ ̅𝑉.�̅�
 (20) 

 

The transformed objective function represented by (19)–(20) together with the linear constraints 

represented by (10)–(13) now defines the transformed Risk-budgeted portfolio optimization model. The 

attribute of changed goal with linear constraints elaborates the modified model of risk budgeted portfolio 

optimization that holds the complex resolving capability of optimizing endless linear constraints, thereby 

creating metaheuristic methodologies. Furthermore, DEHOF has been identified as a purified variant of the 

differential evolution algorithm. 

 

2.7.  Differential evolution associated with hall of fame 

Differential evolution is a form of substitutional development algorithm paired with a hall of fame 

technique, which is a depository of a couple of best individuals from each generation to promote super 

specialization. Only the best fit one succeeds in earning a membership. Thus, the hall of fame is extensively 

witnessed in evolutionary algorithms boosting elitism with time. At the stage of termination of any 

evolutionary algorithm, especially the differential evolution algorithm, a chromosome or individual 

occupying space in the hall of fame has declared as the "BEST" solution to the issue [24]. 

 

2.8.  Repair mechanism for handling unrestricted linear constraints 

The repair mechanism is responsible for managing unrestricted linear constraints (11)–(12) subject 

to restrictions on a stringently dedicated portfolio (10) trailed by restrictions (13) on the free limit of chosen 

assets to promote the blend of the long-short portfolio having leverage. The objective of a repair strategy in 

case of the communication between chromosomes or individuals and a pool of random portfolio weights 

corresponds to fixing or standardizing the weights to satisfy the entire range of direct imperatives 

communicated with (10)–(13) for transforming it to a pragmatic assortment vector of the problem. Assuming 

'W' as an irregular vector of weight regarding portfolio built up by N assets during (-c, +c), W+, WSpl, and 

WFree stand for the sets of weight-related with the assets falling in three asset categories explained by  

(11)-(13). The number of assets present in each asset category can be denoted by p, s, and f, such that  

p+s+f =N. The investors opt for risk budgeted portfolio optimization to achieve a leveraged portfolio of long-

short position to maximize their portfolio's Sharpe ratio. Table 1 illustrates the issue constraints as well as 

criteria that have been decided by the investor, reflecting the preferences of the investor fitting in line with 
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the modified mathematical model of risk budgeted portfolio optimization stipulated by (10)–(13) as linear 

constraints and as an objective penalty function by (19)–(20). 

 

 

Table 1. Investor-defined issue parameters and constraints of the portfolio 
Parameter Description Remarks 

Portfolio size 50 assets  

Composition of assets in the portfolio Automobile: 6 Assets serial No: 4,14,20,32,33,44 

Cement: 3 Assets serial No: 16,40,48 
Construction: 1 Assets serial No: 31 

Consumer Goods: 6 Assets serial No: 2,9,22,28,34,47 

Fertilizer & Pesticides: 1 Assets serial No: 49 
Financial Services: 11 Assets serial No: 

3,5,6,18,19,23,24,26,30,39,41 

IT: 5 Assets serial No: 17,27,43,46,50 
Oil & Gas: 5 Assets serial No: 7,15,25,36,38 

Pharma: 4 Assets serial No: 10,12,13,42 

Metal 4 Assets Serial No.11,21,29,45 
Power: 2 Assets serial No: 35, 37 

Services: 1 Assets serial No: 1 

Telecom: 1 Assets serial No: 8 
Risk budget 15%  

Portfolio objective Maximize Sharpe ratio Equations (19)-(20) 

Nature of the portfolio Leveraged, fully invested, and long short  
Basic constraint Fully invested portfolio Equation (10), ∑50

𝑖=1 = 1 

Investors defined asset classes and 

constraints imposed on them 

Leveraged weights for nifty50 (Asset serial 

No: (1-48) 

Mandatory investment 

Equation (11) 

𝑤𝑗
48 > 0, j = 1,2,3, … 48 

Lower bound set as 0.001 
Leveraged weights for fertilizers & pesticides 

(Asset serial no: 49) 

