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 Demand forecasting aims to optimize the production planning of industrial 

companies by ensuring that the production planning meets the future 

demand. Demand forecasting utilizes historical data as an input to predict 

future trends of the demand. In this paper, a new approach for developing an 

intelligent demand forecasting model using a hybrid of metaheuristic 

optimization and deep learning algorithm is presented. Firefly algorithm-

based gated recurrent units (FA-GRU) is used to tackle the production 

forecasting problem. The proposed model has been evaluated and compared 

with the standard gated recurrent unit (GRU) and standard long short-term 

memory model (LSTM) using historical data of 36 months of concrete block 

manufacturing at dler company in Iraq. The prediction accuracy of the three 

models is evaluated using the root mean square error (RMSE), the mean 

absolute percentage error (MAPE) and the statistical coefficient of 

determination (R2) indicators. The outcomes of the study show that the 

proposed FA-GRU gives better forecasting results compared to the standard 

GRU and standard LSTM. 
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1. INTRODUCTION 

Demand forecasting is an important research area for production companies to ensure that the 

production planning meets the future demand. Due to demand uncertainty, production companies usually 

suffer from many problems such as excessive production and out-of-stock (stockouts) because of an over-

anticipation of the demand and an under-anticipation of the demand respectively [1], [2]. Therefore, it is 

necessary to have accurate demand forecasting to have a sustainable competitive advantage in the industrial 

market. For this purpose, the historical data set of sales is used as an input to develop a prediction model to 

predict future trends of demand [3]. Many methods and techniques have been developed in the area of 

demand forecasting. In terms of traditional forecasting methods, autoregressive integrated moving average 

(ARIMA) is considered the most popular time series model due to its simplicity and flexibility. However, the 

ARIMA is limited to a linear time series data set. To overcome this problem, neural networks (NNs) 

including machine learning (ML) and deep learning (DL) based models have gained more attention and have 

effectively applied to nonlinear time series forecasting. 

Bousqaoui et al. [1] presented a comparative study of four prediction models based on a real-life 

dataset taken from a supermarket in Morocco. The models are the ARIMA, the multi-layer perceptron 

https://creativecommons.org/licenses/by-sa/4.0/
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(MLP), the long short-term memory (LSTM) and the convolutional neural network (CNN). The finding was 

that the CNN model is more successful than the other three models. In the same way, Martínez Cervera et al. 

[4] compared four different forecasting models to estimate the different alternatives, trends and needs of the 

student population in Colombia. The models are k-means, k-closest neighbor, neural network, and naïve 

Bayes. Experimental results demonstrate that the K-closest neighbor method performs better than other 

models. Adnan et al. [5] examined three prediction models including least square support vector machine 

(LSSVM), classification and regression trees (CART) and group method and data handling neural network 

(GMDHNN) to forecast air temperature based on monthly temperature data from Pakistan. The finding was 

indicated that the LSSVM model is more accurate in temperature forecasting than the other two models. 

Many NN models have several hyperparameters that need to adjust successfully to improve the level 

of accuracy of the forecasting model. Therefore, meta-heuristic algorithms are often utilized to find the best 

value of these hyperparameters. For example, Fei et al. [6] proposed particle swarm optimization-based 

support vector machine (PSO-SVM) to forecast grain production in India. The experimental results 

demonstrated that the PSO-SVM model provides better accuracy in comparison with the other two models 

named grey model (GM) and artificial neural network (ANN). Yasin et al. [7] developed a hybrid prediction 

technique based on grey wolf optimizer combined with least square support vector machine (GWO-LSSVM) 

for grid expansion and power system operation. Temperature, peak load demand, humidity and wind speed 

are four measured were used as input to the model. GWO was used to improve the accuracy of the proposed 

prediction model. Noh et al. [8] introduced a hybrid forecasting model that combines a genetic algorithm 

(GA) with gated recurrent unit (GRU). The GA-GRU model is compared with ARIMA, recurrent neural 

network (RNN), the standard LSTM, the standard GRU, and a hybrid GA-LSTM using a published Brazilian 

retailer sales dataset. The results show that the GA-GRU model dominates the other forecasting models. 

This paper presents an intelligent demand forecasting model based on a hybrid of firefly algorithm 

and gated recurrent units (FA-GRU). The proposed model has been evaluated using historical data of 36 

months of concrete block manufacturing at Dler Company in Iraq. This paper is organized: section 2 

introduces the theoretical background of the proposed intelligent demand forecasting model. In section 3, 

simulation experiments were conducted to evaluate the performance of the proposed model using real 

industrial data. Finally, conclusions are summarized in section 4. 

