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 Smart power forecasting enables energy conservation and resource planning. 

Power estimation through previous utility bills is being replaced with 

machine intelligence. In this paper, a neural network architecture for demand 

side power consumption forecasting, called SGtechNet, is proposed. The 

forecast model applies ConvLSTM-encoder-decoder algorithm designed to 

enhance the quality of spatial encodings in the input feature to make a 7-day 

forecast. A weighted average ensemble approach was used, where multiple 

models were trained but only allow each model’s contribution to the 

prediction to be weighted proportionally to their level of trust and estimated 

performance. This model is most suitable for low-powered devices with low 

processing and storage capabilities like smartphones, tablets and iPads. The 

power consumption comparison between a manually operated home and a 

smart home was investigated and the model’s performance was tested on a 

time-domain household power consumption dataset and further validated 

using a real time load profile collated from the School of Renewable Energy 

and Smart Grid Technology, Naresuan University Smart Office. An 

improved root mean square error (RMSE) of 358 kwh was achieved when 

validated with holdout validation data from the automated office. Overall 

performance error, forecast and computational time showed a significant 

improvement over published research efforts identified in a literature review. 
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1. INTRODUCTION 

Reliable forecasts  enable tracking  the loads relative to  proper balancing and  creation  of a dynamic 

energy pricing model and trading opportunities for energy users, using the knowledge of their anticipated 

power needs. Load forecasting is very useful in scheduling of devices [1], and energy trading that is 

becoming the centerpiece of a developing energy revolution. To analyze power consumption  trends and to 

characterize patterns and develop forecasts,  various statistical  and traditional methods [2], [3]  are used. 

However, modeling a complex real-world problem,  such as power forecasting, with statistical linear models 

like autoregressive model (AR), autoregressive moving average (ARMA), autoregressive integrated moving 

average (ARIMA), and seasonal autoregressive integrated moving average (SARIMA),  is often difficult. 

These types of models  cannot determine non-linear relationships in complex data, such as power 

consumption data with stochastic nature, therefore complex models, perhaps based on machine intelligence 

like neural networks,  provide the analysis leverage necessary. Statistical tools from some industrial players 

like Prophet [4]  from Facebook and Uber [5]  that won the M4 Competition achieved some level of success 
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because of the methodology likened to the use of dropout and its invariants in approximating a well-known 

probabilistic model,  the gaussian process in neural networks. In contrast to statistical modelling, neural 

network models  formulate a model based on features learned from existing data and this dependency makes 

them  data-driven and self-adaptive, essential aspects for  time series forecasting and where Big Data is 

involved. Although neural networks are preferable  in most time series problems, they are not without their 

limitations. Problem of large number of trainable parameters sometimes makes  neural networks models 

unimplementable in low-processing devices. For an instance, AlexNet, which won the 2012 ImageNet 

challenge, has about 60  million trainable parameters and VGGNet has a huge 138  million  parameters. 

Although there has been continuous effort towards trainable set  size reduction and overall performance 

optimization, more efforts are still needed. For instance, SqueezeNet was able to reduce its trainable 

parameters to 1.2  million while achieving a reasonable performance. These model size reduction efforts are 

important because real-world problems, including power consumption forecasting,  requires real-time and  

on-device processing.  It is not enough to have an accurate prediction model without ability to operate on 

resource-constrained low-power edge device without latency problem. Experimentally illustrated facts have 

shown that the model size affects its inference time [6], so the smaller the model size the faster the 

computational speed. 

More recently, neural network methods have become very popular in time series forecasting due to 

the high performance achieved. Implementations in the form of deep learning algorithms have also become a 

turning point for both classification and regression tasks which, hitherto, have been difficult even on 

computers with excellent performance. Applying neural networks solution usually require training of large 

amounts of data to realize an appropriate machine learning model that can effectively be used in making 

projections. Given this, the model size obtained is normally big, requiring lengthy processing time. 

Therefore, a model compression technique is necessary to reduce the size and to expedite  the computational 

process. Importantly, learning the arbitrary complex mapping from inputs to outputs has become the focus of 

research from which significant performance improvements have been achieved. However, a huge gap still 

exists between the methods of deployment and the implementation environment. Some of these gaps include 

a means to: capture the dominant factors in the data that need to be learned, as well as reducing the size of the 

model, increasing its inference time, and the selection of the model’s parameters. These are the major areas  

that the proposed forecast model, discussed in this paper, aims to optimize.  
Complex models based on deep learning,  such as SGtechNet proposed in this paper, stand a better 

chance of addressing most of the noted difficulties of a complex real-world problem like power forecasting. 

