
IAES International Journal of Artificial Intelligence (IJ-AI)

Vol. 11, No. 3, September 2022, pp. 826~835

ISSN: 2252-8938, DOI: 10.11591/ijai.v11.i3.pp826-835  826

Journal homepage: http://ijai.iaescore.com

Optimization of agricultural product storage using real-coded

genetic algorithm based on sub-population determination

Wayan Firdaus Mahmudy1, Nindynar Rikatsih1,2, Syafrial3
1Department of Informatics Engineering, Faculty of Computer Science, Universitas Brawijaya, Malang, Indonesia

2Department of Informatics, Institute of Technology, Science and Health of dr. Soepraoen Hospital, Malang, Indonesia
3Department of Agricultural Socio-Economic, Faculty of Agriculture, Universitas Brawijaya, Malang, Indonesia

Article Info ABSTRACT

Article history:

Received Sep 13, 2021

Revised Mar 17, 2022

Accepted Apr 15, 2022

 The storage of fresh agricultural products is a combinatorial problem that

should be solved to to maximize number of items in the storage and also

maximize the total profit without exceed the capacity of storage. The

problem can be addressed as a knapsack problem that can be classified as

NP-hard problem. We propose a genetic algorithm (GA) based on sub-

population determination to address the problem. Sub-population GA can

naturally divide the population into a set of sub-population with certain

mechanism in order to obtain a better result. GA based on sub-population is

applied by generating a set of sub-population which is happened in the

process of initializing population. A special migration mechanism is

developed to maintain population diversity. The experiment shows GA

based on sub-population determination provide better results comparable to

those achieved by classical GA.

Keywords:

Agricultural product

Genetic algorithm

Knapsack problem

Migration

Sub-population
This is an open access article under the CC BY-SA license.

Corresponding Author:

Wayan Firdaus Mahmudy

Department of Informatics Engineering, Faculty of Computer Science, Brawijaya University

Ketawanggede, Kec. Lowokwaru, Kota Malang, Jawa Timur 65145, Indonesia

Email: wayanfm@ub.ac.id

1. INTRODUCTION

Fresh agricultural products are a daily need for the community. The products are perishable and

must be stored at the proper condition before being shipped to distributors or retailers [1]. In doing product

storage, we need to pay attention to the product value and the profit that must be gained. For agricultural

products that the stock needs to be always available with a good quality, trader has to maximize number of

items in the storage and maximize the total profit without exceed the capacity of storage. Therefore, trader

should do the right way of product storage to get maximum profit. The storage of fresh agricultural products

problem could be addressed as a knapsack problem.

Knapsack problem is a combinatorial and optimization problem that is often encountered in daily

life and real industrial problems such as project selection, capital budgeting, cargo loading, and bin packing.

[2], [3]. Knapsack problem also has a set of application for budgeting project, selection of items, material,

and cost-effective development [4]–[6]. Optimization of knapsack problems is implemented to determine a

number of items with a certain value that will be included into a container without exceeding the capacity of

the container. The item selection is expected to provide maximum profit [7].

Various methods have been developed to solve knapsack problems such as local search, heuristics,

meta-heuristic, and hybridization methods. For example, a local search is modified to efficiently solve a large

scale knapsack problem [8]. An evolutionary algorithm based approach is developed to solve

hardware/software partitioning that is considered as a variant of knapsack problem [9]. A hybrid approaches

are also developed to addres the complexity of the knapsack problem. For instance, ant colony optimization

https://creativecommons.org/licenses/by-sa/4.0/

Int J Artif Intell ISSN: 2252-8938 

Optimization of agricultural product storage using real-coded … (Wayan Firdaus Mahmudy)

827

and differential evolution algorithm are combined to explore strong characteristic of each method to solve

different part the knapsack problem [10].

