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 Community detection is a field of interest in social networks. Many new 

methods have emerged for community detection solution, however the 

modularity optimization method is the most prominent. Community detection 

based on modularity optimization (CDMO) has fundamental problems in the 

form of solution degeneration and resolution limits. From the two problems, 

the resolution limit is more concerned because it affects the resulting 

community's quality. During the last decade, many studies have attempted to 

address the problems, but so far they have been carried out partially, no one 

has thoroughly discussed efforts to improve the quality of CDMO. In this 

paper, we aim to investigate works in handling resolution limit and improving 

the quality of CDMO, along with their strengths and limitations. We derive 

seven categories of strategies to improve the quality of CDMO, namely 

developing multi-resolution modularity, creating local modularity, creating 

modularity density, creating new metrics as an alternative to modularity, 
improving the louvain algorithm, involving node attributes in determining 

community detection, and extending the single objective function into a multi-

objective function. By considering network size, network type, and 

community distribution, we can choose the appropriate strategy in improving 

the quality of community detection. 
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1. INTRODUCTION 

Recently, the realm of social networking has developed and attracted the attention of various fields of 

research [1]. Community detection becomes the initial task and main task of social network analysis because 

of the vital role of community in social network analysis. Research to develop community detection methods 

and algorithms is growing rapidly, in line with the needs of applications that are increasingly broad and 

complex in the real world. In addition to social networks, several examples of the application of community 

detection are in various fields, including criminal [2], public health [3], politics [4], library [5], and prediction 

[6], [7]. Many interdisciplinary researchers have attempted to solve this problem. However, there is no adequate 

solution [8]–[10]. 

Several researchers proposed a classification of community detection methods. Fortunato and Hric [11] 

classified the community detection method into four methods, namely spectral methods, statistical inference-

based methods, optimization-based methods, and dynamic-based methods. George et al. [10] added Fartunato 

classification into nine methods namely Bayesian and regularized likelihood, diffusion, spin-dinamics, 
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synchronization, greedy, and devide-conquer. Mittal and Bhatia [12] classified into four methods, namely 

modularity algorithm, information theoritic agorithm, network algorithm, and hierarchical algorithm.  

Dao et al. [13] classified into five method, namely edge removal, modularity optimization, spectral methods, 

and statistical inference. In the literature, from these various classifications, although they are classified as 

traditional methods, until now the modularity optimization method is the most popular [8], [11], [14]–[16].  

Althought Community detection based on modularity optimization (CDMO) is prominent, it has 

several drawbacks. The first drawback is the fundamental problem in CDMO, namely the tendency to choose 

small communities over large networks, while others prefer large communities over small ones [17]. On the 

CDMO problem, has two cases. The first case is called solution degeneration, where a large number of community 

structures may be found from a network whose topological structures are very different from one another but 

produce a value of modularity that is very close to the optimal [18], [19]. The second case is called the resolution 

limit, which is a limitation in finding communities that are smaller than a certain scale [20].  

Moreover, the problem of community detection arises along with the community's own ill-definition. 

Although there is already a qualitative definition that is a community is a node group that has a closer 

relationship than with other groups, but the definition of group boundaries can be called community does not 

yet exist. Therefore, quantitatively it is still an open debate and issue so that it allows many developing methods 

to measure community detection quality [1], [2].  

The main issue of CDMO is finding a network partition that maximizes modularity. Modularity 

optimization is non-polinomial (NP)-hard problem [21] so it is difficult to directly find the optimal solution. 

Various methods have been developed to overcome the weaknesses of CDMO, but so far the discussion is still 

partial, it has not been discussed more thoroughly. Therefore, this paper focuses on discussing various method 

for improving the quality of CDMO in relation to the modularity and objective functions used. 

The rest of this paper is organized as follows. Section 2 will describe the related work on metrics 

quality of community detection and community detection based on modularity, the detail of strategy to improve 

the quality of CDMO are described in section 3, section 4 presents analysis of strategy to improve the quality 

of CDMO. Finally, the conclusion is given in section 5. 

 

 

2. RELATED WORK 

2.1.  Metrics quality of community detection 

The ill-definition about community as mentioned above, creates complexity in analyzing the quality 

of the resulting community. The complexity of analyzing community quality is marked by the multitude of metrics 

for measuring the proposed community's quality. Communty analysis according to Chakraborty et al. [19] consists 

of two sequential phases: first is community detection, i.e., the process of finding a network community 

structure using a specific community detection algorithm, and second is community evaluation, i.e, the process 

of evaluating the feasibility of the structure of community detection results.  

