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 Generally, chroma phase or hue offset issues within a scene are hard to 

detect, without a reference or context (i.e. some apriori knowledge about 

how certain objects within the scene should actually  appear in terms of their 
hue). Moreover, when it comes to skin/flesh tones, hue deviation can be 

noticeable and can markedly degrade the viewer quality of experience 

(QoE), whenever it does occur. However a lot of research has gone into flesh 

tone detection, specifically, the color gamut within which flesh tone is 

present. This topic has been well documented in the literature with respect to 
various color spaces: red, green, blue (RGB) and YIQ. Therefore, overall 

issues with chroma offset or hue within the video content could potentially 

be approached by extracting and analyzing a reliable reference, such as skin 

or flesh tone (if present), within some allowable deviation. This involves 

machine learning (ML) based facial recognition and tracking followed by 
skin tone region recognition within the detected facial sequence (i.e. Region 

of Interest). The skin region serves as a ‘self-reference’ in order to discern 

any inherent phase offset within the content. Finally, the angular chroma 

deviation discerned can then be used for subsequent correction as well. 
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1. INTRODUCTION 

Deviation in chroma phase, or hue, in received video content can be visually noticeable and degrade 

the viewer’s quality of experience (QoE). Moreover, this is not uncommon and can be found even in 

contemporary media content, apart from file based legacy material. The key to handling this problem is being 

able to discern the offset in the chroma phase, or hue, in the absence of having the original unaffected video 

reference at the receiver or viewer’s end. Even for an intelligent human viewer, it is not possible to perceive 

an anomaly in the hue or tint, till a portion of the video contains objects or patterns that are recognizable for 

what they are, and more importantly, for how they should ‘normally’ appear to be and the context within 

which they should be viewed. In this regard, hue/tint changes within skin tones can be easily discerned by the 

human observer, (since that knowledge is acquired and ingrained by the viewer over years of experience). 

However, the goal here is to be able to have the receiver (i.e. the ‘intelligent machine’) be able to detect any 

hue/tint offset within the received content and be able to correct for the same, so as  to improve the viewer’s 

QoE. In order to do so, one makes use of the fact that skin tones have a well-established color gamut, (within 

a given color space), that is startling similar in scope across the entire human race [1]–[5] and it is this 

property that is critical (when broadly interpreted), in order to extract a self-reference to discern any inherent 

hue offset within the video content. Here, the term self-reference implies that one can use certain regions, 

https://creativecommons.org/licenses/by-sa/4.0/
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such as skin tones, within the received video sequence to discern any anomalies present, without having the 

need to refer to, or have apriori knowledge of, the original/undistorted v ideo content. The presumption of 

course being that human subjects and hence skin-tones are available at some stage, (at least for a limited 

period of time), within the video sequence that is to be analyzed. 

Skin tone detection has been studied for several years, for applications ranging from adult content 

detection [6], [7], to detecting news anchors in television broadcast content for the sake of video automatic 

annotation [8], [9], archival, and retrieval and also for rudimentary flesh tone only correction [10], [11]. In 

the application in [10], for example, pixels converted to YIQ that were detected in and around the flesh tone 

region were moved closer to the “ideal” flesh tone by halving the Q component. (I-Q space has been 

discussed in section 2. In such applications, it was typically assumed that the face and the hands of the anchor 

person comprised the most significant flesh-tone region in a given video frame. Furthermore, news programs 

in studios are typically shot in environments with backgrounds that are designed to make them easily 

separable from the face/skin regions of the anchor or the panel [3], thus mitigating the issue of falsely 

detecting skin-tone like pixels, i.e. false positives. 