In this research we propose genetic algorithm (GA) to solve the problem because it is simple, easy

to use and has a wide search area. GA is one of the meta-heuristic methods which has been proven that can

be used to solve knapsack problems [11], [12]. GA is a meta-heuristic search algorithm that can provide

optimal solutions by adopting mechanism of biological evolution and natural selection [13], [14]. GA

consists of several steps including population initialization, crossover and mutation as a reproductive process

to produce new solutions and the last is selection to get the best solution [15], [16]. GA is proved to

effectively solve the optimization problem [17]–[19]. However, GA has weakness that is easy to be trapped

in local optimum [20], [21]. It happens when the population of GA reaches a suboptimal state that the genetic

operators produce offspring with a performance that can not be better than their parents [22]. The previous

research uses dynamic genetic clustering algorithm and elitist technique to prevent premature convergence in

GA [9]. A proper combination of crossover and mutation methods may be used to increase the GA

performance [23]. The other research uses hybrid adaptive GA to overcome GA weakness. It combines GA

with other algorithms to get better solutions [24]–[28]. The other way to solve GA weakness is by giving

random injection [29].

To solve that weakness of GA, we propose GA based on subpopulation. This approach is adopting

mechanism of parallel GA with the population that is naturally divided into a number of sub-populations that

evolve and converge with a significant independence level [30]. Parallel GA can improve computational

efficiency over classical GA. It also facilitates parallel exploration of solution space to get the better solutions

[31]. GA based on sub-population determination solves GA weakness by keeping individual variety by

setting the best individual of one sub-population to another population. A special migration mechanism is

developed to maintain population diversity [32]. It is applied to get out of local optimum that cause

premature convergence and increase the quality of the solutions. Therefore, in this research we propose GA

based on sub-population determination to solve knapsack problem of agricultural product storage.

2. THE PROPOSED APPROACH

This section is divided into three parts that consists of problem statement, proposed fitness function

to evaluate the quality of solutions, and mechanism of sub-population GA (SPGA) with a special migration.

First, we make the detail of statement problem to prepare the basic formulation to create fitness function.

Then, we present fitness function before entering the main procedure of SPGA.

2.1. Problem statement

The problem addressed in this study is optimization of agricultural product storage that is conducted

by traders. The agricultural product is stored in storage with certain quantity in kilograms without exceed the

capacity and represented by product 1, product 2, product 3, and so on. In this study, it is assumed that the

available capacity is 5,000 kg. Although storing more items will potentially get higher profits, but there are

additional costs that must be incurred if the items exceed the storage capacity. If the agricultural product

quantity exceeds the available capacity, it is necessary to rent a storage place to another party at a cost of IDR

100 per kg. Example of possible solutions are presented in Table 1.

Table 1. Example of product quantity combination
No Product 1 Product 2 Product 3 Product 4 Product 5 Product 6 Product 7 Product 8

1 4,000 1,500 2,000 200 200 150 150 150

2 5,500 4,000 1,000 300 500 150 100 200
3 3,000 5,000 1,500 200 100 150 300 200

4 5,000 2,000 1,500 300 170 100 250 150

5 2,000 4,000 3,000 100 100 250 150 100

Based on Table 1 there are five combinations of the product quantity where the first one shows that

the quantity of product 1 is 4,000 kg, product 2 is 1,500 kg, product 3 is 2,000 kg and the last product which

is product 8 is 150 kg. Trader should find the appropriate quantity combination of the product because the

quantity combination affects the profit. The calculation of gaining profit is showed in (1) to (5).

𝑇𝐶 = (∑ 𝑃𝑥1𝑖𝑄𝑖
𝑛
𝑖=1) + 𝑃𝑥2 (1)

𝑇𝑅 = (∑ 𝑃𝑦1𝑖𝑄𝑖
𝑛
𝑖=1) (2)

  ISSN: 2252-8938

Int J Artif Intell, Vol. 11, No. 3, September 2022: 826-835

828

𝑇𝑅𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = ∑ (𝑃𝑦1𝑖𝑄𝑦1𝑖 +𝑛
𝑖=1 𝑃𝑦2𝑖𝑄𝑦2𝑖) (3)

𝑇𝑃𝐹𝑚𝑎𝑥 = 𝑇𝑅 − 𝑇𝐶 (4)

𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 𝑙𝑜𝑠𝑒𝑠 = 𝑇𝑅𝑐𝑢𝑟𝑟𝑒𝑛𝑡 − 𝑇𝐶 (5)

𝑇𝑃𝐹 is the total profit which is gained from total revenue and total cost. Total revenue is represented

by 𝑇𝑅 while total cost is represented by 𝑇𝐶. 𝑇𝐶 is obtained from the purchase price per product (𝑃𝑥1)

multiplied by quantity (𝑄) and summed by other expenses represented by 𝑃𝑥2. 𝑇𝑅 is the selling price per

product represented by 𝑃𝑦1 and multiplied by Q. Maximum profit represented by 𝑇𝑃𝐹𝑚𝑎𝑥 . 𝑇𝑃𝐹𝑚𝑎𝑥 is

obtained by all products that are stored as many as Q without exceeding the capacity. Those all products also

should be sold out. However, not all products are sold out because the products are sold according to demand

represented by 𝑄𝑦1 with a selling price of 𝑃𝑦1 so that there was a remaining stock of 𝑄𝑦2 which experienced

a decrease in the selling price of 𝑃𝑦2. Therefore, the actual income obtained is the sales profit based on

demand and stock sales with a decrease in price which is defined as the current total revenue 𝑇𝑅𝑐𝑢𝑟𝑟𝑒𝑛𝑡 . So

that the profit is generated from total income minus expenses, namely as potential losses. An example of

calculating profit is presented in Table 2.

Table 2. Profit calculation
Product Product 1 Product 2 Product 3 Product 4 Product 5 Product 6 Product 7 Product 8

Product quantity (kg) 4,000 1,500 2,000 200 200 150 150 150

Purchase cost per

kilogram (Rp)

3,200 5,500 1,500 3,000 8,000 9,000 5,000 2,500

Purchase cost of each

product (Rp)

12,800,000 8,250,000 3,000,000 600,000 1,600,000 1,350,000 750,000 375,000

Total purchase cost (Rp) 28,725,000

Expenses (Rp) 3,075,000

Excess capacity cost
(Rp)

335,000

Total cost (TC) 32,135,000

Market demand (kg) 3,000 1,000 1,500 160 180 100 120 100
Selling price per

kilogram

3,700 6,500 2,000 5,000 9,000 11,000 6,000 4,000

Selling price according
to market demand

11,100,000 6,500,000 3,000,000 800,000 1,620,000 1,100,000 720,000 400,000

Total revenue (TR) 25,240,000

Stock (kg) 1,000 500 500 40 20 50 30 50
Selling price of stock per

kilogram

3,500 6,000 1,000 4,500 8,500 10,000 5,000 3,000

Selling price of stock 3,500,000 3,000,000 500,000 180,000 170,000 500,000 150,000 150,000
Total revenue (TR) of

stock

8,150,000

Current total revenue
(TR current)

33,390,000

Maximum selling price 14,800,000 9,750,000 4,000,000 1,000,000 1,800,000 1,650,000 900,000 600,000

Maximum total revenue
max (TR max)

34,500,000

Maximum total profit

(TPF max)

2,365,000

Potential Loses 1,255,000

2.2. Proposed fitness function

Fitness value represents the quality of the solution produced by GA. The solution that provides

maximum benefit is considered as a good solution. High fitness value represents high quality of solution

which shows the high profit that can be provided. The determination of fitness function depends on

calculating profit based on formulas (1) to (5). Hence, we consider the fitness function that is showed in (6).

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 =
1000

𝑇𝑃𝐹𝑚𝑎𝑥− 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 𝑙𝑜𝑠𝑒𝑠
 (6)

2.3. Special migration on sub-population genetic algorithm (GA)

The GA is proposed by John Holand in 1975. GA is a heuristic method that mimic the mechanism

of biological evolution and applies natural selection to obtain optimal solutions [5]. We apply classical GA

with sub-population to solve the problem in this study.

