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 Internet traffic classification is a fundamental task for network services and 

management. There are good machine learning models to identify the class 

of traffic. However, finding the most discriminating features to have 

efficient models remains essential. In this paper, we use interpretable 

machine learning algorithms such as decision tree, random forest and 

eXtreme gradient boosting (XGBoost) to find the most discriminating 

features for internet traffic classification. The dataset used contains 377,526 

traffics. Each traffic is described by 248 features. From these features, we 

propose a 12-feature model with an accuracy of up to 99.76%. We tested it 

on another dataset with 19626 flows and obtained 98.40% of accuracy. This 

shows the efficiency and stability of our model. Also, we identify a set of 14 

important features for internet traffic classification, including two that are 

crucial: port number (server) and minimum segment size (client to server). 
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1. INTRODUCTION  

Internet traffic has increased significantly over the last decade due to new technologies, industries, 

and applications. It becomes an interesting challenge for network management. Accurate classification of 

internet traffic is fundamental for better management of network traffic, from monitoring to security, from 

the quality of service (QoS) to the provision of the right resource. Automatic traffic classification is  

an automated process that classifies network traffic according to various parameters (e.g., port number, 

protocol, and the number of packets exchanged) into various traffic classes (e.g., web, multimedia, database, 

e-mail, games, and file transfer). It consists of examining internet protocol (IP) packets to extract some 

specific characteristics to answer some questions related to their origins such as the content or the user’s 

intentions. Typically, it deals with packet flows defined as sequences of packets uniquely identified by  

the source IP address, source port, destination IP address, destination port and protocol used at the transport 

layer, and many others. 

While research on traffic classification is quite specific, the author’s motivations are not always  

the same [1]. Some approaches classify traffic according to its category i.e., whether the traffic represents file 

transfer, peer to peer (P2P), games, multimedia, web, or attacks [2]–[8]. Others try to identify the protocol 

involved at the application level such as file transfer protocol (FTP), hypertext transfer protocol (HTTP), 

secure shell (SSH), Telnet [9]–[14]. One particular study reviewed current traffic classification methods by 

classifying them into five categories: statistics-based, correlation-based, behaviour-based, payload-based,  

https://creativecommons.org/licenses/by-sa/4.0/
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and port-based [15]. Some studies [16], [17] have provided classification methods for encrypted traffic, 

which was challenging to perform in the past. Today port-based analysis is ineffective, being unable to 

identify 30-70% of today’s internet traffic [5], [11]. This leads to the exploration of new features for traffic 

classification. 

Since the first studies on the statistical classification of internet traffic, the classification of network 

traffic using supervised and unsupervised machine learning techniques based on flow features such  

as average packet size, packet arrival times, and flow transmission times, have generated a lot of interest. 

These features are calculated over several packets grouped into a flow, and these sets of features are 

associated to the relevant flow class. Khandait et al. [14] inspected the few initial bytes of payload to 

determine the potential application. This study achieved an accuracy of 98%. Moore and Zuev [6] proposed  

a statistical approach to classify traffic into different classes of internet applications based on a combination 

of flow features such as the length of the flow, the time between consecutive flows, and the time between 

arrivals. The classification process uses a Bayesian classifier combined with a kernel density estimation 

which gives accuracy up to 95%. The models obtained are generally not very effective for certain types of 

traffic, such as attacks and P2P. However, they are particularly effective for web and mail traffic, which 

alone represent more than 94% of the data used for the study. Auld et al. [18] used a classification approach 

based on Bayesian neural networks to classify traffic into eight classes and present a traffic classifier that can 

achieve a high accuracy across various application types without any source or destination host-address or 

port information. They achieved up to 99% accuracy for data trained and tested on the same day and 95% 

accuracy for data trained and tested eight months apart. Fan and Liu [19] used support vector machine (SVM) 

for internet traffic classification. Several SVM cores have been tested, and the most interesting one was the 