However, the issue of extracting a flesh-tone self-reference (were it to be present) within a received 

video sequence becomes challenging when the background is not controlled, or is in a ‘natural’ setting. Here, 

a crucial step is to first extract regions of interest (RoIs) within which the likelihood of detecting skin tones is 

high, such as faces within a frame, and over time, spatially collocated facial sequences across consecutive 

frames. Note that several machine learning (ML) based intra-frame face detection techniques often (though 

not always) rely upon relevant features extracted from the grayscale image [12]–[15]. Therefore in our case, 

the derived grayscale facial shot using an available convolutional neural network (CNN) [16], [17] based 

facial tracking platform basically provides a ROI in space and time which is less susceptible to false 

positives, owing to the inherent spatio-temporal correlation of the facial shot sequence. Thus the ROI in each 

frame has the likelihood of facial regions detected within the given frame, and these regions are then 

analyzed or segmented for their flesh tone, allowing for some variation due to any inherent chroma offset. 

Ultimately, an offset so detected is used to generate a compensatory hue angle that is applied to each pixel of 

every frame, by first converting it to hue, saturation, value (HSV) space [10], [18], in order to correct for the 

offset within the hue (H) component. The corrected image sequence is then converted back to red, green, blue 

(RGB) for subsequent transcoding to a chroma phase corrected stream, or to drive a display. This overall 

methodology in handling the chroma phase or hue correction issue using such a ML based approach has not, 

to the authors’ knowledge, been dealt with or discussed in the available literature, and so has been pursued 

and presented in this work. 

The paper is organized as follows: section 2 describes some of the different color spaces used for skin 

detection described in the literature. Section 3 covers the chroma phase offset detection method implemented, 

using ML based facial shot tracking to obtain RoIs. In section 4 we discuss the technique used to correct for any 

detected chroma phase offsets. Finally, in section 5, we draw conclusions from our current work. 

 

 

2. FLESH TONE GAMUT IN VARIOUS COLOR SPACES 

As studies show, the human skin has a well-defined (and narrow) gamut of hues and is not highly 

saturated. This is attributed to the fact that the skin pigmentation is determined by melanin, in particular, the 

balance between its two key components, (Eumelanin-brown and black, Pheomelanin-red and yellow) [19]. 

This narrow gamut property, as we shall see in the subsequent plots, makes skin tone detection viable across a 

range of color spaces. One notes that if the available content is in a given color space, such as RGB, it can 

typically be converted to another 3-component color space by a linear (3x3 matrix) transformation. So the 

choice of a color space for chroma phase analysis will be governed by the availability of skin-tone gamut rules 

applicable to that color space, as well as the convenience with which chroma phase values can be extracted.  

So let us first review the literature on skin-tone color gamut with respect to various color spaces. To 

begin with, [3] has done a survey of color spaces widely used for skin tone representation, namely RGB, 

YCrCb, Yuv and Lab, described in a 4x3 matrix of plots shown in Figure 1(a) to Figure 1(l). Here, each of 

the three columns represent the skin tone gamut of an ethnicity across all the four color spaces, where each 

row represents the skin tone color gamut for a given color space, across the various ethnicities. The three 

ethnicities/columns are {Asian, African, Caucasian} and the four color spaces/rows are {RGB, YCrCb, Yuv, 

Lab}. Note that while these are 3-D spaces, only the two principal chroma components are used for the 2-D 

representation and subsequent analysis. Thus, the first row of Figure 1 shows the flesh tone gamut within the 

R-G space of Asian skin in Figure 1 (a), African skin in Figure 1 (b) and Caucasian skin in Figure 1 (c), The 

second row of Figure 1 shows the flesh tone gamut within the Cb-Cr space of Asian skin in Figure 1 (d), 

African skin in Figure 1 (e) and Caucasian skin in Figure 1 (f). The third row of Figure 1 shows the flesh tone 

gamut within the u-v space of Asian skin in Figure 1 (g), African skin in Figure 1 (h) and Caucasian skin in 
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Figure 1 (i). Finally, the last row of Figure 1 shows the flesh tone gamut within the a-b space of Asian skin in 

Figure 1 (j), African skin in Figure 1 (k) and Caucasian skin in Figure 1 (l). 