Evaluation metrics are used as an indication of community quality, then the quality of the community 

detection algorithm is estimated based on the output value of the metric. In addition, based on data availability, 

the analysis of community quality is classified into two categories, first, analysis of a community with ground 

truth. The quality of the community is compared to its ground truth; the second is an analysis that does not 

have ground truth [22]. Several of the community detection metrics are:  

- Modularity [23] for measuring the strength of the community structure, where a good community has a 

larger number of internal edges and a smaller number of inter-community edges than expected when 

compared to a random graph 

- Conductance [24] for measure the ratio to the total amount community edges c that are connected to other 

external communities by the total number of edges connected to the community c 

- Separability [25] for measures the ratio of the number of internal edges to the total number of external edges 

in a community 

- Density [25] for measures the density of the internal edges of the community, the ratio of the number of 

internal edges to the total maximum possible sides on the network. 

- Transitivity/clustering coefficient [26] for measure the tendency of a group of nodes to form a community 

- Surprise [27] for calculates the probability (minus the logarithms) of observing the side in the community 

against the possible population 

- Significance [19] for comparing each community density with the average density 

- Permanence [19] for measures the probability that a vertex remains in the community to which it is assigned 

and the extent to which it is "drawn" by neighboring communities 

Meanwhile, several community evaluation metrics, including: 

- Purity [28] for measure the number of matches between the detected community and its ground-truth 

- F-measure [29] for measure the ratio to the total amount community edges c that are connected to other 

external communities by the total number of edges connected to the community c 
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- Adjusted rand index [30] for measures the ratio of the number of internal edges to the total number of 

external edges in a community 

- Normalized mutual information (NMI) [31] for measures the probability that a vertex remains in the 

community to which it is assigned and the extent to which it is "drawn" by neighboring communities. 

Although many metrics have been proposed, none is the best and universally accepted metric  

[32]–[34]. Community detection can be formulated as an optimization problem, where the objective function 

assigned is to maximize the number of links in each network partition [33]. There are several evaluation metrics 

that can measure the quality of community outcomes as well as be used as an objective function, such as 

modularity, NMI, and purity. However, modularity is the most widely used metric and objective function of 

optimization problems [13], [19], [35]. 

 

2.2.  Community detection based on modularity optimization 

A community is a group of nodes connected more strongly to each other than the rest of the network. 

A community consists of nodes that share something, such as affiliations (friends, clubs, and colleagues), 

shared interests, and shared content (books, movies, web pages, and products). In the real world, there are 

various types of communities, including non-overlapping communtiy (e.g., each worker is only in one 

department), overlapping community (e.g., each student can have several hobbies), hierarchical community 

(e.g., a network composed of body cells, which in turn form organs), and local community (e.g., someone's 

unequal friendships on Facebook) [36]. 

Newman and Girvan [37] introduced modularity as a metric of community structure strength found 

in undirected and unweight graph as well as an objective function of the proposed algorithm. The author used 

the iterative hierarchy of edges betwenes deletion method. The result is a dendogram representing the 

partitioned community. Then, the Newman and Girvan modularity metric is widely used as an objective 

function in various CDMO algorithms [38]–[45]. 

Given a simple graph G(V, E), where V is the set of vertices and E is the set of (undirected) edges. A 

community or cluster 𝐶 ⊆ 𝑉 is a subset from vertices, and clustering C={C1, C2,..., Cn} from G is a partition V 

into the clusters such that every vertex is in exactly one cluster. Modularity is defined in (1) [21]: 
 

𝑄𝑐 = ∑ ⌊
𝐿𝑐

L
− (

𝑑𝑐

2L
)

2

⌋
𝑛𝑐
𝑐=1  (1) 

 

with 𝑛𝑐 number of communities, 𝐿𝑐 is total number of edges in community 𝑐, 𝑑𝑐 total number of nodes in 

community c, and 𝐿 is total number of edges on graph. The higher the value of modularity, the stronger the 

resulting community structure. The value of modularity in the interval [-1,1]. As an illustration, the community 

structure and its modularity values are shown in Figure 1. The community structure with non-optimal 

modularity is seen in Figure 1(a)-(c), while the community structure with optimal modularity is seen in  

Figure 1(d). 
 