radial core. Several feature combinations were made from 30 features to create models. The most interesting 

one was a combination of 13 features which resulted in an overall accuracy of 98%. To ensure the stability of 

their model, an evaluation phase was carried out on a new dataset obtained later. Later, we compare our 

results against this study. Erman et al. [20] proposed a semisupervised traffic classification approach that 

combines unsupervised and supervised methods. This method achieved an accuracy of 94%. Li et al. [21] 

used the SVM in the classification of multi-class network traffic. Thus, from nine features, they built a model 

capable of predicting six classes of traffic with an accuracy of 99.4%. Este et al. [22] proposed a two-step 

approach to multi-class traffic classification based on the SVM: a single class classification step followed by 

a multi-class classification step that achieved an accuracy of around 90% for each class category (http, smtp, 

pop3, ftp, bittor, msn).  

However, it is well known that the characterization of the phenomenon to understand or the object 

to learn in a learning system is a critical step toward having a good classifier. Unfortunately, most existing 

works in the state-of-the-art miss a formal study to ensure that the features used are informative and 

discriminating. Some are just based only on a limited number of features without explanation. It is sometimes 

difficult to identify the features and the properties that influence the results obtained. Moreover, it is difficult 

to know which features to combine to obtain a simple but efficient model. Note that some state-of-the-art 

works, despite achieving good performance, fail to perform well on specific classes especially classes  

traffic-related to bulk and attack.  

In this paper, our contribution is twofold. Firstly, we studied the internet traffic features to select 

only relevant and informative enough by most machine learning algorithms. These selected features could be 

described as essential in the classification of internet traffic. Secondly, we made sure that we can detect any 

class of traffic, i.e., to be very efficient on all types of traffic thanks to our models. Our models will also be 

adaptable to data deficits. This means exploiting the available features for a given flow to predict its class 

without having all the features. The remainder of this paper is organized: section 2 presents the datasets used, 

the performance metrics used, and the methodology. Then section 3 shows results obtained, some 

comparisons with the existing works and conclusions to be drawn. 

 

 

2. MATERIALS AND METHODS 

In this paper, we considered the following machine learning algorithms: decision tree, random 

forest, and eXtreme gradient boosting (XGBoost) because of their respective capacities to highlight the most 

discriminative features. We used the python programming language through libraries such as scikit-learn and 

XGBoost to implement these different machine learning models. This section describes the dataset used,  

the performance metrics, and the methodology. 

 

2.1.  The dataset 

In this paper, the dataset used to develop and evaluate our models was collected by  

high-performance monitors [23] at Queen Mary in University of London. The experimental site for collecting 
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data is a large research facility host to approximately 1,200 administrators, technical staff, and researchers. 

Full-duplex gigabit ethernet is used on this site to connect to the internet. The traffic dataset is obtained based 

on full-duplex traffic traces of the research facility over 24 hours. To build the sets of flows, the trace of each 

day was split into ten blocks of approximately 1,680 seconds (28 minutes). To provide a wider sample of 

mixing across the day, the beginning of each sample was selected randomly (uniformly distributed over  

the whole trace). The dataset consists of 377,526 flows, and each flow is characterized by 248 features 

described in [24]. Thus, we should have 377,526*248=93,626,448 values, but there are 1,105,574 missing 

values. These features include traffic statistics about inter-packet time or packet size and information 

obtained from the transmission control protocol (TCP) headers, such as acknowledgment counts. Note that 

the features are provided in both directions. Flows in datasets are manually classified into ten broad traffic 

categories by applying a content-based mechanism. The available traffic classes in this dataset are provided 

in Table 1. Each flow is mapped to one traffic class. Table 1 shows the number of flows by class/application 

in the dataset. Note that since game and interactive flows are not sufficient, our work was done on the eight 

other classes. To evaluate models efficiently, an eleventh block of data was obtained in the same way  

as the first ten blocks one year later at the same place. This 11th block of 19,626 flows is used for  

the evaluation phase in our study, as shown in Table 1. All these datasets are public, free to use for academic 

purposes, and available through a web link [25]. 