 

 

2. RESEARCH METHOD 

 This section presents the theoretical framework of the proposed prediction model. The proposed 

model for predcting the concrete block production is constracted uing gated recurrent unit deep learning 

method. Optimization method based on firefly algorithm is used to find the optimal hayperparametes of the 

proposed model which provide higer prediction accuracy. 

 

2.1.  Gated recurrent units (GRU) 

 GRU cell was presented by J. Noh et al. [9]. The GRU cell is simplified structure of LSTM cell and 

shows equally good learning performance [10]. Due to this simplification, the computational load has been 

significantly reduced which is led to an increase in the popularity of this algorithm. The structure of GRU 

presents in Figure 1 [11]. 

 

 

 
 

Figure 1. GRU structure 
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The main simplifications made are listed [12]: 

− The state vectors of the LSTM are combined into a single vector ℎ(𝑡) in the GRU. 

− The entrance gate and the forget gate are controlled by a single gate controller. If the output of the gate 

controller is equal to 1, this refer that the forget gate is closed and the entrance gate is open. If the 

output is 0, it's the opposite state. So that, when memory needs to be stored, its storage location is 

deleted first. 

− No output gate; the full state vector always comes out in step. However, which part of the previous state 

enters the main layer is controlled by a new gate controller. 

As in a typical recurrent neural network, each GRU cell takes as input the input vector 𝑥𝑡 and the 

vector 𝑐𝑡−1 containing the historical information. The outputs 𝑦𝑡 and the vectors 𝑐𝑡 are forwarded to the next 

cell. Unlike a typical iterative neural network, there is a function that decides whether to update the 

information from the 𝑐𝑡−1 vector when calculating the output of 𝑐𝑡. In typical iterative neural networks, the 

𝑐𝑡  vector is updated without any condition, and this increases the number of products, resulting in the 

disappearing gradient problem. In contrast to the LSTM [13], [14], the vectors 𝐶𝑡 and ℎ𝑡  in GRU are 

combined in one vector as shown in (1): 

 

ℎ𝑡 = 𝐶𝑡 (1) 

 

First, the new "candidate" value of vector ℎ𝑡 is calculated using the input vector (𝑥𝑡) and the old information 

vector (ℎ𝑡−1) as shown in (2):  

 

ℎ̃𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑐 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐) (2) 

 

The reason why it is a candidate value is that the calculated value is not immediately synchronized as the new 

information vector, as in feedforward neural networks. Instead, this candidate value is sent to a gate function, 

which decides whether to update the information vector with the candidate value [15]. At this stage, the tanh 

activation function is used as given in (3) 

 

𝑔𝑖 = 𝜎(𝑊𝑖 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) (3) 

 

The "gate" function in (3) is the core idea behind the GRU. This gate returns a result between 0 and 1 and 

decides how much of the candidate ℎ𝑡  vector will be used in calculating the new ℎ𝑡 vector. In other words, it 

decides how much the vector, which stores the information learned from the past, will be replaced with the 

information learned from the new data. Thus, ensures that the vector that stores the historical information in 

data containing long-term relationships is kept correctly and transferred forward. The Sigmoid activation 

function, which returns a value between 0 and 1, is used as the activation function [16]. 

 

ℎ𝑡 = 𝑔𝑖 ∗ ℎ̃𝑡 + (1 − 𝑔𝑖) ∗ ℎ 𝑡−1  (4) 

 

Finally, to create the new information vector, the value obtained from the gate function is multiplied by the 

candidate ℎ𝑡 vector and summed with (1-Gate value) as shown in (4). Since the candidate value product and 

(1-Gate value) are added together, very large and very small numbers that may arise due to multiplication are 

prevented and the problem of disappearing gradient does not arise. At the same time, it is ensured that only 

useful information is kept in the ℎ𝑡 [17]. 

 

2.2.  Firefly algorithm 

Firefly algorithm (FA) is a swarm-based metaheuristic optimization technique proposed by Yang 

[18]. FA simulates the social behavior of fireflies to attract mating partners and/or to attract potential prey. 

The flashing light in the fireflies can be formulated as an algorithm for a function or a problem to be 

optimized. Yang [18] considered three assumptions for the FA which are:  

− All fireflies are assumed as unisex, this means that each firefly can be attracted to other fireflies 

regardless of their gender. 

− The attractiveness of each firefly is proportional to its brightness. For example, for any two flashing 

fireflies, the firefly with less bright will attract towards the brighter firefly. However, this relationship 

between attractiveness and brightness will be decreased as the distance between the two fireflies is 

increased. In this situation, firefly will move randomly. 