Optional investment 

Equation (12) 

𝑤𝑘
𝑠𝑝𝑙

≥ 0, k = 49 

Leveraged long-short weights for Wipro Ltd 

(Asset serial no.50) 

Equation (13) 

−𝑎𝑖 ≤ 𝑤𝑖
𝐹𝑟𝑒𝑒 ≤ 𝑏𝑖 , 𝑖 = 50 

 

 

Under the attributes of the targeted problem model, DEHOF assesses the health of the population 

comprising parents and offspring. Considering the risk budget portfolio optimization (19) and (20), the 

evolutionary objective function is elaborated, which demands penalty functions to mitigate the non-linear 

risk. Every individual in the population symbolizes the vector of weight. Therefore, fitness values need to be 

repaired quickly to attain a feasible set of solutions. Marginal contributions to risk can be actuated by 

substituting w in the targeted individuals with repaired weights, specifying the criteria for penalty functions 

(C, α, β), the achievement of p and V by t, which imply the premia and variance-covariance metrics of the 

returns linked with the concerned portfolio, along with calculating m. 

The adaptive metaheuristic risk-budgeted portfolio optimization (AMRBPO) algorithm will be 

explained in the following steps: i) The process of differential evolution with hall of fame initiates with 

determining problem parameters, identifying assets or asset categories for the portfolio, and defining their 

lowest limits, setting risk budgets, and achieving premiums and metrics of variance and covariance; ii) This 

stage is followed by setting DEHOF specifications, determining generations and population size, dynamic 

penalty functions, setting scale factors and generation index represented as i, and finally, starting the hall of 

fame; iii) The next step involves the random population generation wherein every gene has an irregular asset 

weight. After this, the repair strategy is implemented on every individual of the population to transform them 

into viable solution sets that resolve the constraints; iv) Then, the fitness function values of the population P 

can be calculated by employing the objective functions. In case the generation index is less than or equal to 

the population generations, the parent population is established as P, and its fitness values are recorded;  

v) differential evolution strategies (D.E./rand/1, D.E./rand5/Dir4 & D.E./rand4/BestDir5) and multiple 

crossovers (Binomial, Exponential & Arithmatic) are applied to this generation for gaining offspring 

population. The repair strategy applies to all the individuals of the offspring population referred to as O, 

which transforms the entire generation into a feasible set of solutions; vi) The fitness value of O is calculated 

before applying the deterministic selection operator and selecting the best individuals from P and O 

populations for the hall of fame (HF) of the next generation called NEXTGEN; vii) NEXTGEN individual 

having the best fitness is tagged as BEST and contrasted with the individual in HF, out of which the winner 

would occupy the final space in HF; viii) The NEXTGEN is retagged as population P, where i = i + 1 and the 

entire cycle restarts. However, in contrasting situations where i is not equal to or lesser than generations, the 

weight W of HF individual is identified, which denotes optimal weight. Lastly, the maximum Sharpe ratio is 
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calculated herein; and ix) The optimal blend of all conceivable combinations with the best portfolio returns 

and Sharpe ratio will be picked. 

 

 

3. RESULTS AND DISCUSSION 

3.1.  Data collection 

The monthly stock prices of Nifty50 from January 2019 to January 2021 were employed in this 

study [25] to compute the covariance matrices. The premiums of portfolio Nifty50 achieved by [25] is 

presented in Table 2. MATLAB 2019a was used for this study. 

 

 

Table 2. Assets and their premiums comprising the Nifty50 portfolio 
S. No. Description Premium 