 

 

Table 1. Dataset statistics with traffic classes application 
Traffic class Applications Nb of flows (10 blocks) Nb of flows (11th block) 

WWW Web 328,092 15,597 

Mail SMTP, POP3, IMAP 28,567 1,799 

Bulk FTP 11,539 1,513 
Service DNS, X11, NTP 2,099 121 

P2P BitTorrent, eDonkey 2,094 297 

Database Mysql, Oracle 2,648 295 
Multimedia Windows Media Player 576 0 

Attack Virus, Worm 1,793 0 

Interactive TELNET, SSH 110 4 
Games World of Warcraft 8 0 

 

 

2.2.  Performance metrics 

Let true positive (TP) be the number of correct positive classifications, true negative (TN)  

the number of correct negative classifications, false positive (FP) be the number of incorrect positive 

classifications, and false negative (FN) be the incorrect negative classification. We consider four main 

classical machine learning performance metrics: precision, recall, accuracy, and F1-score. Precision (1) is  

the percentage of correct positive classifications (TP) from samples that are predicted as positive. Recall (2) 

is the percentage of correct positive classifications (TP) from samples that are actually positive. Accuracy (3) 

is the percentage of correct classifications from the overall number of samples. F1-score (4) is a combined 

metric that evaluates the trade-off between precision and recall. 

 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (1) 

 

𝑟𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (2) 

 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+ 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (3) 

 

𝑓1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ∗
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
  (4) 

 

2.3.  Methodology 

We followed a traditional methodology for the machine learning task. The main steps are: 

− Pre-processing: cleaning, homogenization, and adaptation of the dataset to the learning algorithm.  

We replaced each missing quantitative value by the mean of the corresponding column and each 

qualitative missing value by the most frequent value of the corresponding column for the decision tree 

and random forest algorithms. It should be noted that, relying on the adaptability of the XGBoost 

algorithm to missing data, we did not perform any imputation for XGBoost. 
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− Learning: for each algorithm, we varied several hyper-parameters and trained the different models 

obtained on the same training set. 70% of total traffic is used for training and 30% for testing. Then we 

selected the best model based on the metrics used. Moreover, to ensure the efficiency of the model each 

time (evaluation phase), we test it again on a new dataset of 19,626 flows which is the eleventh block 

described before. 

− Features selection: for each model, we identified the importance of each of the 248 features and 

removed less important ones. 

− Repeating: we repeated steps 2 and 3 by considering the new reduced features until we got the fewest 

possible features with performance better or close to the performance of the model selected in  

the previous iteration. 

 

 

3. EXPERIMENTAL RESULTS 

As explained in section 2 about materials and methods, we performed the experiments with three 

algorithms: decision tree, random forest, and XGBoost. For each algorithm, we used the classical grid search 

approach to find the best hyperparameters. In this section, we present the experimental results obtained 

during the test and evaluation phase. These results consist of the accuracy of each traffic class and the overall 

accuracy. 

 

3.1.  Decision tree 

Table 2 presents the results using the decision tree. We can see that, even without too many 

parameters, the decision tree is an efficient technique to solve traffic classification problems. Despite  

the considerable amount of missing data, which were filled, the decision tree can adapt and gives a good 

performance. The first model built by the decision tree with 248 features has revealed that: i) more than half 

(129) of the features provided zero information to the model; ii) 236 features had total importance of 1.38%, 

while the other 12 features provided a total of 98.62% information needed. Then, only the 12 most important 

features were considered. Note that the 12-feature model is better than the 248-feature model in terms of 

overall accuracy and specifically on traffic classes such as web, mail, bulk, P2P. In addition, this model 

consumes less memory space and is faster during the training than the 248-feature model.  