 

    
(a) (b) (c) (d) 

 

Figure 1. Structure communities by partition: (a) single community, (b) negative modularity,  

(c) sub optimal partition, and (d) optimal partition 
 
 

For example, the process of calculating the total score of modularity in Figure 1(a) is: 
 

𝑄 = ∑ ⌊
𝑘𝑐

𝑖𝑛

2𝑀
− (

𝑘𝑐

2𝑀
)

2

⌋2
1 = 𝑄1,2,3,4,5 + 𝑄6,7,8  

= [
14
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− (

15

2.13
)

2

] + [
10

2.13
− (

11

2.13
)

2

] = 0.44  

 

Along with the variety of network types and communities the Newman and Girvan modularity was 

expanded to fulfill this. Modifications of modularity include modularity for weighted graphs, modularity for 

directed graphs, modularity for overlapping community, similarity-based modularity, motif modularity,  



Int J Artif Intell ISSN: 2252-8938  

 

Strategies for improving the quality of community detection based on modularity optimization (Tedy Setiadi) 

1797 

max-min modularity, influenced-based modularity, diffusion-based modularity, dist-modularity [19]. All these 

variations of modularity have drawbacks regarding the resolution limit.  

 

 

3. STRATEGY TO IMPROVE THE QUALITY OF COMMUNITY DETECTION BASED ON 

MODULARITY OPTIMIZATION 

We investigate various methods developed to improve CDMO quality. We grouped them into six CDMO 

quality improvement strategies. We also describe the analysis of limitations and the appropriate types of data sets. 

 

3.1.  Developing multi-resolution modularity 

As mentioned earlier, Newman-Girvan modularity has the disadvantage of resolution limits, namely 

that it can only find community structures at a certain characteristic scale, whereas on the other hand, many 

complex networks may have community structures at multi- scales [18], [46]. Therefore, various multi-

resolution methods have been proposed, by directly adding parameter γ to the definition of modularity, 

resulting in multi-resolution modularity as in (2) [47]-[49]: 

 

𝑄𝑔(𝛾) =
1

2𝑀
∑ (𝑘𝑐

𝑖𝑛 − 𝛾
𝑘𝑐

2

2𝑀
)𝑐  (2) 

 

Xiang et al. [50] developed a self-loop strategy in which the multi-resolution modularity equivalent 

of the parameter is derived indirectly from the Newman-Girvan modularity. One of the advantages of the self-

loop strategy is that the resulting multi-resolution modularity can be optimized with existing modularity 

optimization algorithms, thus enriching the application of the modularity optimization algorithm in community 

detection. The drawback of this multiresolution method has an intrinsic limitation in that it increases the 

parameter value, the large community may have split when the small community becomes gradually visible in 

some cases where the community even becomes a fully connected sub-graph. In other words, increased 

resolution of modularity is obtained at the expense of community stability [48]. In addition, based on the data 

set used, this strategy is only suitable for small network [51], [52], and the distribution of community size is 

not wide [48]. 

 

3.2.  Creating local modularity 

As defined, modularity is the fraction of links in the community minus the expected value in the null 

(random network) model. The null model needs attention because it affects the value of modularity. Modularity 

using the null model is called global modularity because it is assumed to be the global connectivity of the 

community on the network. However, in many real-world networks the community is only connected to a small 

number of neighboring communities. This is known as the local connectivity community on the network. Based 

on this, some researchers propose local modularity as a modification of (global) modularity by changing the 

null model components with local components, with the hope of increasing the value of modularity so that the 

quality of detection of commutas increases. Several studies in making local modularits include. 

Muff et al. [53] modified global modularity metrics to local ones for use in biological network 

detection. The modularity of each community i is calculated based on its subnet and the relationship with 

neighboring communities only. With all the links to its neighbors from the community i is 𝐿𝑖𝑁, then the sum 

modularity of all k communities is local (𝐿𝑄) obtained: 

 

𝐿𝑄 = ∑ [
𝐿𝑖

𝐿𝑖𝑁
−

(𝐿𝑖)𝑖𝑛(𝐿𝑖)𝑜𝑢𝑡

(𝐿𝑖𝑁)2 ]𝑘
𝑖=1  (3) 

 

In contrast to Q, the value of LQ is not limited to 1, but can be any value. The more local connected 

communities, the greater the LQ value. If all communities are connected to each other then the value of LQ 

will be the same as Q. The author claims local modularity detected more cohesive communities, and can 

complement each other with global modularity with higher detail. Xiang et al. [54] modify local modularity 

with a loop strategy. Local modularity is used as an objective function and self-consistency method for 

optimizing the local modularity. 