1 Adani Port and Special Economic Zone Ltd. 0.006 

2 Asian Paints Ltd. 0.021 

3 AXIS Bank Ltd. 0.025 

4 Bajaj Auto Ltd. 0.007 

5 Bajaj Finance Ltd. 0.023 

6 Bajaj FinServ Ltd. 0.008 
7 Bharat Petroleum Corp. Ltd. 0.005 

8 Bharti Airtel Ltd. 0.020 

9 Britannia Industries Ltd. 0.007 

10 Cipla Ltd. 0.007 
11 Coal India Ltd. 0.005 

12 Divi's Laboratories Ltd. 0.008 

13 Dr. Reddy's Laboratories Ltd. 0.011 

14 Eicher Motors Ltd. 0.006 

15 GAIL (India) Ltd. 0.004 

16 Grasim Industries Ltd. 0.006 
17 HCL Technologies Ltd. 0.017 

18 HDFC Bank Ltd. 0.104 

19 HDFC Life Insurance Co. 0.008 

20 Hero MotoCorp Ltd. 0.007 

21 Hindalco Industries Ltd. 0.006 

22 Hindustan Unilever Ltd. 0.036 

23 Housing Development Finance Corporation Ltd. 0.076 

24 ICICI Bank Ltd. 0.061 

25 Indian Oil Corporation Ltd. 0.004 

26 IndusInd Bank Ltd. 0.008 

27 Infosys Ltd. 0.083 

28 ITC Ltd. 0.030 

29 JSW Steel Ltd. 0.006 

30 Kotak Mahindra Bank Ltd. 0.049 

31 Larsen and Toubro Ltd. 0.026 

32 Mahindra and Mahindra Ltd. 0.012 
33 Maruti Suzuki India Ltd. 0.017 

34 Nestle India Ltd. 0.011 

35 NTPC Ltd. 0.008 

36 Oil And Natural Gas Corporation Ltd. 0.006 

37 Power Grid Corporation of India Ltd. 0.008 

38 Reliance Industries Ltd. 0.107 

39 SBI Life Insurance Co. 0.006 

40 Shree Cement Ltd. 0.005 

41 State Bank of India 0.018 

42 Sun Pharmaceutical Industries Ltd. 0.011 

43 Tata Consultancy Services Ltd. 0.057 

44 Tata Motors Ltd. 0.006 

45 Tata Steel Ltd. 0.008 

46 Tech Mahindra Ltd. 0.010 

47 Titan Company Ltd. 0.011 

48 UltraTech Cement Ltd. 0.010 

49 UPL Ltd. 0.000 

50 Wipro Ltd. 0.000 

 

 

3.2.  DE/ rand/1 strategy with multiple crossovers 

The execution of the AMRBPO algorithm was done to achieve an optimal portfolio through 

multiple crossovers with DE/rand/1 strategy. It was clear from Table 3 that the Exponential crossover yields 
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the best returns on the portfolio for the strategy DE/rand/1. This strategy was executed in repetition to 

examine the consistency of its outcomes. Table 4 displays the outcomes of 10 sample runs, which confirm 

the consistency of Sharpe ratios solely aiming at portfolio maximization under the DE/rand/1/exp strategy. 

 

3.3.  DE/rand 5/Dir4 strategy with multiple crossovers 

The execution of the AMRBPO algorithm was done to achieve an optimal portfolio through 

multiple crossovers with DE/rand5/Dir4 strategy. It was clear from Table 5 that the DE/rand5/Dir4/bin 

strategy yields the best returns on the portfolio. This strategy was executed in repetition to examine the 

consistency of its outcomes. Table 6 shows the outcomes of 10 sample runs, which confirm the consistency 

of Sharpe ratios solely aiming at portfolio maximization under the DE/rand5/Dir4/bin strategy. 

 

 

Table 3. Risk/returns achieved by AMRBPO algorithm through multiple crossovers 
Crossovers Sharpe ratio Portfolio risk Portfolio return 

Binomial 0.494 0.073 0.036 
Exponential 0.723 0.085 0.062 

Arithmatic 0.479 0.088 0.042 

 

 

Table 4. Risk/return features by DE/rand/1 during multiple cycles of Exponential crossover 
Runs Sharpe ratio Portfolio risk Portfolio return 

1 0.845 0.111 0.094 

2 0.726 0.107 0.067 

3 0.980 0.077 0.076 
4 0.726 0.107 0.067 

5 0.723 0.085 0.061 

6 0.723 0.085 0.061 
7 0.723 0.085 0.061 

8 0.798 0.084 0.067 

9 0.756 0.095 0.072 
10 0.744 0.104 0.067 

 