 

 

Table 2. Summary of performance obtained with decision tree 
Traffic class Test phase Evaluation phase 

 248 features 12 features 6 features 248 features 12 features 6 features 

WWW 99.85%  99.86%  99.85%  98.72% 99.76%  99.90% 

Mail 99.93%  99.97%  99.94%  99.77% 99.94%  95.83% 
Bulk 99.47%  99.83%  99.38%  83.21%  83.28%  83.61% 

Service 99.41%  99.17%  99.12%  99.17% 99.17% 99.17% 

Database 99.88%  99.88%  99.76%  98.98% 98.98%  98.98% 
P2P 98.53%  97.39%  96.08%  90.90% 93.93%  52.52% 

Attack 82.92%  82.54%  81.02% - - - 

Multimedia 93.64%  94.21% 95.95% - - - 
Overall accuracy 99.74%  99.76%  99.72%  97.52% 98.40%  97.53% 

 

 

Considering the six most essential features, we have noticed a lot of loss performance in some traffic 

classes, in particular on P2P, which decreases from 93.93% to 52.52%. We have then considered this model 

less interesting for the next step. With the 12-feature model, we have noticed that two features have total 

importance of 92.77% against 7.23% for the other ten features. These two features are the port used at  

the server for the traffic with importance of 39.96% and the total number of bytes sent in the initial window, 

i.e., the number of bytes seen in the initial flight of data before receiving the first ack packet from the other 

endpoint (client to server) with importance of 52.81%. Table 3 shows the importance of the features in  

the 12-feature model building process. 

 

3.2.  Random forest 

From a random forest model of 248 features with an overall accuracy of 99.71%, the model of 23 

features has an accuracy of 99.77%, which is the highest accuracy obtained during the test phase. However, 

the performance on the attack class is only about 71%. Let us note that the model with 23 features performs 

very well on the traffic class database during the evaluation phase (98.30% accuracy), knowing that at  

the beginning with 248 features, we have an accuracy of 38.30%. Subsequently, we have reduced the number 

of features to 17. The performance is very close to the 23-feature model and particularly a tiny improvement 
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once again on the database traffic, which has increased to 98.64% accuracy during the evaluation phase. 

Table 4 presents the results using random forest, and Table 5 shows the importance of the features in  

the 17-feature model building process. 

 

 

Table 3. 12-feature decision tree model features with their importance on the model set up 
Discriminators: importance (%) Discriminators: importance (%) Discriminators: importance (%) 

Port number (server): 39.96%  Port number (client): 1.32% Maximum of bytes in Ethernet packet: 0.5% 
Variance of control bytes packet: 

0.44% 

Number of pushed data packets (Client to 

Server): 1.51% 

Minimum segment size (Client to Server): 

0.20% 

Average segment size (Client to 
Server): 0.20% 

Average segment size (Server to Client): 
0.23% 

Initial window bytes (Client to Server): 
52.81% 

The variance of total bytes in IP 

packet: 0.43% 

The theoretical stream length (Client to 

Server): 1.10% 

The theoretical stream length (Server to 

Client): 1.30% 

 

 

Table 4. Summary of performance obtained with random forest 
Traffic class Test phase Evaluation phase 

 248 ftrs 78 ftrs 23 ftrs 17 ftrs 248 ftrs 78 ftrs 23 ftrs 17 ftrs 

WWW 99.89%  99.91%  99.93%  99.91%  99.93%  99.97%  99.97% 99.97% 
Mail 99.94%  99.93%  99.93%  99.94%  90.88%  92.77%  99.94%  99.94% 

Bulk 99.66%  99.83%  99.72%  99.86%  99.34%  99.67%  99.73%  98.67% 

Service 99.27%  99.41%  99.41%  99.41%  99.17%  99.17%  99.73%  99.73% 
Database 99.16%  99.64%  99.76%  99.76%  38.30%  55.93%  98.30%  98.64% 