It is intended that this model will be implemented in a low-powered-low-memory on-device mobile system, 

enabling smartphones to be used for demand-side energy management and control. It has been observed that 

the availability of high-speed graphics processing units (GPUs) in labs gives greater performance for models 

with larger trainable parameters, but these models are unusable in many real-world applications especially 

when implemented on  resource-constrained devices. Achieving a lightweight model with  a very high 

confidence in the predictions, was a major objective of our work. Based on this, an ensemble method together 

with advanced feature representation was used in combination with other improvement methods such as the  

layer compression technique to leverage improved forecast results. Many methods have yielded good model 

performance results but, in our work, we are more concerned on the scalable methods  capable of optimizing 

the model training for quick convergence. aggregated deeep belief networks (DBNs) outputs using the 

support vector machine (SVM) algorithm, reported in [7], outperformed benchmark methods such as support 

vector regression (SVR), feedforward neural networks (FFNN), DBN and ensemble FFNN. The  model 

compression algorithm implemented  in the current work addresses  the challenges of cost, power, heat and 

other related issues, all of which will be elaborated in the methodology discussion. 
 

 

2. THE NETWORK ARCHITECTURE 

Our proposed architecture as illustrated in Figure 1 is centered on optimizing neural networks 

learning process and mitigating its inherent challenges while achieving state-of-the-art forecast model. A 

weighted average ensemble method using  multiple models with similar configurations,  but different initial 

random weights is proposed. Those various models were  trained on 3 different datasets including two load 

demand datasets from a household in France and the one from the smart office of SGtech, Naresuan 

University Thailand. However, combining predictions from multiple models can also add a bias that can 

make the model less sensitive to specifics in the training data, choice of training scheme and the serendipity 

of single training. It has been observed over time that ensemble methods, if not properly checked, might not 

ensure that the best-performing set of weights are used as a final model. So, our proposed method performed 

weighted average ensemble [8] as one of the ways of achieving a model ensemble in neural networks like 

voting [9] and stacking [10] and snapshot or checkpoint [11], among others, in a unique way. Here, instead of 

allowing equal contribution of all the models to the final prediction model, contributions were dependent on 
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the level of trust and estimated performance,  to ensure the performance of poorly performed models do not 

affect the overall forecast result. This method not only reduces the variance of predictions, but also reduces 

the generalization error. 

 

 

 
 

Figure 1. Proposed neural network forecast model 

 

 

Aside from  model improvement, the design for SGtechNet feature learning made it adaptable to 

different datasets including augmented power consumption dataset [12]  from an automated office in such a 

way that it detected and analyzed the atmospheric climate changes. In our development process we 

considered the weather conditions all year round. To ensure that the real-time power consumption data used 

for  both augmentation and validation of the model’s performance captures this fact,  we juxtaposed the power 

generation capacity of test environment Thailand on the load factors  based on urban and rural 

characterization discussed in [13]  to test if climate changes have any effect on the characteristics of 

household electricity consumption. Load factors, seasonal factors, and utilizations factor are some of the 

usage characteristics  relevant to  the power consumption of air conditioners, fans, refrigerators, water heaters 

and even washing machines and clothes driers. For example, especially in the case of the latter three 

domestic appliances, heating water or drying laundry may not in fact be necessary in a climate such as is 

experienced in Thailand, whereas it could be a significant use of power in cold climates. Table 1 describes 

Thailand’s 2020 power statistics showing the monthly power generation capacity and load factors. 

Juxtaposing the generation capacity with the load demand as illustrated in Figure 2, sourced from [14], 

showed that the load factor surpassed generation capacity in March and September. This indicated the need 

to ensure that the validation data for the  proposed model was tested on across the different seasons of the 

year. Also, the result of the preliminary analysis of weekday power consumption and generation/load demand 

discrepancy  shown in Figure 3,  emanating from data from the smart office that was used for the validation of 

the proposed model, showed the daily power consumption characteristics. These daily characteristics proved  

useful in determining the performance of the model.  

 

 

Table 1. Thailand power statistics 2020 [14] 

 Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. 

GENERATION 

(GWh) 
16,138 15,477 17,618 15,715 16,899 15,887 16,390 16,348 16,195 15,457 15,292 14,483 

LOAD 

FACTOR (%) 
79.1 82.0 82.7 78.7 80.2 81.0 82.0 80.7 82.8 79.5 77.4 75.1 

 

 

A description of time series  modeling  methods used by deep neural networks, for power 

consumption forecasting,  has been introduced previously, together with discussion of  the various methods 

identified in the literature. The organization of this paper includes, in section 2, related work, then the 
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experimental and development methodology in section 3. section 4 presents the experimental results and 

discussion, and the paper is summarized in the conclusion. 

