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 This paper presents an effective Vietnamese handwritten text recognition 

model by applying an improved convolutional recurrent neural networks 

(CRNNs) model to high school enrollment forms in Tay Ninh province, 

Vietnam. First, the proposed model extracts data areas containing text 

characters from forms. Then, we connect text boxes on the same row and 

divide the fields that containing text into three specific regions. Finally, we 

detect areas containing text characters for handwritten text recognition. We 

use word error rate (WER) to evaluate the recognition process and obtain a 

result of 0.3602. This result is one of the best solutions to the Vietnamese 

handwritten text recognition problem.  
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1. INTRODUCTION 

Every year in Tay Ninh province, the data entry of the entrance exam into the 10th grade of Tay 

Ninh high schools is done according to the typing process through the Department of Education and Training 

database interface of Tay Ninh. This province has ten schools that organize exams and admissions, so the 

annual data entry of student files across the entire province includes: 10835 files, the first phase is 4,000 files, 

the second phase is 6,835 files [1]. The data entry for students is all manually entered. From elementary 

schools to middle schools, from middle schools to high schools, and from high schools to the high school 

graduation exam, these data are re-entered every year. After being entered and stored, the data of each grade 

level is only used for the school years of that grade. When transferring files to another school level, these 

data are completely re-entered without inheritance. This problem costs the province's labor resources, time, 

and expense. Therefore, the creation of a system to support the digitization of candidates' registration forms 

is necessary to serve the entrance exam to high school in Tay Ninh province [2]–[4]. 

 

 

2. RELATED WORKS 

Jaramillo et al. [5] presented the problem of processing offline handwritten text recognition 

handwriting text recognition (HTR) with reduced training data sets. Recent HTR solutions based on artificial 

neural networks show remarkable solutions in referenced databases. These deep neural networks include 

convolutional neural networks (CNNs) and long short-term memory (LSTM). In addition, connectionist 

temporal classification (CTC) is the key to avoiding character-level segmentation, greatly facilitating the 
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labeling task. In 2018, Nguyen et al. [6] created an unconstrained Vietnamese online handwritten text 

database sampled from pen-based devices. The database stores handwritten text for paragraphs, lines, words, 

and characters, with the ground truth associated with every paragraph and line. We show detailed statistical 

analysis of handwritten text in this database and describe recognition experiments using several recent 

methods, including the bidirectional long short-term memory (Bi-LSTM) network. Overall, our database 

contains over 480,000 strokes from more than 380,000 characters, currently the largest database of 

handwritten documents online in Vietnam [7]. 

Nguyen et al. [8] mentioned convolutional recurrent neural networks (CRNNs) excel at scene text 

recognition. However, this model suffers from vanishing/exploding gradient problems when processing long 

text images, commonly found in scanned documents. This problem poses a significant challenge to overcome 

the goal of completely solving the optical character recognition (OCR) problem. Inspired by recently 

proposed memory-augmented neural networks (MANNs) for long-term sequential modeling, they introduced 

a new architecture called convolutional multi-way associative memory (CMAM) to address limitations of 

current CRNNs. Their architecture, which takes advantage of recent memory access mechanisms in MANNs, 

demonstrates superior performance over other CRNN counterparts in three real-world long-text OCR 

datasets. In addition, this paper reports new state-of-the-art IAM-OnDB results for both open and closed 

dataset settings. The system combines methods from sequence recognition with a new input encoding using 

Bézier curves. This combination leads to up to 10 times faster recognition than our previous system. Through 

a series of experiments, they determine the optimal configuration of their models and report the results of 

their setup on several additional public datasets. Additionally, in 2020, Carbune et al. described an online 

handwriting system that can support 102 languages using a deep neural network architecture. This new 

system has completely replaced our previous segment-and-decode-based system, reducing the error rate by 

20-40% relative to most languages [9]. 

 

 

3. PROPOSED METHOD 

3.1.  Overview 

Vietnamese handwriting recognition is much more complicated than print recognition because it 

varies widely depending on the writer, writing direction, speed and writing pressure. Although handwriting 

studies have made remarkable achievements, the recognition efficiency is not high compared to other 

recognition fields [10]–[13]. Therefore, this field of identification poses many potentials and is also a 

challenge for our research [14]. The article presents the method from normalizing the collected data, 

detecting the handwriting text container of the image and the model training process, the OCR Vietnamese 

handwriting recognition method using the CRNN model [15]. 

The general model for extracting and recognizing handwriting to extract information from the 10th-

grade enrollment form in Tay Ninh province is shown in Figure 1. This model consists of 3 main parts: 

region extraction (Cropper), character extraction (Text detection), and string identifier (OCR). These are 

three problems that need to be solved. 