Int J Artif Intell ISSN: 2252-8938 

Optimization of agricultural product storage using real-coded … (Wayan Firdaus Mahmudy)

829

Sub-population GA which is called SPGA in this research adopts mechanism of parallel GA with

the population that is naturally divided into a number of sub-populations [33]. Similarity of sub-population

GA and single-population GA is both of them applies several steps that are preceded by initialization of the

population containing chromosomes that represent the solution. Furthermore, chromosomes are developed to

get new variations by using crossover mutation process and selection. However, there is the difference of

Sub-population GA with respect to single population GA that each sub-population of SPGA iterates in

parallel and share each other their individuals that are called migrant to improve the solutions. There are

many ways to implement SPGA but this study uses a different SPGA from the other SPGA. We use

Euclidean Distance in migrating the solutions, thus we call it Euclidean Distance sub-population GA

(EDSPGA). The Euclidean Distance will be explained in section of migration.

3. METHODOLOGY

3.1. General steps of genetic algorithm

SPGA begins with population initialization and being continued by crossover, mutation, evaluation,

migration between sub-population and finally the selection. Based on the approaches in knapsack problems,

we propose real-coded chromosome representation as shown in Figure 1. Each number represents the

quantity of product stored.

The chromosomes which have been initialized are improved by a reproduction process consisting of

one cut point crossover and random mutation. The crossover and mutation mechanisms are shown in Figure 2

and Figure 3. In the crossover process, each child inherits some of the genes from the parent. In the mutation

process, some genes from the parent are shifted to produce a child. After reproduction process, then it goes

into evaluation to combine the reproductive chromosomes with the existing population. The selected

chromosomes will be passed to the next generation.

Figure 1. Real-coded chromosome representation

Figure 2. One cut poin crossover

Figure 3. Insertion mutation

3.2. ED-Migration of SPGA

Each subpopulation improves separately. There is one individual in each subpopulation that will be

migrated to the next subpopulation in order to improve the variety of solutions. The migrations scheme is

presented in Figure 4.

  ISSN: 2252-8938

Int J Artif Intell, Vol. 11, No. 3, September 2022: 826-835

830

Figure 4. Migration sceme

Ten individuals from first subpopulation and the best individual from the next population have been

choosen. The ten individuals of first subpopulation are compared to the best individual of next subpopulation

by using one dimention Euclidean Distance. The Euclidean Distance formulation is presented in (1).

𝐸𝐷 = √(𝑥1 − 𝑥2)2 (7)

ED means the distance between chromosome x1 and x2. x1 is a chromosome on the first sub-

population and x2 is a chromosome on the second sub-populasi. By applying Euclidean Distance formulation,

we cam found the chromosomes with the longest distance. The chromosome with the longest distance will

replaces the best individual in the next subpopulation.

4. EXPERIMENTAL RESULT AND ANALYSIS

This section explains the experimental results of all three methods performance consists of classical

GA, SPGA and EDSPGA. The results refer to parameter testing of classical GA as the basis SPGA and

EDSPGA parameter testing. First, we evaluate the parameter of classical GA that consist of population size

(popsize) testing showed in Figure 5 for fitness value and Figure 6 for computational time. Figure 5 shows

that the convergence point is at popsize 600. Popsize is tested from 10 and stopped at 1,000 because after

popsize 600 there is no significant increase in fitness value. While it is showed in Figure 6 that the

computational time is continuously increasing as the popsize value increases.

Figure 5. Fitness value in population size testing

Int J Artif Intell ISSN: 2252-8938 

Optimization of agricultural product storage using real-coded … (Wayan Firdaus Mahmudy)

831

Figure 6. Computational time in population size testing

The next parameter test is number of generations testing showed in Figure 7 for fitness value and

Figure 8 for computational time. Figure 7 shows that there is no significant change in the fitness value after

70 generations. Therefore, the best solution can be reached at 70 generations. Meanwhile, the computational

time increase continuously as generation raises as shown in Figure 8. In this case, we found that small

number of generations with the bigger population size can provide better result than small number of

population size with bigger number of generations.