 

 

 
 

Figure 2. Annual power generation against load 

 

 

 
 

Figure 3. Daily power consumption 

 

 

3. METHOD 

Modeling power consumption of a smart home is very challenging due to its stochastic nature and 

non-linear relations over time. Given the sequence by sequence nature of  the multivariate dataset used in this 

model, where an input sequence time (x = 𝑥1, 𝑥2,··· , 𝑥𝑇)  with 𝑥𝑡   ∈ Rn, and n is the variable dimension. Our 

objective was to predict the corresponding outputs (y = 𝑦1 , 𝑦 2,··· , 𝑦ℎ)  at each time step. The expected result 

of this type of sequential modeling network is to obtain a nonlinear mapping of input sequence (x)  to the 

prediction sequence (y) through optimization from the current state as : 

 

(𝑦1, 𝑦2,··· , 𝑦ℎ) =
ℎ

2.𝑚
 (𝑥1, 𝑥2, ,··· , 𝑥𝑇) (1) 

 

Also, considering the neural network and its weights, the distinct forecast output gives : 

 

𝑦𝑖 = 𝑓 ∑ 𝓌𝑖
𝑛
𝑖=1 𝑥1𝑖 + 𝑏𝑖 (2) 

 

where 𝑥𝑖 is the input to the neuron, 𝑤𝑖  is the weight of the network, 𝑏𝑖 is the bias in the network, 𝑓() is the 

nonlinear function, while 𝑦𝑖  is the output . Therefore, our objective is to develop a network architecture 

capable of optimizing the mapping process. The development process started with the framing of the type of 
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prediction we are interested in, considering the available datasets, and proceeded to how the network could 

be trained and validated and finally ended with the performance evaluation. 

However, during the data preprocessing stage, we noticed non-stationarity and seasonality  trends 

due to the spatiotemporal factors contained in  the power consumption datasets. This prompted the decision to 

apply a different approach to modeling power consumption behavior for reliable forecasting. Statistical 

methods and neural network combinations [15]–[18] have been applied to regression problems of this nature 

with good results. Ordinarily, a stochastic method approach would have been the easiest to apply, particularly 

for power consumption forecasting, if not for its error susceptibility and inflexibility [1], [18], [19] 

implemented different types of neural networks for time series problems. However, as we are interested in 

predicting a week ahead horizon, we started our experimentation using the previous 7  days power demand as 

the input vector 𝑥𝑖, and the next 7-steps ahead as 𝑦𝑖  in our adaptive algorithm and continued varying the 

timesteps upwardly based on the hypothesis of the more the timesteps the better the prediction. Additionally, 

power consumption dependencies such as weather, calendar  events (holidays, family social events, festival 

days and so on), other factors such as geographical locations, human comfortable temperature, 

heating/cooling technology, and type of consumers or purpose of electricity use industrial or residential, were 

included as additional lagged features to assist our model learn the data better . 

This forecast method was implemented on deep learning encoder-decoder networks. Dropout,  which 

have been a common technique in model regularization, were  used to block out a random set of unit cells 

during model training to avoid overfitting. In (3) expresses  the way in which this proposed model accepts 

multi-variant time series input variables and output 7 distinct forecasts ahead. The input parameters are the 

previously observed data at the scale time (t+y-1, t+y-2 … t). Therefore, the answer to finding the relationship 

between the input and output data) for the purpose of predicting the future data at the time (t+p) lies  in the 

nonlinear functional mapping from the past observations of the time series to the future value, calculated in 

(3) and using (4) . 

 

yt = 𝑓(yt-1,  yt-2, … . , yt-p, 𝑊) +   ԑ𝑡  (3) 

 

where w is a vector of all parameters and f is the function determined by the network structure and the 

connection weights. 

Using a simple feed-forward neural network architecture with 3-layers,  for example, the output of 

the model can be computed as: 

 

𝑦𝑖 = α0 + ∑ α𝑗
𝑞

𝑗=1
𝑔(β0j + ∑ 𝛽𝑖𝑗

𝑝

𝑖=1
 𝑦𝑡−1) + ԑ𝑡 , Ɐ (4) 

 

At the instances  𝑦𝑡−𝑖  (𝑖 = 1, 2, 3, … , 𝑝)  are the p inputs and 𝑦𝑖  is the output and  p, q are the integer 

values of the number of input nodes and hidden  nodes respectively, while   𝛼𝑗 (𝑗 = 0, 1, 2, … , 𝑞) and 𝛽𝑖𝑗(𝑖 =

0, 1, 2, … , 𝑝; 𝑗 = 0, 1, 2, . . , 𝑞) are the connection weights, and  ԑ𝑡 is the random shock, 𝛼0 and 𝛽0𝑗 are the bias 

terms. For activation of this type of model, nonlinear activation functions such as the logistic sigmoid 

function or similar, such as linear, gaussian, hyperbolic tangent and so forth  can be used. However, the 

estimation of the connection weights as a measure for minimizing the error function in this network can be 

done using the nonlinear least square method of (5) . 