 

 

 
 

Figure 1. Overview model 

 

 

3.2.  Region extraction 

We propose an algorithm to extract the data area from the scanned enrollment form image by only 

taking the critical information area, as shown in Figure 2, to remove unnecessary information. We then 

separate the information region into three regions called A, B, and C, shown in Figure 3(a) is region A, 

Figure 3(b) is region B, and Figure 3(c) is region C, to improve the performance of the extraction process 

information region when applying the efficient and accurate scene text (EAST) deep learning model [16] to 

the areas separated. Since the information in the form contains a scoreboard in region B, the table lines are 

noisy, causing difficulties in region extraction and character recognition. Therefore, the separation into three 

separate zones helps to improve the work efficiency. The enrollment form of Tay Ninh province is fixed, so 

we can separate these three regions based on heuristic thresholds. 



                ISSN: 2252-8938 

Int J Artif Intell, Vol. 12, No. 2, June 2023: 568-576 

570 

 
 

Figure 2. The main information container of the 10th grade enrollment form 

 

 

  
(a) (b) 

  

 
(c) 

 

Figure 3. Three separate regions; (a) area for recording student background information (Region A),  

(b) area for recording learning and training results (Region B), and (c) area of application registration 

(Region C) 

 

 

3.3.  Character extraction 

The deep learning method has the advantage of automatically learning features from the input 

information of the problem [17], [18]. We first apply the EAST model to detect text areas and create text 

boxes for image areas containing handwriting. This model is a powerful deep learning method used to detect 

texts presented on input images. It can find horizontal and rotated bounding boxes and can be used with any 

other text recognition method. The text detection system with EAST has eliminated redundant and 

intermediate steps and has only two stages. EAST uses a fully integrated network to generate text prediction 

words or lines directly. The generated predictions that can rotate the rectangle or the quadrilateral are further 

processed through the suppression step to yield the final output. 

The EAST algorithm detects texts in the input image by creating a text box for each word or phrase, 

lead to many rectangular boxes for the detected words. Algorithm 1 is an algorithm to join the text box in 

each row to process image regions. As a result, the input image has many rows of information, and the output 

image also has many rows of text boxes. The output text lines are fed into OCR system in next step. Figure 4 

illustrated results for the algorithm to join text boxes by row. In the final step of the EAST model to detect 

text boxes, based on advanced information such as fixed form, ratio of each field, position of each field, … 

We apply heurictic thresholds to separate large_boxes into separate fields per row to help the training step of 

data and other methods. The text box shows the correct semantics in the 10 th-grade enrollment form in Tay 

Ninh province as shown in Figure 5. 
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Algorithm 1: Algorithm to join text boxes row by row 
Input: coordinates of the boxs put into stand_boxes. 

Output: coordinates large_box = [(x_min, y_min, x_max, y_max)], As a result, the boxes are 

joined in rows. 

1. Put all the boxes put into stand_boxes [ ] 

2. Calculate the coordinates of the midpoint (y coordinates) of the Textbox to 

identify the Textboxes belonging to the same line, then sort the group_boxes in 

ascending order (y). Next, put them (the child group_box has been arranged as) 

into the same parent group_boxes 

3. Calculate (length) of group_boxs 

4. Loop group_box (from 0 to group_boxs) to calculate the coordinates of each 

text_box: 

x_min, x_max, 

y_min, y_max 

5. Calculate large_box = [(x_min, y_min, x_max, y_max)] {where are the top - left, 

bottom - right coordinates of each Textbox} 

6. Draw the large_boxes according to the calculated coordinates,  

End the algorithm. 

 

 

 
 

Figure 4. Example of results of text box connection 

by row of area A 

 
 

Figure 5. Example of results of separated fields of 

area A 

 

 

3.4.  The string identifier 

We propose a method to solve the OCR character recognition problem using CRNN and  

attention models to recognize Vietnamese handwriting in the 10th-grade enrollment form of Tay Ninh 

province [19]–[22]. The CRNN network model is a popular model that gives good results in print and 

handwriting recognition [23]. We have trained a CRNN model for Vietnamese handwriting recognition 

problems using the OCR technique with the dataset processed from the enrollment form. At the same time, 

we also provide a CRNN model for feature extraction and handwriting recognition, as shown in a Figure 6, 

trained on the enrollment form data set achieved relatively good results. 