P2P 95.92%  96.90%  98.04%  97.23%  95.62%  98.65%  94.61%  96.30% 

Attack 71.53%  72.48%  72.86%  71.92% - - - - 
Multimedia 88.44%  94.21%  95.37%  94.22%  - - - - 

Overall accuracy 99.71%  99.75%  99.77%  99.75%  97.52%  98.61%  99.85%  99.80% 

 

 

Table 5. 17-feature random forest model features with their importance on the model set up 
Discriminators: importance (%) Discriminators: importance (%) Discriminators: importance (%) 

Port number (server): 18.78% The number of unique bytes 

sent (Server to Client): 3.47% 

The count of all the packets with at least a byte 

of TCP data payload (Server to Client): 1.56% 

The minimum segment size (Client to Server): 
13.61% 

The average segment size 
(Server to Client): 7.16% 

Initial window bytes (Client to Server): 
20.32% 

Initial window bytes (Server to Client): 5.32% The theoretical stream length 
(Server to Client): 2.13% 

Total data transmit time (Client to Server): 
1.23% 

The total number of Round-Trip Time (RTT) 

samples found (Client to Server): 1.66% 

Maximum of Ethernet data 

bytes (Client to Server): 
2.40% 

Maximum of total bytes in IP packet (Client to 

server): 2.13% 

Maximum of Ethernet data bytes (Server to 

Client): 4.07% 

Variance of Ethernet data 

bytes (Server to Client): 
5.53% 

Maximum of total bytes in IP packet (Server 

to Client): 3.07% 

Variance of total bytes in IP packet (Server to 

Client): 4.90% 

The maximum segment size 

(Server to Client): 2.65% 

 

 

 

3.3.  XGBoost 

The results obtained with the XGBoost models are presented in Table 6. Note that XGBoost can 

build models with missing data and still give good models. However, it is an algorithm that requires many 

features to perform well when dealing with missing data. The best model with XGBoost was obtained by 

considering 67 features. With 23 features, we have observed some more or less significant drops with  

an overall accuracy that went from 99.87% to 99.82% during the test phase and from 99.90% to 99.60% for 

the evaluation phase. The most remarkable drop is in the attack class, decreasing from 80.45% accuracy to 

73.43% during the test phase. However, the 23-feature model still performs well on the other traffic classes. 

As we can see, for a better adaptation of the XGBoost algorithm on traffic classification by exploiting  

a database with missing data, the more the algorithm has features of the flow to exploit, and the more  

the model obtained is better. Thus, we can hypothesize that if our models are used for real-time classification, 

their efficiencies will depend on the number of the features captured at a specific time of the traffic 

processing and will improve as the traffic progresses. Future works could look at these aspects to confirm. 

However, it is worth remembering that even with few features, the models based on XGBoost are still very 

efficient. The experiments with 23 features highlight the importance of two features which are: the port 

number (server) with importance of 24.79% and the total number of bytes sent in the initial window (client to 

server) with importance of 47%. These two features contribute the most to the model construction, and 
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further confirming again their importance in internet traffic classification. Table 7 shows the importance of 

the features in the 23-feature model building process. 

 

 

Table 6. Summary of performance obtained with decision tree 
Traffic class Test phase Evaluation phase 

 248 features 67 features 23 features 248 features 67 features 23 features 

WWW 99.97% 99.96% 99.97% 99.99% 99.99% 99.99% 
Mail 99.97% 99.98% 99.98% 99.94% 99.77% 99.97% 

Bulk 99.97% 99.97% 99.86% 99.93% 99.87% 96.16% 

Service 99.56% 99.56% 99.41% 95.04% 97.52% 96.69% 
Database 99.88% 99.88% 99.88% 98.64% 98.64% 98.64% 