 

 

 
(a) 

 

 
(b) 

 
(c) 

 (d) 

 

 
(e) 

 
(f) 

 
(g) 

 

 
(h) 

 
(i) 

 
(j) 

 
(k) 

 
(l) 

 

Figure 1. Skin tone color gamut plots in various color spaces [3] in (a) Asian R-G, in (b) African R-G, in (c) 

Caucasian R-G, in (d) Asian Cr-Cb, in (e) African Cr-Cb, in (f) Caucasian Cr-Cb, in (g) Asian u-v, in (h) 

African u-v, in (i) Caucasian u-v, in (j) Asian a-b, in (k) African a-b and in (l) Caucasian a-b 
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Furthermore, one more color space considered here is {Y, I, Q}, which was first used in the early 

years of NTSC color television. For skin-tone detection, color spaces such as {Y, I, Q} separate the luma and 

chroma information, allowing us to analyze the color information in two dimensional chroma space, in this 

case the I-Q space, represented in an equivalent polar coordinate form. This is convenient, as can be seen 

when we consider the skin color gamut described in the I-Q color plane in Figure 2, and the corresponding 

model in section 2.2. 

 

2.1.  RGB skin-tone gamut model 

The RGB color space is amongst the most common and has been reliably used to come up with a set 

of heuristic rules that define the skin tone gamut. Therefore, it shall be used in our work as a segmentation 

step, after having extracted the facial shot RoIs, (if available). A given pixel in (R, G, B) 8-bits per 

component format is classified as ‘skin’ under the following compound conditions [1]: 

 

If (R > 95 and G > 40 and B > 20 and (1) 

max{R,G,B}−min{R,G,B} > 15 and 

|R−G| > 15 and R > G and R > B) is ‘True’ 

Then (R, G, B) is a skin-pixel 

 

2.2.  I-Q skin tone gamut model 

Note that the RGB model in section 2.1 requires all the three components for skin-tone classification 

and while it is well established and reliable, it does not directly lend itself to the concept ‘chroma phase’. So 

we then perform a {R, G, B}  {Y, I, Q} color space conversion of the segmented skin-tone pixels classified 

in section 2.1, in order to obtain their representation in the 2D I-Q plane as described in Figure 2. In the latter 

scenario, the gamut of the skin pixels need to be within +/– 30o (/6) of the I axis, as represented by the 

shaded region in Figure 2 [10]. 

 

–/6 ≤  𝑎𝑟𝑐𝑡𝑎𝑛 (
𝑄

𝐼
)  ≤+/6 (2) 

 

Note that by itself, (2) is necessary, but not sufficient. We will first be using the skin -tone 

segmentation rules (such as described by (1)) within the extracted facial shot ROI’s, to discern if the video 

content has undergone any chroma phase offset, and  then if so, to what extent will be based on the non-

conformance of (2). This is described in detail in the section 3. 

 

 

 
 

Figure 2. Shaded region indicates typical flesh tone color range in I-Q space [10] 
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3. METHOD 

This technique first detects and extracts a self-reference within the given video content, (i.e. a facial 

sub-shot or ROI that can then be used to focus on the flesh tone), which is based upon ML based facial 

recognition routines implemented by a CNN. Next, we see how much deviation there is within the flesh tone 

pixels from the ‘normal’ gamut on a per frame basis and generate the corresponding confidence. This 

confidence value is accumulated at the end of each frame in order to generate an average color phase metric 

at the end of the given shot, which in turn is filtered (i.e. smoothened) to generate a hue compensation angle 

in the HSV space to correct for the phase anomaly, if present. In the following sections, we first describe the 

system in terms of a flow chart that captures the overall end-to-end approach, and then describe them in 

greater detail in the subsequent sections. 

 

3.1.  Algorithm outline 

A system block diagram/flow chart is shown in Figure 3. It summarizes the algorithmic steps of the 

chroma phase detection and correction approach. The following sections 3.1.1 to 3.1.5, describe each of the 

main steps in greater detail. 