The CRNN model for the handwriting recognition problem presented in this paper consists of 2 

parts: CNN and RNN + LSTM [24], [25]. Precisely, CNN extract features from the image. Therefore, the 

architecture of the CNN block must be suitable to receive input of size wxh. We place the output of the CNN 

block as the input of the RNN + LSTM block. 

 

 

 
 

Figure 6. An identity pattern of CRNN 
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3.5.  Model operation 

The input image through the CNN block: the visual geometry group (VGG) component removes 

noise, reduces the dimensional space, and extracts features for output in the form of feature vectors (Feature 

map). Next, the RNN and LSTM block consist of two main components: RNN encoder and RNN decoder. 

RNN encoder helps to process the encoding features, RNN decoder as a decoder to process the output. 

Finally, CTC and ATTENTION improve the output by removing repeated characters and blanks (blank tokens) 

to produce a complete sentence. This problem is called output alignment or alignment problem [26]–[29]. 

 

3.6.  Train the proposed network model 

After locating the information areas to be extracted using the EAST model, we train the data against 

the proposed model. Due to the data collected, there are certain limitations described in section 4-

experiments. So, in training data to produce an identification model to solve the OCR problem mentioned, we 

propose removing four fields (do not train data for these fields) such as conduct, graduation year, candidates 

for recruitment and school to register for the exam because the value is little changed. It does not guarantee 

the comprehensiveness of information in reality. Table 1 mentioned and specified the reason for the rejection. 

 

 

Table 1. Ratio of data divided by fields 
Numerical 

order 
Name fields 

Total number of 

experimental images 

Number of images for training Number of photos to test 

80% 20% 
Total 1550 1240 310 

1 Full name 307 246 61 

2 Sex 39 31 8 
3 Date of birth 93 74 19 

4 Class 87 70 17 

5 Secondary School 113 90 23 
6 District (city) 90 72 18 

7 Current accommodation 113 90 23 

8 Phone 57 46 11 
9 Academic ability 191 153 38 

10 
Grade Point Average for 

the whole year 
168 134 34 

11 
Graduation High School 

Graduation 
90 72 18 

12 Priority Beneficiaries 113 90 23 
13 Plus mark 92 74 18 

 

 

We apply the word error rate (WER) measure to evaluate the word error rate in the data recognition 

of the trained model. After we get the results when using the built model to train and test the evaluation from 

the data set, we found that the recognition rate of handwritten Vietnamese characters is still low. Therefore, a 

spelling correction method was applied to improve the recognition rate. Spelling correction idea uses a result 

set that identifies incorrect results but approximates the correct results to compare with the complete data set, 

which is the fully collected contraints for comparison. We performed the spelling correction algorithm, 

experimented on the data fields and gave the following improved results. 

− Fields that can correct spelling errors such as: Place of birth (name of province/city), district, secondary 

school name, gender, ethnicity, priority category, academic ability. Because these fields can collect all 

its occurrences. 

− Fields that cannot be corrected include: Date of birth, phone number, full name, grade, grade point 

average. Since these fields have very large instances and possibly infinite numbers, complete statistics 

are not possible. 

 

 

4. RESULTS AND DISCUSSION 

4.1.  Dataset and implementation details 

4.1.1. Data collection and pre-processing 

We use the dataset collected from the 10th-grade enrollment forms of three schools that organize the 

entrance exam (Nguyen Chi Thanh, Le Quy Don, and Tran Dai Nghia High School) in Tay Ninh province. 

The dataset was collected by scanning images of registration forms. Each form consists of 3 regions 

containing the following information: Region A-contains the personal information. Region B-includes a table 

of results of study and practice in four school years of candidates. Region C-contains registration information 

for grade 10 and corresponding priority points. Using the algorithm to separate the image into three regions 
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has an accuracy of 100%. We used all 1550 images divided into 1240 images for training, 310 images for 

testing and evaluation. The data is divided according to the fields, as shown in Table 1. 

For better training results, we have separated the data into separate fields shown in Table 2. Those are 

the input image files for the training of the network model. The output data is a text file containing the following 

information: full name, sex, date of birth, grade secondary school, district (city), current address, phone, 

academic ability, average mark of the whole year, valuation high school graduation, priority, inherited priority. 

 

 

Table 2. Set of sample images divided by field for experiment 
Numerical order Name fields Sample images have been separated 

1 Full name 
 

2 Sex 
 

3 Date of birth 
 

4 Grade 
 

5 Secondary School 
 

6 District (city) 
 

7 current address 

 

8 Phone 
 

9 Academic ability 
 

10 Average mark of the whole year 
 

11 Valuation High School Graduation 
 

12 Priority 
 

13 inherited priority 
 

 

 

4.1.2. Challenges of the collected data 

Image quality much depends on the means of scanning equipment when collecting, the technique of 

taking pictures, the ambient light and the paper material of the information form, which greatly affects the 

image of the collected data. As well as the quality between the form images there are also differences. The big 

problem is Vietnamese hand-writing and the form has many fields, the information inside also depends on many 

factors such as: different writers, different types of pens, writing direction, and light density, character 

sharpness, writing speed and various scribbles. create the difficulty of the data set for the research problem. 