P2P 98.86% 98.86% 98.20% 96.96% 97.31% 96.30% 

Attack 80.45% 80.45% 73.43% - - - 
Multimedia 97.69% 98.26% 96.53% - - - 

Overall accuracy 99.86% 99.87% 99.82% 99.89% 99.90% 99.60% 

 

 

Table 7. 23-feature XGBoost model features with their importance on the model set up 
Discriminators: importance (%) Discriminators: importance (%) Discriminators: importance (%) 

Port number (server): 18.05% Minimum of bytes in Ethernet packet: 1.10% Maximum of bytes in Ethernet packet: 

0.47% 

Mean of total bytes in IP packet: 0.64% The number of unique bytes sent (Client to 
Server): 2.51% 

The count of all the packets with at 
least a byte of TCP data payload 

(Client to Server): 1.96% 

If the endpoint requested Window 
Scaling/Timestamp options as specified 

(Server to Client): 1.32% 

Minimum segment size (Client to Server): 
2.57% 

Average segment size (Client to 
Server): 2.27% 

Initial window bytes (Client to Server): 
55.81% 

Initial window bytes (Server to Client): 1.31% The theoretical stream length (Client 
to Server): 2.27% 

The theoretical stream length (Server to 

Client): 1.85% 

The missed data, calculated as the difference 

between the ttl stream length and unique bytes 
sent (Server to Client): 2.09% 

Total data transmit time (Server to 

Client): 0.60% 

The total number of Round-Trip Time 

(RTT) samples found (Server to Client): 
0.48% 

Maximum of Ethernet data bytes (Client to 

Server): 0.65% 

Mean of total bytes in IP packet 

(Client to Server): 1.19% 

Maximum of total bytes in IP packet 

(Client to server): 0.40% 

Variance of total bytes in IP packet (Client to 

server): 0.44% 

Median of Ethernet data bytes (Server 

to Client): 0.47% 
Maximum of Ethernet data bytes (Server to 

Client): 1.13% 

FFT of packet IAT, Frequency #2 (Client to 

Server): 0.38% 

 

 

 

3.4.  Overall discussions 

The results show that each algorithm used has its particularities, weaknesses, and strengths.  

For example, the decision tree was more efficient on attack traffic than the other algorithms. But it gave less 

interesting results for bulk traffic during the test phase and generally performed worse than other algorithms. 

The random forest is the algorithm that achieved good results in both the test and evaluation phases with  

the least number of features but remained less efficient on attack traffic. XGBoost gives a lower performance 

as we reduce the features. This can be reflected in the data gaps. It then looks at other features to  

improve performance. In general, XGBoost performed better in our study when considering 67 features.  

We obtained an overall accuracy of 99.87% for the test phase and 99.90% for the evaluation phase, 

representing our best results during the study. Each algorithm works based on the features it considers most 

discriminating. Nevertheless, several features are very often found in the top 20 features of either two or all 

three algorithms considered. These features summarized in Table 8 can be considered as essential features for 

the classification of internet traffic. 

 

3.5.  Comparison of our results with the state-of-the-art 

We compare our results to the [19] ones as the context of the studie is the same and they used  

the same datasets as in our study with good performance. We use our minimal models for each algorithm:  

the 12-feature decision tree model, the 23-feature XGBoost model, and the 17-feature random forest model. 

In [19] use SVM for this task. Several SVM cores have been tested and the most interesting one was  

the radial core. The most interesting model obtained was a combination of 13 features which resulted in  

an overall accuracy of 98%. However, with our 12-feature decision tree model, we obtained an overall 

accuracy of 99.76%, which represents fewer features for more performance. We also obtained higher overall 

accuracies from the other models despite requiring more features (99.75% for the 17-feature random forest 
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model and 99.82% for the 23-feature XGBoost model). Tables 9-11 summarise [19]. Results and ours when 

using the eleventh block. In general, we notice that whatever the considered model our results are better. 