 

𝐹(𝛹) = ∑ et 
2

𝑡 = ∑ (𝑦𝑡 − 𝑦̂𝑡)²𝑡  (5) 

 

In (5) applies an  optimization technique for error minimization, where 𝛹  is the space of all connection 

weights. 

 

3.1.  Dataset 

Because of power consumption correlation to previous load consumption historical data and 

consumer behavior [20], this research leveraged secondary data from [12] that was augmented with  

remote-sensing data acquired from SGtech Smart Office. This secondary data was a multivariate time series 

dataset containing 2,075,259 measurements gathered from a house located in Sceaux, France, between 

December 2006 and November 2010 (47 months), recorded  in real-time. The observations were made every 

minute and  the temporal data captured the consumption behavior across different seasons of the year and 

weather conditions. Given that  SGtechNet is interested in modeling power consumption behavior of a typical 

smart home, where all appliances are automated, we therefore validated the model performance with  

real-time  data from a smart office. Our Smart Office data were collected through a smart means where  

devices in the automated office were configured to transmit data in real-time to a smart meter to  enable 
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profiling of each individual appliance, and their power consumption,  and as well serving  the purpose of 

power-quality monitoring. Figure 4 showed the ditributions of the variables, and we later added one 

additional variable, Sub_metering_4 as shown to Figure 5, to the original 7 independent variables that 

comprised the original dataset secondary data from [12].  This represents active energy for electric vehicle 

(EV) charging and other miscellaneous energy needs that were not accounted for in the original dataset. In 

the model design, additional features like weekend and weekday as shown in Figure 3, were added because 

Total Active Power consumed changes very much for weekdays and weekends. 

Both datasets were split and  75% of each was used for model training, with the remaining 25%  used 

for validation. The variables are obviously time dependent and can easily be influenced by changes in the 

weather. However,  the unique characteristic of the weather suggests that location is an important determinant 

of a method to be applied in power forecasting. Location variation can invalidate the potency of a successful 

method when it is  applied in another location with different weather and ambient characteristics. Therefore, a 

use case scenario [13] that characterizes power demand in urban areas, and rural areas across Thailand, was 

used  for easy determination of likely energy demand  in each category and to consider their various power 

consumption behavior. By this idea, the result of this  predictions can therefore be compared with other 

predictions applicable to different locations and based on similar characterization . 

 

 

 
 

Figure 4. Plot of dataset variable distributions 
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Figure 5. Individual distribution of the attributes 

 

 

3.1.1. Date pre-processing 

This public dataset was cleaned, and imputation method used to fill all missing and corrupted values 

using a day-wise last observation carried forward (LOCF) technique. This simply means carrying an 

observation from the same time the previous day. In a time-series data of this nature with seasonality trend, 

other methods like linear interpolation, seasonal adjustment + linear interpolation could also be applied. 

From Figure 4, it can be noticed that voltage seems to have a gaussian distribution where as rest of 

the data seems skewed (i.e.,  non-symmetric), necessitating power transformation of the data before 

modelling. Exploratory analysis further showed that global active power expected to be predicted has 

strongest correlation with global intensity with a factor of 1. Therefore, this paper further investigates the 

extent each input variable affects the outcome of the prediction result of the global active power . 

 

3.2.  Model configuration 

The architecture of the network has 7 input dimensions  with 1 output layer, 3 convolutional and 

hidden layers each. This architecture  consists of combination of convolutional neural network (CNN) and 

long sort-term memory (LSTM) deep networks. While the input transformations and feature representation  

take place in the convolutional layers, the resulting output is convolved and read into fully connected LSTM 

unit. Since the input data is a 1-D sequence, it was easy for the interpretation over the number of time steps. 

The LSTM has 3 hidden layers with 4 gates that handles updates and memory functions of the network. As 

the gates receives both the input output from the last convolutional layer obtained at previous time step 

(ℎ𝑡−1) and the related current time (𝑥 𝑡) the  forget gate takes 𝑥𝑡 and ℎ𝑡−1 as input to determine the 

information to be retained in cell state (Ct-1) using sigmoid layer. 𝑐𝑡 and 𝑐𝑡−1 denotes cell states at timesteps t 

and t  −1 respectively. The value of Ct is therefore determined by the input gate  𝑖𝑡 using  𝑥𝑡  and ℎ𝑡−1. 