 

 

 
 

Figure 3. Chroma phase detection and correction flow chart  

 

 

3.1.1. Self-reference ROI extraction 

First obtain the self-reference if available, i.e. facial shot(s) from the video clip that is to be 

analysed; thereby precluding the non-essential portions of the image sequence. This is the ML based pre-

classification stage that extracts the facial RoIs. Here, we note that it is not necessary that every shot within 

the given video content needs to have human subjects -in theory, one shot is sufficient (assuming that the 

chroma offset anomaly is prevalent throughout the entire video clip, which in practical scenarios is generally 

a valid assumption). The pre-classification has been achieved using the CNN developed by the visual 

geometry group (VGG) at Oxford University [20]. Their approach is outlined as follows: i) Implementation 

of a histogram of oriented gradients (HOG) based approach for face detection [21], [22]; and ii) Subsequent 

face tracking done using a Kanade, Lucas & Tomasi (KLT) tracker [23], [24]. 
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A couple of examples of this process are shown in Figures 4(a) and 4(b), wherein each figure 

represents a frame from the respective chroma phase affected content. Here, the content in Figure 4 (a) 

depicts positive skew or offset, i.e. a reddish tint or hue. Figure 4 (b) on the other hand, shows a negative 

skew or offset, i.e. a yellowish tint or hue. Thus, if the chroma offset affected video under analysis has human 

subject content, then this methodology enables us to extract the relevant facial shots, which form the RoIs for 

our subsequent steps . 

 

 

 
(a) 

 
(b) 

 

Figure 4. Facial tracking (blue frame) within affected video content (a) reddish hue and (b) yellowish hue 

 

 

3.1.2. Flesh-tone pixel segmentation 

Next, use the above reference RoIs to obtain pixel-wise statistics that further indicate the presence of 

skin tone, as well as inherent color phase deviation (positive or negative), if any. This is done by referring to 

the skin classifier rules described in (1). However, in order to mitigate false positives we further augment the 

{R, G, B} component-wise constraints described in (1), to yield (3). 

 

If (R > 95 and G > 40 and B > 20 and (3) 

max{R,G,B}−min{R,G,B} > 15 and  

|R−G| > 15 and R > G and R > B and 

R−B < 255 and G > B) is ‘True’ 

Then (R, G, B) is a skin-pixel 

 

3.1.3. Chroma phase angle histogram extraction 

 For those pixels that satisfy (3), they undergo a conversion to the {Y, I, Q} space in order to extract 

the chroma phase angle histogram statistics. Upon doing so, a histogram of the phase angle arctan(Q/I) is 

obtained in order to extract the statistics of the proportion of pixels falling outside of the bounds as described 

by (2). In the following examples, a set of images for each selected example has been provided, where  in: 

- The first image is an available facial shot (ROI) from an affected video content . 

- From the available facial shot (ROI), the second image is the coarse flesh tone segmentation obtained 

using the rule provided by (3). 

- The third plot is the I versus Q scatter plot of the flesh tone pixels tagged within the segmented image. 

- The fourth plot is the histogram of arctan(Q/I) for the flesh tone pixels. The red vertical lines denote +/– 

/6 around the I axis. 
Example 1 Analyzing content with a reddish hue. If the skin pixels have a reddish hue, (i.e. phase 

angle is positive towards the color red), then more of the phase angle histogram bins closer to or > will be 

populated and the histogram will have a positive skew. The facial tracking indicated by the blue bordered 

frame shown in Figure 4(a) is used as an ROI to perform skin tone segmentation followed by histogram 

extraction, as shown in Figure 5. 