Moreover, for traffic such as P2P, we have better precision with our models. It is important to mention that 5 

of the decision tree model features, as shown in Table 3 are commons to some most discriminating features 

in the [19]. Study, which once again confirms the importance of some specific features in the classification of 

internet traffic. However, the use of the other 7 features made the difference and allowed us to achieve better 

results compared to the study of [19]. Therefore, our analysis of the features was very interesting. 

 

 

Table 8. Top 14 of most important features common to the considered algorithms 
Discriminators Discriminators 

Port number (server) Mean of total bytes in IP packet 

Number of unique data bytes (Client to Server) If the endpoint requested Window Scaling/Timestamp options as 
specified (Server to Client) 

Minimum segment size (Client to Server) The average segment size observed during the lifetime of the 

connection (Client to Server) 
Initial window bytes (Client to Server) Initial window bytes (Server to Client) 

The average segment size observed during the lifetime of 

the connection (Server to Client) 

Maximum of Ethernet data bytes (Client to Server) 

Maximum of total bytes in IP packet (Client to Server) Mean of total bytes in IP packet (Client to Server) 

The variance of total bytes in IP packet (Client to Server) Maximum of Ethernet data bytes (Server to Client) 

 

 

Table 9. Comparison of precision with the work of [19] during the evaluation phase 
Traffic class Fan and Liu [19] Decision tree Random forest XGBoost 

WWW 96.03% 99.75% 99.97% 99.65% 

Mail 75.93% 99.94% 99.78% 99.83% 

Bulk 69.58% 100% 99.40% 99.52% 
Services 93.05% 99.97% 99.97% 100% 

P2P 52.82% 92.08% 97.91% 94.35% 

Database 83.97% 97.33% 100% 100% 

 

 

Table 10. Comparison of recall with the work of Fan et al. during the evaluation phase 
Traffic class Fan and Liu [19] Decision tree Random forest XGBoost 

WWW 98.72% 99.76% 99.97% 99.99% 

Mail 97.10% 100% 99.94% 100% 

Bulk 71.91% 82.94% 99.73% 96.03% 

Services 55.37% 99.97% 99.97% 96.69% 

P2P 54.55% 93.34% 94.61% 95.62% 

Database 51.52% 98.98% 98.30% 98.30% 

 

 

Table 11. Comparison of f1-score with the work of [19] during the evaluation phase 
Traffic class Fan and Liu [19] Decision tree Random forest XGBoost 

WWW 97.36% 99.76% 99.97% 99.82% 

Mail 85.22% 99.97% 99.86% 99.92% 

Bulk 69.53% 90.68% 99.57% 97.75% 
Services 69.43% 99.97% 99.97% 98.32% 

P2P 53.67% 93.00% 96.23% 94.98% 

Database 63.86% 98.15% 97.97% 99.14% 

 

 

4. CONCLUSION  

In this paper, we have considered three interpretable machine learning algorithms: decision tree, 

random forest, and XGBoost. These algorithms, thanks to their ability to quantify the importance of a feature 

in the model, have allowed identifying some essential features for a traffic classification problem.  

This allowed us to identify a set of 14 features that are considered the most important by most of our 

algorithms. Two of these 14 features were revealed to be crucial because of their high importance rates each 

time a model was built. These are the port number (server) and the minimum segment size (client to server). 

This step of reducing the features to the important ones allowed us to achieve high performance with very 

few features. Our 12-feature model built using the decision tree is a good example because, with only 12 of 

the 248 features, we obtained an overall accuracy of 99.76% in the test phase and 98.40% on a new dataset in 

the evaluation phase. With this model, we get better results than some existing works that use more features 

for less performance. This confirms once again the relevance of the study performed on the features. Let us 

note that XGBoost can be efficient in the classification of real-time traffic thanks to its ability to give good 
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results even with missing data. Future studies will focus on real-time traffic classification and  

the effectiveness of XGBoost on this type of problem. 
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