 

Table 5. Risk/return features attained by AMRBPO algorithm through multiple crossovers 
Crossovers Sharpe ratio Portfolio risk Portfolio return 

Binomial 1.774 0.055 0.097 
Exponential 1.739 0.064 0.112 

Arithmatic 0.397 0.077 0.031 

 

 

Table 6. Risk/Return features DE/rand5/dir4 during multiple cycles of Binomial crossover 
Runs Sharpe ratio Portfolio risk Portfolio return 

1 1.827 0.045 0.045 

2 1.774 0.055 0.097 
3 1.763 0.054 0.054 

4 1.827 0.045 0.045 

5 1.735 0.079 0.137 
6 1.737 0.075 0.129 

7 1.735 0.079 0.137 

8 1.737 0.075 0.129 
9 1.753 0.046 0.077 

10 1.768 0.055 0.055 

 

 

3.4.  DE/rand4/Bestdir5 strategy with multiple crossovers 

The execution of the AMRBPO algorithm was done to achieve an optimal portfolio through multiple 

crossovers with DE/rand4/BestDir5 strategy. It was clear from Table 7 that the best returns on the portfolio are 

yielded by DE/rand4/ BestDir5/exp strategy, due to which is executed in repetition for many cycles to observe 

its outcome consistency. Table 8 displays the outcomes of 10 sample runs that reveal the Sharpe ratios 

consistency, solely aiming to maximize the optimum portfolios under DE/Rand4/BestDir5/exp strategy. This 

study is a comparative analysis of long-short term metaheuristic risk-budgeted portfolio maximization for the 

targeted optimization of Sharpe ratios of the assets of the Nifty50 portfolio through the AMRBPO algorithm. 

Table 9 reveals that the combination of Binomial crossover with DE/rand5/Dir4 yields the highest Sharpe ratio 

of 1.774 linked with 5.5% risks that yield a return value of 9.7% upon the assets of Nifty50. 
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Table 7. Risk/returns attained by AMRBPO algorithm with multiple crossovers 
Crossovers Sharpe ratio Portfolio risk Portfolio return 

Binomial 1.455 0.061 0.089 
Exponential 1.633 0.067 0.112 

Arithmatic 0.424 0.086 0.036 

 

 

Table 8 Risk/returns achieved by DE/rand4/Bestdir5 during multiple cycles for Exponential crossover 
Runs Sharpe ratio Portfolio risk Portfolio return 

1 1.649 0.071 0.111 

2 1.657 0.061 0.096 

3 1.690 0.058 0.097 
4 1.602 0.077 0.077 

5 1.625 0.058 0.094 

6 1.623 0.059 0.089 
7 1.602 0.068 0.109 

8 1.600 0.042 0.042 

9 1.631 0.050 0.079 
10 1.633 0.069 0.112 

 

 

Table 9. Best risk/returns obtained by AMRBPO with various evolution strategies 
Evolution strategy Best crossover  Sharpe ratio Portfolio risk Portfolio return 

DE/rand1 Exponential  0.723 0.085 0.062 

DE/rand5/Dir4 Binomial  1.774 0.055 0.097 

DE/rand4/BestDir5 Exponential  1.633 0.067 0.112 

 

 

4. CONCLUSION 

This work discusses an optimal construction of a risk budgeted portfolio using a meta-heuristic 

method viz., AMRBPO algorithm. The conclusions are; i) While it is possible to directly solve the 

optimization problem in its naive form using linear programming techniques but the risk budget constraint 

imposed on the high-risk assets in the portfolio, including bounding constraints, levied on the long-short 

positions and high-risk assets with more than two crossovers makes it a complex problem, which is resolved  

by using AMRBPO algorithm. ii) AMRBPO algorithm reported consistency of performance across all the 

runs, and iii) The proposed AMRBPO algorithm helps to select the best combination of differential evolution 

strategy and crossover for the best portfolio returns for the investors. 
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