Example 2 Analyzing content with a reddish yellowish hue. On the other hand, if the video content 

has a yellowish hue, (i.e. phase angle is negative towards the color Yellow), then more of the phase angle 

histogram bins closer to or <–/6 will be populated, and the histogram will have a negative skew. Similarly, 

the facial tracking indicated by the blue bordered frame shown in Figure 4(b) is used as an ROI to perform 

skin tone segmentation followed by histogram extraction, as shown in Figure 6. 
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Figure 5. Example of content with positive (reddish) skew 

 

 

 
 

Figure 6. Example of content with negative (yellowish) skew 

 

 

3.1.4. Histogram analysis and offset confidence metric generation 

Conclusions regarding phase deviation, if any, are made only if a “significant” percentage of the 

image contains flesh tone pixels that satisfy (3). This thresholding is done to avoid unreliable co nclusions or 

false positives. Here, the extracted histogram described in section 3.1.3 then allows us to observe how much 

deviation there is within the flesh tone pixels from the ‘normal’ gamut and thus deduce if any chroma phase 

offset is present within the given content. These observations are taken on a frame-by-frame basis and then 

aggregated over the entire ROI sequence in order to obtain a shot wide average. This parameter is then used 

to generate a confidence metric whose magnitude is between [0.0, 1.0] and is associated with the chroma 

phase offset observed. The pseudo code is  outlined as follows: 

 

For every frame ‘n’:  (4) 

Initialize: theta_aggregate, red_skew_pixel_count & yellow_skew_pixel_count to 0; 
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If (skin_pixel_count > K1*h*w) Then  

 For each skin-tone pixel converted to (Y, I, Q): 

  theta =  arctan(Q/I) 

  If (arctan(Q/I) > /6) Then 

  increment red_skew_pixel_count by 1 

 Else If (arctan(Q/I) <-/6) Then  

  increment yellow_skew_pixel_count by 1 

   theta_ aggregate = theta_ aggregate + theta  

Where, 

H : Height of the input image 

w : Width of the input image 

theta_aggregate : The accumulate of the skin pixel phase angles within the ROI(s) 

skin_pixel_count  : The total number of skin-tone pixels detected in the segmented ROI(s) 

red_skew_pixel_count : The amount of skin-tone designated pixels within the ROI whose phase  

exceeds /6 

yellow_skew_pixel_count : The amount of skin-tone designated pixels within the ROI whose phase  

is <–/6 

K1 : A constant chosen typically ≥0.1, (i.e. at least 10% of the entire image) 

The theta aggregate and skew counts are then normalized by the skin_pixel_count to yield the 

following parameters for the given frame ‘n’: 

 

norm_red_skew(n) = red_skew_pixel_count / skin_pixel_count (5) 

 

norm_yellow_skew(n) = yellow_skew_pixel_count / skin_pixel_count (6) 

 

theta_average(n) = theta_aggregate / skin_pixel_count (7) 

 

Note that typically, only the count that reflects the skew, (either towards red, i.e. positive skew, or 

towards yellow, i.e. negative skew), will be non-zero. On the other hand if there is no chroma skew, then 

clearly both the counts will be zero. Thus, having extracted the chroma phase histogram skew, we are now in 

a position to use this parameter to derive a confidence metric associated with the chroma phase offset, 

outlined as follows: 

 

if (theta_average(n) ≥ 0) {  (8) 

chroma_phase_offset_confidence(n) = (1 – e (K2*norm_red_skew(n)))K4*  

     (1 – (e ( -( (abs (theta_average(n))/K3)K5)))) 

}  else { 

 chroma_phase_offset_confidence(n) = –(1– e (K2*norm_yellow_skew(n)))K4 *  

                  (1 – (e ( -( (abs (theta_average(n))/K3)K5)))) 

} 

 

Where, 

chroma_phase_offset_confidence(n) : The phase offset confidence metric derived from the chroma phase  

analysis for given frame ‘n’ 

K2  : programmable parameter, typically = –30 

K3  : programmable parameter, typically = 0.3 

K4  : programmable parameter, typically = 0.04 

K5  : programmable parameter, typically = 6 

The choice of the exponent functions in formulating the chroma_phase_offset_confidence metric for 

a given frame is governed by the fact that we need to continuously and monotonically map the entities 

norm_red_skew (or norm_yellow_skew), which are essentially in the domain of [0, 1] and |theta_average|, 

which is in the domain of [0, ], to a single metric function with its range bounded by [0, 1]. One also notes 

from (8) that the polarity of the chroma_phase_offset_confidence metric is defined by the polarity of 

theta_average. Now analysing the chroma phase histogram data from the two (single frame) examples shown 

in Figure 4a and the corresponding Figure 5; as well as Figure 4b and the corresponding Figure 6, we get: 