Figure 7. Fitness value in number of generations test

Figure 8. Computational time in number of generations test

Good result is a good solution that is provided not only with a good fitness value but also a short

computational time. Therefore, we set the number of generations as 70 wich is got from the test before with

popsize 600. Last parameter testing of classical GA is crossover rate (cr) and mutation rate (mr) combination.

The test uses 600 populations and 70 generations that is showed in Figure 9 for fitness value and Figure 10

for computational time.

  ISSN: 2252-8938

Int J Artif Intell, Vol. 11, No. 3, September 2022: 826-835

832

Figure. 9 Fitness value in cr and mr testing

Figure 10. Computational time in cr and mr testing

Test for cr and mr is carried out several times the best combination values of cr and mr. The values

are used for population size and number of generation test. Figure 9 showed that the best value of cr and mr

is 0.8 and 0.2 respectively. However, the computation time is lower in cr and mr of 0.9 and 0.1 with slighthy

lower fitness value. Therefore, cr and mr used in this case are 0.9 and 0.1. The best values of each parameter

of classical GA is used to discover the best number of subpopulations in SPGA and EDSPGA that is showed

in Figure 11 for fitness value and Figure 12 for computational time.

Figure. 11 Fitness comparation of SPGA and EDSPGA

Crossover and mutation rates for SPGA and EDSPGA are 0.9 and 0.1, referring to the results of the

classical GA parameter tests that were carried out previously. The generation is determined to be 20 because

there are no significant changes in the 20th generation of SPGA. Population size and number of sub-

Int J Artif Intell ISSN: 2252-8938 

Optimization of agricultural product storage using real-coded … (Wayan Firdaus Mahmudy)

833

populaton tests are carried out concurrently because high popsize does not always provide a better fitness

value but provides a longer computational time referring to Figure 11. This is influenced by the generated

number of sub-population. In Figure 8 it can be seen that population size of 40 and sub-population of 40

produce the highest fitness value and faster computation time than the larger number of popsize and subpop.

Figure 12. Computational time of SPGA and EDSPGA

Figure 11 shows that average fitness value of SPGA and EDSPGA are equally increase at

population size of 30 and sub-population of 40 which is 0.975. Although at population size of 40 and sub-

population of 30 EDSPGA decreased by 2.56% compared to SPGA, EDSPGA iss able to provide a higher

increase than SPGA without much different of the computational time from the previous population size of

20 and sub-population of 20. It shows that EDSPGA directly gives better fitness value not far from begining.

Therefore, we can say that the performance of EDSPGA is better than SPGA for the same number of

popsizes and subpops. However, in this case, we found that in EDSPGA, a low populationsize along with a

higher sub-population number provides better fitness value. This is indicated by an increase of fitness value

on population size of 30 and sub-population number of 40 from 0.95 to 0.975 and a decrease in the fitness

value on population-size 40 and sub-population number of 30 from 0.975 to 0.95. Based on the experiments

that have been done, we compare the performance of SPGA with ED respect to classical GA and SPGA

without ED. The comparation of fitness average is showed in Table 3.

Table 3. Test Result of GA, SPGA, and SPGA with eulidean distance
Test GA SPGA EDSPGA