However, the  function of the output gate is to regulate the output of LSTM cell based on 𝑐𝑡 using both 

sigmoid layer and tanh layer. 

 

3.2.1. Network training 

The network is trained to forecast the next consecutive 7 days a week ahead time steps using the 

learned features. Those additional features introduced during model design for the purposes of augmenting 

the data are concatenated to the vector and passed to the final prediction. Because ensemble method was used 

to ensure a better generalization, global optimization was consequently performed on the ensembled models 

to find the best coefficients for the weighted ensemble. The result of this optimization determines the 

individual contributions of the weight of each ensemble method to the final prediction. 

 

3.2.2. Prediction/evaluation 

Since various factors including atmospheric climate domain factors are some of the determinants of 

power consumption differences experience across different locations, SGtechNet analyzed those factors. 

Diverse atmospheric climate differences across locations prompted the need to validate the performance of 

this model using multivariate datasets collated from different locations France and Thailand precisely. 

Basically, to determine the effect and influence of climatic factors relative to performance for proper 

comparison with other forecasting methods. Therefore, series of experiments is conducted at different 

timesteps with the same model configuration to increase the confidence in the prediction and validity for 

future studies. To ascertain the effectiveness of this weighted average ensemble method against the backdrop 
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of the limitation of poor performance resulting from allowing equal contributions from ensemble members to 

the final prediction model especially when some of the models are bad. And mitigate against the drawback of 

lengthy preference ordering calculation of individual ensemble members which often results to higher 

computational complexity in some ensemble techniques like voting [21], two predictions were considered: 

using different numbers of ensemble members in increasing levels of complexity across different timesteps 

and model averaging method. We started with 10 ensemble members whose contributions to the final 

prediction model is based on their confidence level and kept varying the numbers until we reached a 

standalone. It was discovered that there were no discrepancies in error when the number of ensemble 

members were varied. However, a significant discrepancy is reported using model averaging method where 

equal contribution from ensemble members was allowed. The prediction performance of the proposed model 

is computed based on root mean square error (RMSE) and compared against mean absolute percentage error 

(MAPE) and mean absolute error (MAE) errors see Figure 6 over averaging ensemble method and standalone 

method . These metrics are the most used  performance measures for time series analysis because the error is 

of the same unit with the predictions and their errors can range from 0 to ∞.  Figure 7 shows the validation 

loss across different timesteps (7, 14, 21 and 28). Walk-forward validation scheme was implemented, where 

the model made 1 week prediction, then utilized the actual data for the week or 2 weeks as a basis for the 

predicting the subsequent week. 
 

 

 
 

Figure 6. Power consumption across day and time 
 

 

 
 

Figure 7. Validation loss across different timesteps 

3.3.  Encoder-decoder-network 
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We considered advanced feature representation  methods, such as encoder-decoder,  to preserve the 

hidden abstractions and invariant structures in the time series input. These have been previously applied in 

both reinforcement [22], supervised [23]  and unsupervised learning. This unsupervised neural network 

method is designed for  the adaptive learning of the long-term dependency and hidden correlation features of 

multivariate spatiotemporal data and was trained to reconstruct its own input in each layer as its output  which 

is used as the inputs of the successive layer. In this paper, an encoder that extracts useful representative 

features from the time series input data was trained in such a way that the decoder could conveniently 

reconstruct those features from the encoded space. Specifically, the output of the convolutional layers is 

concatenated by Conv2D followed by LSTM layers, as achieved in [5], [24]  to capture all the inherent 

spatiotemporal  correlations  in the time series input data. This proposed ConvLSTM encoder-decoder 

architecture has 2  sub-models: one for reading the input sequence and encoding (i.e., mapping the  

variable-length source sequence) this sequence into a fixed length vector, while the second part decodes the 

fixed-length vector and outputs the predicted sequence (i .e., mapping the vector representation back to a 

variable length target sequence). This output of the decoder represents the learned feature. Thereafter, a dense 

layer is used as the output for the network, and it uses the same weights by wrapping the dense layer in a time 

distributed wrapper function used in the network . 

 

3.4.  Model compression 

On-device systems are resource-constrained, with limited memory and low computing power. 

However, deep learning algorithms are computational and memory intensive, so they cannot be implemented 

on real-world applications or other resource-constrained systems without difficulties. As deep learning 

models goes deeper in layers their inference time increases along with the increase in number of trainable 

parameters; making it difficult to be deployed on resource-constrained devices. By the parsimony concept, 

models with a smaller number of parameters  are  more likely to provide adequate representation of the 

underlying time series data, but models with a high number of trainable parameters requires more energy and 

space and are likely to overfit during training. Consequently,  compression technique, as presented in [25], is 

required to allow the deployment  of a large model on resource-constrained devices. Table 2 summarized the 

results from literature on the most recent efforts towards model size and trainable parameter reduction 

leveraging on different techniques in comparison with SGtechNet. This comparative analysis shows that 

SGtech has the least number of trainable parameters with a very considerate model size, hence the 

justification for its suitability for low-power-low-memory devices. Model size is very important as far as 

performance optimization of on-device system is concerned because larger models mean more memory 

reference and more energy [26]. 