For the chroma phase analysis from the results of Figure 4(a) and Figure 5: 

 

norm_red_skew = 0.0288 
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theta_average  = 0.4502 

 

Using (8), we get: 

 

chroma_phase_offset_confidence = 0.9783 

 

Similarly, for the chroma phase analysis from the results of Figure 4(b) and Figure 6: 

 

norm_yellow_skew  = 0.0003 

theta_average  = –0.3747 

 

Using (8), we get:  

 

chroma_phase_offset_confidence = –0.8095 

 

Finally, the confidence extracted from each frame within the shot is aggregated over all the frames 

within the shot (‘N’), in order to produce an overall shot-wide confidence, (see Table 1, section 4, results and 

discussion): 

 

color_phase_metric_average = 
∑ color_phase_offset_confidence(n)

N-1
0

N
 (9) 

 

3.1.5. Chroma phase offset correction 

Having obtained the chroma phase offset (if any), from the content analysis as described in Sections 

3.1.1 to 3.1.4, we are now in a position to correct for the offset. This is done under the following 

assumptions: 

- Chroma phase ‘wraps around’ +/–, with respect to the I-axis. So it is assumed that we are dealing with 

phase offsets that are significantly less (in magnitude) than ; which in a practical sense is a fair 

assumption, considering that the normal skin-tone gamut itself exits within a relatively narrow region of 

+/–/6 around the I axis. 

- The content is currently corrected for phase (or hue) anomalies only, not for saturation. In this regard, 

converting from {R, G, B}  {H, S, V} space is a viable option, with the {H} component (i.e. hue), 

being the one that is adjusted by a correction angle proportional to the derived chroma p hase offset, 

aggregated or filtered over the entire shot. 

 

Initialize:  theta_comp = 0, theta_filt = 0 

 

For every frame ‘n’: 

 

theta_filt(n) = ((1.0 – ALPHA)*theta_filt(n–1)) + (ALPHA*theta_average(n)) (10) 

 

theta_comp(n) = min(theta_filt(n)/K_scale/, 1.0) (11) 

 

For each pixel (i, j), within frame ‘n’: 

 

Hadjusted(i, j, n) = max(H(i, j, n) + theta_comp(n), 0.0) (12) 

 

Where: 

theta_average(n) : From (7), section 3.1.4. The average chroma phase offset derived  

for the given frame ‘n’ 

theta_filt(n) : The filtered value of theta_average(n) over successive ‘n+1’ frames  

{0, …, n} within the given shot, using a first order low pass IIR filter 

ALPHA  : The parameter of the first order IIR used; chosen between [0.05, 0.5]  

K_scale  : A programmable parameter used to scale the filtered value, depending upon the 

desired sensitivity of the correction process; chosen between [1.5, 6.0].  
theta_comp(n) : The compensation angle for the Hue component, to correct for the chroma phase  

in frame ‘n’ 

Hadjusted(i, j, n) : The corrected Hue pixel at (i, j) for frame ‘n’, after applying theta_comp(n) 
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Each corrected {Hadjusted, S, V} pixel is then converted back to {R, G, B} for subsequent transcoding or 

display. 

 

3.1.6. Content correction example 

So continuing with the affected video stream example represented by the single frame in  

Figure 4(a), and its subsequent chroma phase analysis as depicted in Figure 5, the steps described in sections 

3.1.1 to 3.1.4. are carried out to determine the theta_average for each frame. This parameter is then 

iteratively used to generate the Hue correction, as described using (10) to (12) in Section 3.1.5, using a 

sequence of frames from which the ROI is extracted in terms of a facial shot. 