A different approach is taken by Ronhovde and Nussinov [55], they was inspired by a physics approach 

to propose the potts spin glass model for community detection. The community is represented by the state of the 

potts spin glass model, while the partition quality is represented by the associated energy system. All of these 

local modularity proposals have the disadvantage of requiring higher computational costs because they have to 

perform parameter tuning to overcome the resolution limit [56]. In addition, based on the data set used, this 

strategy yields significant results for large scale network, and large community size distributions [57].  
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3.3.  Creating modularity density 

Apart from making local modularity, an effort to improve the modularity function is to create a density 

modularity metric. First introduced by Li et al. [58], he proposed the modularity density (Qd) as average 

modularity. The author mathematically proves that the modularity density does not divide a cliq into two parts, 

the maximum modularity is equivalent to the objective function of the k-means kernel. The author formulates 

the problem of community detection to a nonlinear integer programming model with the objective function of 

maximizing (Qd). Costa [59] performed modification of density modularity Li to overcome the possible 

optimal solutions, but there are communities that have negative density modularity. In addition, Costa 

reformulates the non-linear integer model from Li into mixed integer linear programming (MILP) [60]. 

Holmström et al. [61] taked a different approach using statistics and matrix algebra in finding density 

modularity. The distribution of the modularity value is a function of the number of communities, while the 

modularity density value is obtained from the normalized frequency of the modularity value. Chen [17] proposed 

modification of density modularity by adding split penalty component. Modularity density is the result of 

modularity reduced by a split penalty. Modularity calculates a positive effect on grouping a knot together in 

terms of considering the sides that are between the nodes, while the split penalty calculates the negative effect 

on ignoring the sides that join different community members. Furthermore, Chen et al. [62] also added a variety 

of modularity density by changing the community link density. 

Botta and Genio [63] inspired by the proposed modularity maximization algorithm in [64], added new 

functionality to the proposed density of modularity by Chen. The associated algorithm for community detection 

is claimed to have quadratic computational complexity. Costa et al. [65] introduced the exact modularity 

density solution by proposing and comparing several MILP reformulations. Furthermore,  

Sato and Izunaga [66] developed a solution model with subproblem approach to column creation. 

Izunaga et al. [67] proposed density modularity as a variant of semidefinite programming, and shows 

that its relaxation problem provides an upper limit to the optimal density of modularity. They also propose a 

lower bound algorithm based on a combination of spectral heuristics and dynamic programming. However, 

although better than modularity, density modularity does not completely overcome the resolution limit. 

Modularity density is not optimally used for ring laticces network and tree structures [63].  

 

3.4.  Creating new quality metrics as a substitute for modularity 

Another strategy for overcoming resolution limits is to offer new metrics as an alternative to 

modularity. Biswas and Biswas [68] proposed a metric based on the nature of its social community formation, 

in contrast to the modularity which is developed based on the density of its connectivity. The idea is that people 

who have strong relationships (have the same personality) tend to experience unification. On the other hand, 

people who have weak relationships (different personalities) tend to experience isolation. The author proposes 

three quality metrics for this, namely average unifiablity (AVU), average isolability (AVI), and average 

unifiablity dan isobality (ANUI) which has the ability besides measuring quality as well as maintaining 

accuracy. Unifiability is a measure of the tendency for multiple clusters to become a single cluster, whereas 

isobality is a measure of a community to isolate itself from other communities. 

Shang et al. [34] proposed predictable metrics related to prediction links as an alternative to 

modularity. This is due to the definition of a weak community, with the consideration that links are more 

predictable within a community than between communities. Predictability reveals high linkage forecasts for 

communities, whereas modularity reveals high link density for communities. The author claimed that predictive 

metrics are more robust than modularity.  

Gharaghooshi et al. [56] proposed an approach based on the definition of weak community links and 

strong community links. The author proposes a new objective function, which is called strong inside, weak 

outside (SIWO) which encourages adding strong links to the community while avoiding weak links. This 

process is intended so that finding a community can avoid resolution limitations. The time complexity of this 

new method is linear in the number of edges. The author claimed to be an effective approach for various real 

and artificial data sets with large and small communities. The drawbacks of this method do not have a standard 

because it must have its alternative definition of community or objective function. This method also does not 

explain the extent to which the resolution limit can be overcome. 