 

 

Table 2. Model parameter comparison 
Model Parameters Size Training Time Inference Time 

ENet [27] 0.37 M 0.7 MB 15mins 383ms 
LEDNet [28] 1.856 M 3.8 MB - - 

SegNet [29] 29.46 M 56.2 MB 37mins 286ms 

AlexNet [30], [31] 60 M 232 MB 7,920mins - 

VGG16 [31], [32] 138 M 528 MB - - 
SqueezNet [25] 0.66 M 4.8 MB - - 

ResNet152 [31] 232 M 60 MB - - 

GoogleNet [31] 6.8 M 28 MB - - 

SGtechNet (Proposed) 128K 4.93 MB 1.3mins 3ms 

 

 

Therefore, to fit the SGtechNet  model on limited resourced devices, enabling the model to be usable 

in real-world applications, the SqueezeNet [25] concept of was used, with the modification that the 1x1 and 

1x3  convolution filters were used for feature representation. As each kernel receives an input time series, the 

corresponding outputs are concatenated and followed by convolutional-LSTM layers which capture the  

long-term spatial patterns in the electricity consumption data. This method not only reduces input data 

dimensionality but also reduces the complexity of the data [33]  leading to an improved result even though a 

marginal cost burden is incurred due to a slight increase in number of parameters. However, the choice of a 

smaller filter reduces the models inference time. Also, SqueezeNet has almost the same accuracy of AlexNet 

with its compression of trainable parameters,  but that accuracy is a little lower than GoogleNet. SeNet [34]  

developed an architecture that recalibrates channel-wise feature responses and uses  them to determine the 

interdependencies existing between two channels. Channel-wise scale and element-wise summation 

operations were combined into a single layer “AXPY  ”using skip-connections. This resulted in considerable 
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reductions in memory, cost, and computational burden . It is imperative to note that the application 

environment of most of the state-of-the-art models in Table 2 is image classification and detection, so for 

SGtechNet to achieve a RMSE Error of 358kwh in a regression task like power forecasting shows high level 

of robustness. Even though training and inference time for some of these models compared with SGtechNet 

was not reported in the literature, the few ones that were reported clearly put SGtechNet at advantage in 

terms of computational complexity. 

 

3.5.  Feature representation 

Feature learning or representation learning in machine learning is a set of techniques that allows a 

system to automatically discover the representations needed for feature detection or classification from raw 

data. Figure 8 shows the feature learning process. This is a method of finding a representation in each data 

the features, the distance function, and the similarity function-dictates how the predictive model will perform. 

Feature representation helps to reduce data complexity, so the anomalies and noise can be reduced. It also 

helps in reduction of the  dimensional of input data, making it easier to find patterns, anomalies, and also 

provides a better understanding of the behavior of the data generally. Because our time series input data is 

1D, a smaller kernel filters (1, 3) were used in the convolutional layers for feature learning. 

Considering the spatiotemporal nature of power consumption variables, a state space representation 

of (6) represents the transition process expressing the discrete stochastic behavior of the variables and (7) 

represents the likelihood of the observations with the assumption that states are part of the model parameters. 

 

φ
i+1

= φ
i
+ut (6) 

 

y
t

= 𝑓(xt,  Ɵt) + Vt (7) 

 

where ut is the process noise, vt is the measured noise. 
 

 

 
 

Figure 8. Feature learning process 

 

 

3.6.  Ensemble method 

The stochastic nature of power consumption varying with season and time necessitated the use of a 

stochastic learning algorithm for dataset training. However, the neural network algorithm has the inherent 

limitation of randomness which results in a different final model each time it is trained on the same dataset . 

To address this limitation, an ensemble method of   [7] with a weighted average of different trained models is 

used for prediction. Ordinarily, the model ensemble method allows each model an equal contribution to the 

final prediction which could sometimes be seen as a limitation when the contribution from poorly performed 

models to the final model jeopardizes the efforts of a well performed model. However, the contribution to the 

final model in this proposed model  is  purely dependent on the model’s trust and estimated performance,  

resulting to an improved overall prediction result . 