− The brightness of a firefly is computed from the objective function.  
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The brightness of a firefly is computed from the objective function, and the attractiveness of each firefly is 

proportional to its brightness. However, the attractiveness 𝛽 varies with the distance 𝑟𝑖𝑗 between the firefly 𝑖 

and the firefly 𝑗 based on (5): 

 

𝛽𝑖𝑗 = 𝛽𝑜𝑒−𝛾𝑟𝑖𝑗
2

 (5) 

 

The distance 𝑟𝑖𝑗 between the firefly 𝑖 and the firefly 𝑗 is calculated based on: 

 

𝑟𝑖𝑗 = √∑ (𝑥𝑖,𝑘 − 𝑥𝑗,𝑘)2𝐷
𝑘=1  (6) 

 

where 

𝛽𝑖𝑗 Attractiveness between the firefly 𝑖 and the firefly 𝑗 

𝛽𝑜 Attractiveness at sources (i.e. 𝑟 = 0) 

𝛾 Light absorption coefficient 

𝐷 Number of decision variables in the optimization problem 

The new position of the firefly 𝑖 which is attracted to firefly 𝑗 because firefly 𝑖 has lower brightness 

than firefly 𝑗 is calculated by: 

 

𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) + 𝛽𝑜𝑒−𝛾𝑟𝑖𝑗
2

(𝑥𝑖(𝑡) − 𝑥𝑗(𝑡)) + 𝛼𝑠 (7) 

 

where 

𝑥𝑖(𝑡 + 1) The new position of the firefly 𝑖 
𝑥𝑖(𝑡) The current position of the firefly 𝑖 
𝑥𝑗(𝑡) The current position of the firefly 𝑗 

𝛼 Randomization parameter ∈ [0,1] 
𝑠 Scaling factor based on the search space (i.e. upper and lower bound) 

 

The steps of FA algorithm are shown in Figure 2. 

 

 

 
 

Figure 2. Flow chart of FA 
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2.3.  Hyperparameter optimization 

The parameters used while designing machine learning models are divided into two groups: 

parameters that can be obtained directly from the data during the training process and parameters that are 

predefined by the designer. These are the model parameter and the hyperparameter [19]. Model parameters 

are generally predicted from data. The designer is not expected to adjust these parameters. It is saved as part 

of the learned model. Support vectors in an SVM, weights in an ANN, coefficients in linear regression or 

logistic regression are some of the examples of model parameters. Unlike model parameters, 

hyperparameters are not estimated from the data and need to be adjusted by the designer. 

Some of the hyperparameters take an infinite number of values. However, using prior knowledge 

about the problem helps to define a range for these values. By selecting certain main points from these 

specified ranges, value lists are created for hyperparameters. The architecture, arrangement, and optimization 

of a neural network are highly dependent on hyperparameter selection. Hyperparameter optimization (HPO) 

is an important component of AutoML in searching for optimal hyperparameters in the neural network 

structure and training process of the model. Automatic HPO facilitates fair comparisons [20]. The HPO 

problem has a long history dating back to the 1990 [21]. In addition, it was determined that different 

hyperparameter configurations were the best results for different datasets in the early stages. The number of 

hidden layers and the activation function, such as particle size, optimization algorithms, stochastic gradient 

reduction (SGD), learning rate (LR) can play an important role in determining the efficiency and accuracy of 

the model while it is being trained [22]. HPO can be seen as the final step in model design and the first step 

in training the neural network. Considering the effect of hyperparameters on accuracy and speed during 

training, the training process should be carefully experienced before starting [23]. The HPO process 

automatically optimizes the hyperparameters of the machine learning model to get humans out of the loop of 

the machine learning system. In this paper, the number of hidden units, batch size, learning rate, dropout rate 

and the epoch are five different hyperparameters in the GRU deep learning method that will be optimized 

using FA. The hybrid of GRU is presented in Figure 3.  

 

 

 
 

Figure 3. FA-GRU structure 

 

 

3. SIMULATION EXPERIMENT 

 To evaluate the proposed demand forecasting model, historical data of 36 months of concrete block 

manufacturing at Dler Company in Iraq is used. Figure 4 presents the time series of the historical data of the 

sales of the company. In Figure 4, the x-axis refers to the months and the y-axis refers to the quantity in 103.  
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Figure 4. Historical data of the concrete block production  

 

 

FA was applied to find the optimal value of the hyperparameters of the GUR based on the mean 

absolute percentage error (MAPE) as the objective function for the FA optimization algorithm. Table 1 

provides the values of the parameters of the FA that were used in the simulation. These values are taken as 

recommended by [18]. The range and default values of each GRU hyperparameter are shown in Table 2. The 

optimal values of the hyperparameter obtained by the FA method are shown in Table 3. The default values of 

hyperparameters shown in Table 1 are used for training the standard GRU method while optimized values are 

used for the FA-GRU method. 