 

4.2.  Experimental environment 

After collecting and normalizing the noise type of the dataset, we implemented and built the selected 

algorithms. We implemented the algorithms in Python 3.7 programming language with the configuration of 

training computer, testing CRNN model for handwriting recognition such as: Computer type-Lenovo, OS-

Windows 10, Architecture-OS 64-bit, CPU-Intel Core i9 10900x 3.7g up 4.7g | 10 core | 20 thread, RAM-Gskill 

Trident Z RGB 128g/3600 (4x36g), HDD-SSD Samsung 970evo 1TB nvme m.2 pcie, Graphics Adapter-

Graphics card that supports image processing: GPU 64GB, 128-bit-VGA: 2 x NVIDIA RTX 3090 24g Gddr6x. 

 

4.3.  Results of information detection based on EAST model 

After applying the EAST model, the extraction results on the three regions reached the accuracy as 

shown in Table 3. Figure 7 shows the extraction ratio of the region containing text in the image of 3 regions 

A, B, and C. For region B, two algorithms are used (1. normal image processing and 2. deep learning 

algorithm with EAST model) [30]. 

Analysis: when creating a text box using the deep learning model-EAST, the detection rate of the 

region containing the text in the image is relatively high for regions A and C (87% and 83%). However, for 

region B (the region that has the learning results table of the student form), the accuracy is 54%, nearly 30% 

lower than in regions A and C. With conventional image processing algorithms for region B (with the same 

input data type), the result is 63%, higher than that of the EAST model (9%). The EAST model gives bad results 

for region B because this is a table. The table lines are noisy data that significantly affect the results of EAST. 
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Table 3. Result of detection rate for 3 regions A, B, C 
 Number of 

test images 
Total fields Correct Wrong Ratio 

Region A uses deep learning model-EAST 30 10 field x 30 image =300 260 40 87% 

Region B uses conventional image processing algorithms 30 14 field x 30 image =420 265 155 63% 

Region B uses deep learning model-EAST 30 14 field x 30 image =420 226 194 54% 
Region C uses deep learning model-EAST 30 4 field x 30 image =120 100 20 83% 

 

 

 
 

Figure 7. Extraction ratio of the region containing text in the image of 3 regions A, B, and C 
 

 

4.4.  Results of Vietnamese handwriting recognition using CRNN 

Table 4 shows the results and using the OCR technique to check the recognition on a dataset with 

1550 images, including 1240 train images and 310 test images. Table 5 shows the test results of correctly 

identified image regions, and Table 6 shows the results of wrongly recognized images after testing. Through 

the statistics of the results of training and evaluation, the OCR technique achieved an excellent rate with the 

WER measure of 36.02%. Each image has an average size of 32×525 with a recognition processing time of 

about 0.0471s. The total processing time of 310 images with an average size of 32×525 is 13,6214s. 
 

 

Table 4. OCR training and identification results using the WER measure 
Total number of experimental images Number of training images Number of test images WER (%) 

1550 1240 310 36,02 

 

 

Table 5. Illustrated correctly recognized image region 
Name Image Label Final CTC Attention 

A_distric_010.jpg 

 

Hòa Thành Hòa Thành HẨ Hòa Thành 

A_birthday_004.jpg 

 

22/11/2005 22/11/2005 /11/k 22/11/2005 

 

 

Table 6. Illustrated image region misidentified 
Name Image Label Final CTC Attention 

a_name_test_084.jpg 

 

PHAN THỊ KIM CƯƠNG PHẠM THỊ TH Px PHẠM THỊ TH 

a_shool_test_084.jpg 

 

An Bình Dân tộc rất Ỹ Dân tộc rất 

 

 

5. CONCLUSION 

This paper proposes a deep learning method to separate regions-EAST by applying the CRNN deep 

learning network model and OCR Vietnamese handwriting recognition technique on the 10 th-grade 

enrollment form in Tay Ninh province. We implement a spelling correction algorithm to increase the 

efficiency of data recognition. Experiment results show that our model effectively utilizes data digitization in 

the education sector, potentially saving the provincial budget and human force, reducing data entry time, 

especially in many student records. 
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