Sensitivity analysis was carried out to determine the number of ensemble members most appropriate 

for the forecasting problem and how impactful they could be to the test accuracy. To determine 

trustworthiness of ensemble models and to estimate performance, we need to find their weights. However, 

due to  there being no analytical solution to estimation of values for the  weights, we used gradient descent 

optimization with a unit norm weight constraint on the holdout validation set rather than  on the training set. 

Ordinarily, a simpler way of finding each ensemble member’s weights would have been to grid search values 

but because our holdout validation is large enough, gradient descent optimization becomes the best option.  

This optimization procedure sums up all the model vector of  weights to 1 i.e.,  𝑤1, 𝑤2,···, 𝑤𝑘     = 1, 

also constrains them to positive values to  allow weights to indicate the percentage of trust or expected 

performance of each model. The optimization process  utilizes  the set of information provided to it to search 



                ISSN: 2252-8938 

Int J Artif Intell, Vol. 11, No. 3, September 2022: 1004-1018 

1014 

for weights with lower errors under defined bound (i.e ., 0.0–1.0) amongst  10 ensemble members until 

convergence. But, before  performing weight optimization,  10 single models were created, and their 

individual performances were evaluated on the test dataset. For the optimization, a  differential-evaluation 

function was used to search and display the optimal sets of weights  after  several iterations which  returned  the 

score to be minimized and retrieved the best weights, with their performance being reported on the holdout 

validation data. Optimal weights of the base learners are aggregated to find the best tradeoff between bias and 

variance and minimize the prediction error. So, each base learner’s prediction (𝑦̂𝑡) on holdout validation set, 

therefore gives: 

 

𝑀𝑖𝑛 𝐸𝑟𝑟𝑜𝑟 (𝑤1𝑦̂1 + 𝑤2𝑦̂2+···, 𝑤𝑘𝑦̂𝑘 , 𝑦) (8) 

 

such that ∑ 𝑊;𝑘
𝑗=1 = 1, when 𝑊j  ≥ 0 Ɐj = 1, … 𝑘, where 𝑊j represents the weights corresponding to base 

model j (j = 1,..,k), ŷ is the vector predictions of base model j, and y is the vector of true value. So, at any 

instance of training the base learner j, weights 𝑊j is computed from optimization (4) on the assumption that n 

is the total number of instance, 𝑦𝑖  as the true value of observation i, 𝑦̂𝑖𝑗  as the prediction of observation i by 

base model j. 
 

𝑀𝑖𝑛 
1

𝑛
(∑ 𝑦𝑖

𝑛
𝑖=1 − ∑ 𝑊𝑗

𝑘

𝑗=1
𝑦̂𝑖𝑗) (9) 

 

Such that ∑ 𝑊;𝑘
𝑗=1 = 𝑘, 𝑤ℎ𝑒𝑛 𝑊j  ≥ 0 Ɐj = 1, … 𝑘 

The  ensemble member  contributions  are evaluated based on those chosen weights. This process not 

only improve model performance but also saves time . Ordinarily, the search for such weights with lower 

error  values would need to be done randomly and exhaustively, which is time demanding . 

 

3.6.1. Comparing weighted ensemble and model averaging method performance 

Table 3 shows the results produced by the  weighted average ensemble method, which demonstrate 

that this method outperformed the model averaging method for individual ensemble members even though 

their processing time variation is insignificant. Furthermore, the model’s performance is compared with 

baseline model see Table 4 using both secondary and primary datasets acquired from two different 

continents. The importance of this comparative analysis is to provide completeness of this study analysis as 

regards the major limitation of ensemble technique which is misleading assumption that all ensemble 

members are equally effective. 

 

 

Table 3. Comparative analysis of weighted ensemble models and model averaging method 
Statistics Weighted Ensemble Models Model Averaging Method 

Number of Iteration 1,000 1,000 
Validation Time 2.053s 2.185s 

Average RMSE 358kwh 362.617kwh 

 

 

Table 4. Comparative analysis of weighted ensemble models and baseline model on different datasets 
Model Statistics Training on HHPC Dataset France Training on Real-Time Dataset, SGtech, Thailand 

Propose Model Baseline Model Propose Model Persistence Model 

Hourly Daily Weekly 

Training Time 114.109s - 78.916s - - - 
Prediction Time 2.282s - 2.053s - - - 

RMSE 3.61.885kwh 465.294kwh 358kwh 480.246kwh 469.389kwh 465.294kwh 

 

 

4. RESULTS AND DISCUSSION 

A real-time experimentation using Google Colab TPU and one of the finest neural network APIs, 

contained in Keras® with its backend TensorFlow produced the results shown in Table 3 and Table 4. Based 

on the performance evaluation of the model, this model significantly outperformed the baseline model. 