 

 

Table 1. The parameters of FA 
Parameters Value 

Population size (𝑵) 40 

Attractiveness at sources (𝜷𝒐) 1 

Light absorption coefficient (𝜸) 1 

Randomization parameter (𝜶) 0.2 

Number of iteration (𝑻) 10 

 

 

Table 2. GRU hyperparameters 
Hyperparameters Range Default value 

Hidden units 1-250 100 

Batch size 1-50 5 

Learning rate 0.0001-0.02 0.001 

Dropout 0.0-0.5 0.2 

Epoch 5-250 100 

 

 

Table 3. Optimal values of GRU hyperparameters 
Hyperparameters Optimal value 

Hidden units 145 

Batch size 10 

Learning rate 0.002 

Dropout 0.1 
Epoch 112 

 

 

Three metrics named root mean square error (RMSE) as given in (8), the MAPE as given in (9) and 

the statistical coefficient of determination (R2) indicators as given in (10) [24], [25] were used to evaluate the 

performance of the proposed FA-GUR prediction model in comparison with the standard LSTM and the 

standard GUR.  

 

𝑅𝑀𝑆𝐸 = √
∑ (𝐴𝑖−𝐹𝑖)2𝑛

𝑖=1

𝑛
 (8) 

 

𝑀𝐴𝑃𝐸 = ∑
|𝐹𝑖−𝐴𝑖|

|𝐹𝑖|

𝑛
𝑖=1 × 100% (9) 
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𝑅2 = 1 −
∑ (𝐴𝑖−𝐹𝑖)2𝑛

𝑖=1

∑ (𝐴𝑖−𝐴̅𝑖)2𝑛
𝑖=1

 (10) 

 

where 

𝑖 Counter (i.e. 1,2,3 … ) 

𝑛 Number of data 

𝐴 Actual data 

𝐹 Forecasted data 

𝐴̅ Mean of the actual data 

 

Figure 5 presents a comparison graph between the forecasted demands generated by FA-GUR and 

the real data for the testing data. The blue line represents the actual output, while the grey line is the predicted 

demand based on the proposed FA-GRU. It can be noticed that the predicted results of the testing process are 

closely similar to actual data. Comparison performance between the standard GUR, the standard LSTM and 

the proposed FA-GUR is given in Table 4. It can be observed from Table 4 that the proposed FA-GUR 

forecasted model archives higher accuracy in comparison with the standard GRU and standard LSTM models 

based on MAPE, RMSE and R2 measures indices. 

 

 

 
 

Figure 5. Comparison graph between forecasted demands generated by FA-GUR and real data  

 

 

Table 4. The performance evaluation of the forecasting models 
Method MAPE RMSE R2 

LSTM 2.340 10.211 0.934 

GRU 2.907 11.798 0.885 

FA-GRU 0.900 3.680 0.990 

 

 

The outcomes of the simulation experiments show that the proposed model decreases the MAPE 

value from 2.34 in the case of standard LSTM and 2.907 in the case of standard GRU to 0.9 for the proposed 

FA-GRU. In the same way, the proposed model decreases the RMSE value from 10.211 in the case of 

standard LSTM and 11.798 in the case of standard GRU to 3.680 for the proposed FA-GRU. Moreover, the 

value of R2 increases from 0.934 in the case of standard LSTM and 0.885 in the case of standard GRU to 

0.990 for the proposed FA-GRU. These results proved that the proposed FA-GRU model provides a more 

accurate prediction for concrete block production. 

 

 

4. CONCLUSION 

Demand forecasting plays an important role in production management since it has a direct impact 

on the profit of the company. In this paper, an intelligent demand forecasting model named GRU is proposed 

for the production forecasting problem. In the FA-GRU model, FA is used to select suitable parameters of 

GUR. The performance of the proposed prediction model was evaluated and compared with standard GRU 

and LSTM using historical data of 36 months of concrete block manufacturing at Dler Company in Iraq. It 
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was observed that the proposed FA-GRU model decreases the MAPE value from 2.34 in the case of standard 

LSTM and 2.907 in the case of standard GRU to 0.9 for the proposed FA-GRU. In the same way, the 

proposed model decreases the RMSE value from 10.211 in the case of standard LSTM and 11.798 in the case 

of standard GRU to 3.680 for the proposed FA-GRU. Moreover, the value of R2 increases from 0.934 in the 

case of standard LSTM and 0.885 in the case of standard GRU to 0.990 for the proposed FA-GRU. These 

results proved that the proposed FA-GRU model provides a more accurate prediction for concrete block 

production. 
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