 

3.5.  Improving the louvain algorithm 

Since the modularity-based algorithm was introduced by Newman, many researchers have tried to 

improve computational time and community quality. Clauset et al. [39] have been developed algorithms based 

on modularity optimization, including clauset-newman-moore (CNM) algorithm [39] with a greedy strategy 

approach in the optimization process. Blondel et al. [69] proposed the Louvain algorithm. Louvain algorithm 

has two phases, the first phase is the modularity optimization process, then the second phase is community 

aggregation. 
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In literature, Louvain's algorithm is the most robust modularity optimization algorithm, so it is often 

referred to for further research [20], [70]-[73]. Forster [70] developed the Louvain algorithm to support parallel 

computing. Gach and Hao [71] proposes Louvain+ with improvements to Louvain's second step. The 

researchers pruning the node in the Louvain's first step [45], [72]. Waltman and Van Eck [73] proposed the 

smart local moving (SML) lgorithm by modifying the Louvain's first step. Traag et al. [74] proposed the Leiden 

algorithm by modifying the Louvain's first step with a random neighbor approach. 

In addition, efforts to speed up computing time, some researchers combining the Louvain algorithm 

with the Label Propagation algorithm [8], [75], [76], and Zhu et al. [77] combining the Louvain algorithm with 

the concept of k-plex on the network. Li et al. [44] proposed an iterative greedy algorithm using the Louvain 

algorithm as the initial step. This method has good computational time and is suitable for large data sizes. The 

weakness of this method is that it only focuses on the structure of the graph, ignoring the information content 

so that it does not represent the real world [78]. 

 

3.6.  Involving node attributes in determining community detection 

Community detection problems usually only involve network structure but ignore node 

attributes/features, although the majority of real-world social networks provide additional information about 

actors such as gender, occupation, and interests. Community detection termonilogy focuses on the strength of 

the network structure, while clustering focuses on the similarity of node attributes [79]. By involving the 

attributes in the node, it is believed to be able to clarify and enrich the knowledge of the actors and provide a 

deeper understanding to the community of detection results. In other words, methods that involve network 

structures and attributes are expected to produce a more informative and qualified community [80], [81]. The 

general formula for improving the quality of community detection on a network with its node attributes is how 

to partition the network into communities in such a way that nodes in the same community are not only strongly 

connected to each other but also show a high degree of attribute homogeneity [82].  

Chunaev [80] classified the method of combining structures and attributes on a network CD with 

attribute nodes into 3, namely, combining structures and attributes at the beginning before the CD process, 

simultaneous merging, namely combining structures and attributes simultaneously with the CD process, 

merging at the end, namely first break down the structure and attributes separately, then combine the results 

obtained. The method of modifying the objective function is part of the simultaneous merging method. The 

basic idea is that the objective function of modularity is initially applied to structures only, then modified to 

become structures and attributes are used together to optimize the process. For example, research modifies 

Louvain's algorithm, in which the initial objective function is modularity which only considers structure added 

entropy which considers attribute information, then applies the Louvain algorithm simultaneously so that the 

optimal solution is obtained, namely maximizing modularity and minimizing entropy.  

Several studies have modified Louvain's objective function with add a node attribute component. 

Some researchers formulated a new objective function, as a combination of the Louvain (structure) Qs 

modularity, with the similarity attribute with the attribute modularity (Qatr) [83], [84], [85]. Other researchers 

also combined structural modularity with the entropy attribute [82], [86]. Entropy is a measure of the regularity 

of a set of information content. The more irregular, the higher the entropy. Sets that have similar elements have 

low entropy. The optimum objective function is when the maximum modularity is achieved, while the entropy 

is minimum. 

Combe et al. [81] proposed the I-louvain method with objective functions as a combination of modularity 

with inertia attributes. Inertia attributes are attributes that are not only categorical types but handle numeric types. 