Though an unstable training trajectory was experienced during training, which could be likened to overfitting 

in the training data, the overall performance is good.  In the model’s evaluation result of Figure  9, RMSE was 

found to statistically differ across the 7 days of the week as shown in Figure 9(a) while Figure 9(b) showed 

how the training error decreased sharply after commencement of training, before it became linear, due to the 

model’s complexity: likewise, the validation error. A squeeze layer technique, adopted from [35], reduced the 

size of the model to 4.9 M without affecting its performance, making it implementable in a low-power-low-
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memory device; Smartphone, iPad, Tablets. One of the limitations of the model performance enhancement 

method being discussed in this paper  is that, as the model size is reduced, the number of parameters slightly 

increased,  resulting in a marginal increase in resources usage  relative to implementation. Therefore, further 

work is proposed to develop a systematic method of reducing the model size without necessarily increasing 

the number of model parameters. 

 

4.1. Comparative analysis 

Evaluation of this model’s  performance  was against the baseline model and other alternative 

forecasting methods even though some metrics, such as computational speed and prediction time, were not 

captured in all the literature reviewed. We also analyzed power consumption datasets used in validating 

SGtechNet along daily consumption cycles time and day as shown in Figure 10(a) and 10(b) respectively, for 

clearer understanding of residents habits. An experimental framework for the empirical comparison of 

different model performances, based on varying test conditions, was introduced. Uniqueness of weather 

characteristics in different locations indicated that there is no guarantee that a forecasting method that is 

successful at one location would be effective at a different location. The inclusion of this framework in the 

design accounts for diverse climatic conditions and  created a valuable environment for future studies in 

emerging forecasting technologies. This increases the confidence in the observed results by allowing the 

validity of the forecasting algorithm to be tested on both the test set from France and the test set from SGtech 

Naresuan University Thailand, both of which are real-time data. Alternatively, to prove that the improved  

processing time  and other improvements achieved in this model are due to pure  scientific contributions  rather 

than  software and hardware differences, we experimented on different technologies. We compared the results 

when using an NVIDIA GeForce GTX1080 TI GPU/TPU enabled TensorFlow against those achieved when 

using an NVIDIA Tesla K80 GPU running on the Ubuntu Server 16.04 .3.  The discrepancy in the results was 

found to be scientifically insignificant. The result of this model is further compared with model averaging 

and standalone methods as shown in Table 5. SGtechNet model size is 4.93 MB which means it can easily be 

put in an on-chip Static random access memory (SRAM) cache.  

 

 

  
(a) (b) 

 

Figure 9. SGtechNet performance evaluation result showing (a) RMSE across the 7 days power consecutive 

days forecasted and (b) Model’s training and validation loss 

 

 

Table 5. Comparison of the experimental results of proposed model against some existing power forecast 

methods 
Model Statistics Models 

Propose Model Persistence Model Model A [36] Model B [37] 

Training Time 114.109s - - - 

Prediction Time 2.282s - - - 
Size 4.935MB - - - 

RMSE 358kwh 465.294kwh 530kwh 450.5kwh 
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(a) (b) 

 

Figure 10. Shows the plot of power consumption across different (a) Time and (b) Weekday 

 

 

5. CONCLUSION 

Nationwide lockdown due to covid-19 pandemic is causing a rise in domestic power consumption, 

making energy conservation, and planning more relevant than ever. In our research, we demonstrated the 

effectiveness of combining atmospheric climate domain knowledge of factors determining power 

consumption differences based on location, with empirical data captured  from automated systems  for future 

energy forecasting . This forecast model SGtechNet developed to optimize the data learning and prediction 

process leveraged on a multivariate dataset to make a multi-step time series 7 days ahead forecast. 

SGtechNet, is based on ConvLSTM-Encoder-Decoder algorithm explicitly designed to optimize the quality 

of spatiotemporal encodings throughout the feature extraction process. The validation report of this model 

showed a significant improvement on the forecast result when a real-time dataset from an automated office 

was used for model validation which was compared against a manually operated home/office represented by 

the secondary data. This implies, aside from the social behavioral factor that propels the users  ’choice of time 

of use (ToU) electricity, that environmental and real-time control factors are also contributory factors that 

determine the consumption rate and therefore cost of power that is consumed domestically or in an office 

workplace. The RMSE of 361 kwh recorded was compared with 465 kwh on the persistence model and an 

improved RMSE of 358 kwh was achieved when validated in holdout validation data from the automated 

office. Overall performance on error rate, forecast time and inference time were later compared with 

published research, and the comparison showed that our model, the SGtechNet, provided significant 

improvements in these factors. One of the most significant achievements of SGtechNet is its adaptiveness to 

other forecast problems and different datasets in such a way that it detected and analyzed the atmospheric 

climate changes over different locations. 
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