Thus we note that while a s ingle frame has been shown for convenience in Figure 7, the extracted 

ROI is actually a sequence of sub-regions that comprise an extracted facial shot. As described in Section 

3.1.5, this leads to the generation of theta_filt, the filtered value of theta_average over successive frames 

with the given shot; which in turn is used to generate theta_comp, the compensation angle for the Hue 

component, to correct for the chroma phase. The correction settings used to generate this result were: 

ALPHA=0.5 and K_scale=1.5. 

 

 

 
 

Figure 7. Chroma phase offset correction 

 

 

4. RESULTS AND DISCUSSION 

This section captures and discusses some of the results obtained upon analyzing a variety of motion 

video content. As a part of the algorithm verification process, around 3000 video streams were analyzed for 

chroma phase issues. Out of all these, only the ones in which significant chroma phase issues were detected 

have been tabulated in Table 1: 

The results obtained demonstrate the viability of the overall chroma offset detectio n and correction 

method in the absence of a known-reference [25], in terms of extracting a reliable ROI based upon ML based 

facial shot extraction, in order to then be in a position to detect genuine cases of chroma phas e offset within 
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the given content, using known skin-tone properties. To reiterate, this method works when human subjects 

are present in the content; as the human flesh tone provides for a reliable self-reference, more so when it is a 

sequence of spatially correlated flesh tone regions, (as in a facial shot). Once a reliable ROI has been 

extracted, then chroma phase analysis can be done to discern for phase anomalies, which can be used  

subsequently for hue correction. This has been demonstrated by the example shown in Figure 7 and 

summarized by the system flow chart in Figure 3. 

 

 

Table 1. Summary of results over a variety of video media content  

Stream Header 
Average 

chroma_phase_metric 
(over all ROI shots) 

Maximum 
chroma_phase_metric 

(over all ROI shots) 

EMIVideo-0094636667652 0.4438 0.7399 

EMIVideo-0094636513454 0.2543 0.5695 
BPR01625701-dog 0.1193 0.7009 
B000341033S0_1* 0.0523 0.7402 
B000341033S0_2* 0.0595 0.7447 

HD_D4605111 0.3076 0.7557 
AK44ASFMeer 0.1919 0.6814 
SDPS8U_See1 0.6327 0.8602 

IMX50-video-dropouts-and-block-errors 0.1062 0.7283 
Interlaced 0.4904 0.4904 
VTS_02_1 0.2212 0.7423 
RCOW_FINAL_HD_DELIVERY.1 0.0650 0.7470 

2_audio_induction_hissyscratchB 0.4593 0.7408 
FASE_00000 (a single shot comprising of 144 frames, with a representative 
frame shown in Figure 4(a) 

0.4532 0.4532 

FASE_00006 (a single shot comprising of 200 frames, with a representative 

frame shown in Figure 4(b) 

-0.3920 -0.3920 

*These streams have animation content and hence technically, should not be flagged as they are subject to the animator’s artistic intent. 
However, animation detection [26], [27] is a separate component of the overall flow and will be dealt with in the future. 

 

 

5. CONCLUSION 

In the realm of no-reference video quality analysis, using flesh tone detection to discern and correct 

for chroma phase offset anomalies has been shown to be a viable option during the course of this work, 

provided we have a robust flesh tone detector to generate reference information. The latter has been achieved 

using a ML based face tracker, which provides a spatio-temporal correlation within the facial regions within 

successive frames of the extracted facial shot; i.e. the overall Region of Interest, within which the color phase 

analysis using (3) is to be performed. This method has proven to be robust, as seen by its viability across a 

variety of content. However, there is scope for further work. In particular, the current methodology applies 

only if human faces are present in at least one shot, if not more. So other modes of extracting a self-reference, 

or additionally, a known-reference (specific pattern or template), within the content can also be explored . 

Furthermore, animation content is subject to the creativity of the animator or colorist; wherein the normal 

rules of flesh-tone gamut need not necessarily apply. Therefore for future enhancements to this work, 

animation content has to be flagged during the ML based pre-processing step, and then dealt with separately, 

(for instance, using known-reference techniques). 
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