Optimal objective function when maximum modularity and inertial are achieved. Singh et al. [87] proposed a new 

objective function as a combination of the Louvain-and-attribut and Louvain-or_attribut methods, which 

combines Louvain modularity with dependence on similarity attributes and considers irrelevant attributes 

(outlier). A different approach is taken in combining the structure with node attributes with mathematical 

programming [88], and with spectral clustering [89]. The drawback of this strategy is that it is difficult to 

achieve a trade-off between the similarity of node attributes and the connection density in finding communities, 

and often attributes that seem irrelevant actually reduce accuracy so it requires computation time [84]. 

Moreover, there is no generally accepted opinion on the effect of combining structures and attributes on 

whether or not it is useful, particularly on social networks linked to nodes [80]. 
 

3.7.  Extending the single objective function into a multi-objective function 

The CDMO problem has one objective function, namely maximizing modularity, called the single 

optimization objective function (SOP) [90]. SOP can be formulated by specifying a partition C*. Where Ω is 

the set of the fisible partitions, C is the community structure, and P is the size function to be optimized: 

 

𝑃: Ω → 𝑅 , and 𝑃(𝐶∗) = min
𝑐𝜖Ω

𝑃(𝐶) 



                ISSN: 2252-8938 

Int J Artif Intell, Vol. 13, No. 2, June 2024: 1794-1804 

1800 

The weakness of SOP is only optimizing one criterion, so it can cause a fundamental difference that 

different algorithms can produce different solutions even on the same network. For instance, the objective 

function in optimization has a resolution limit problem. To overcome this problem, it was extended to multi objective 

optimization (MOP). Various researchers developed MOP by determining different P1, P2, .., Pn criteria. For 

instance, Shi taked the criteria of modularity (Q), cut-function, description length [90]. Huq et al. [91] compared the 

results of 2 MOPs with the K means kernel criteria, modularity with MOP with the criteria of community 

fitness, community score, and modularity. Pizzuti and Socievole [92] used MOP in the combined structure and 

node attributes where the criteria for the structure are modularity, community score, conductance, while 

attribute similarity is jaccard, euclidean-based similarity, Chen et al. [93] combined modularity density and 

NMI simultaneously with a local search approach. 

The limitation of MOP is that because all data elements need to be explored to represent candidate 

solutions, outlier data often appears and with improper handling causes interference. Most methods with this 

strategy can find a better community structure. However, this strategy has high computational complexity and 

is not suitable for large-scale complex networks [44], [94]. 

 

 

4. ANALYSIS OF STRATEGIES TO IMPROVE THE QUALITY OF CDMO 

From the description in section 3, we derive two approaches to six strategies to improve the quality 

of CDMO (see Figure 2). The first approach is to improve modularity metrics related to the resolution limit 

issue. This approach has four strategies, namely i) creating multi-resolution, ii) creating local-modularity, iii) 

creating modularity density, and iv) creating a new metrics quality. These four strategies are generally used 

independently and are not suitable to be combined because they have opposite properties. For example, making 

multiresolution suitable for small data sizes, as opposed to local modularity suitable for large data sizes. 
 

 

 
 

Figure 2. Strategies to improve the quality of CDMO 
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In the second approach, there are issues related to efforts to improve the objective function. This 

approach has three strategies that can be used, namely i) improving the Louvain algorithm, ii) involving node 

attributes, and iii) increasing the single objective to multi-objective. These three strategies are not mutually 

exclusive but can be combined so that a hybrid method emerges with the aim of producing better quality 

modularity or reducing computational time. As an example, Citraro and Rossetti [95] proposed the Eva 

algorithm as a hybrid strategy for applying the Louvain algorithm to attribute graphs. The author used the 

purity metric as a measure of the homogeneity of information. Li et al. [96] proposed an evolutionary algorithm 

as a combination of multi-objective development strategies on network attributes.  

 

 

5. CONCLUSION 

Based on the description of the strengths and limitations of the six strategies, conclusions can be drawn 

that there is no always best approach and strategy, because it depends on the size of the data, the size 

distribution of the community and the type of data. In the approach to increasing the modularity metric, it is 

found that the larger the network size and the size of the community distribution, the best ranking strategies 

are i) local-modularity, ii) modularity density, and iii) multiresolution. The development of modularity density 

will be better as long as the network type is not tree or not laticces. Research to create new community detection 

quality metrics is needed to implement community detection in other studies involving the community. In the 

approach of increasing the objective function, it is found that the larger the network size, the best ranking is i) 

modifying the Louvain algorithm, ii) involving an attribute graph, and iii) multi objective function. Multi-

objective development strategy to be suitable for data that does not contain outliers. 
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