Fitness Time Fitness Time Fitness Time

1 0.055555 0.158 1.0 2.81 1.0 2.1

2 0.142857 0.0624 1.0 2.62 1.0 2.17
3 0.058823 0.0625 1.0 2.56 1.0 1.04

4 0.076923 0.0625 1.0 2.63 1.0 2.08

5 0.166666 0.0817 1.0 2.51 1.0 2.04
6 0.333333 0.0625 0.5 2.67 1.0 2.1

7 0.25 0.0468 1.0 2.66 1.0 2.12

8 0.5 0.0781 1.0 2.45 1.0 2.06
9 0.333333 0.0683 1.0 2.71 1.0 2.02

10 0.02439 0.0575 1.0 2.77 1.0 2.13

11 0.071428 0.0625 1.0 2.57 1.0 2.24
12 0.05 0.0625 1.0 2.72 1.0 2.17

13 0.037037 0.0867 1.0 2.69 1.0 2.24

14 0.125 0.0539 1.0 2.53 1.0 2.16
15 0.5 0.0751 1.0 2.49 1.0 2.33

16 0.017543 0.0583 1.0 2.44 1.0 2.25

17 0.2 0.0697 1.0 2.62 1.0 2.27
18 0.166666 0.0625 1.0 2.76 1.0 2.1

19 0.111111 0.0708 1.0 2.84 1.0 2.27

20 0.25 0.0781 1.0 2.76 1.0 2.15
Average 0.173533 0.07102 0.975 2.6405 1.0 2.102

  ISSN: 2252-8938

Int J Artif Intell, Vol. 11, No. 3, September 2022: 826-835

834

Table 3 summarizes the computational time of classical GA is 0.07102 seconds, SPGA is 2.6405

seconds and SPGA with Euclidean Distance is 2.012 seconds. SPGA reaches the higher fitness value of

2.102, while classical GA is 0.173533 and basic SPGA 0.95. Even the computational time of EDSPGA is

longer than classical GA and basic SPGA, we have found that EDSPGA giving the best result in fitness

average among classical GA and basic SPGA. Thus, it proves the effectiness of the proposed migration

mechanism to maintain population diversity and avoid an early convergence.

5. CONCLUSION

The computational experiment proves that GA, SPGA and EDSPGA could effectively solve the

problem the knapsack problem. However, based on the same parameters with SPGA, GA only reaches 17.8%

of SPGA fitness value. On the other hand, although EDSPGA requires a longer computational time, the result

of EDSPGA is increased by 2.56% from SPGA fitness value. The next research as future work can be

considered as i) discovering SPGA and EDSPGA performance by not only test popsize and subpop but also

the generation and adaptive changing of crossover rate and mutation rate and ii) exploring the complexity of

the problem and applying the method to solve more complex problems.

REFERENCES
[1] L. Shen et al., “Inventory optimization of fresh agricultural products supply chain based on agricultural superdocking,” J. Adv.

Transp., pp. 1–13, Jan. 2020, doi: 10.1155/2020/2724164.

[2] F. D. Croce, F. Salassa, and R. Scatamacchia, “An exact approach for the 0–1 knapsack problem with setups,” Comput. Oper.

Res., vol. 80, pp. 61–67, Apr. 2017, doi: 10.1016/j.cor.2016.11.015.
[3] Y. Feng and G.-G. Wang, “A binary moth search algorithm based on self-learning for multidimensional knapsack problems,”

Futur. Gener. Comput. Syst., vol. 126, pp. 48–64, Jan. 2022, doi: 10.1016/j.future.2021.07.033.

[4] Y. He and X. Wang, “Group theory-based optimization algorithm for solving knapsack problems,” Knowledge-Based Syst., vol.
219, May 2021, doi: 10.1016/j.knosys.2018.07.045.

[5] I. M. Ali, D. Essam, and K. Kasmarik, “Novel binary differential evolution algorithm for knapsack problems,” Inf. Sci. (Ny)., vol.

542, pp. 177–194, Jan. 2021, doi: 10.1016/j.ins.2020.07.013.
[6] N. Thongsri, P. Warintarawej, S. Chotkaew, and W. Saetang, “Implementation of a personalized food recommendation system

based on collaborative filtering and knapsack method,” Int. J. Electr. Comput. Eng., vol. 12, no. 1, pp. 630–638, Feb. 2022, doi:

10.11591/ijece.v12i1.pp630-638.
[7] C. Changdar, G. S. Mahapatra, and R. K. Pal, “An improved genetic algorithm based approach to solve constrained knapsack

problem in fuzzy environment,” Expert Syst. Appl., vol. 42, no. 4, pp. 2276–2286, Mar. 2015, doi: 10.1016/j.eswa.2014.09.006.

[8] Y. Zhou, M. Zhao, M. Fan, Y. Wang, and J. Wang, “An efficient local search for large-scale set-union knapsack problem,” Data
Technol. Appl., vol. 55, no. 2, pp. 233–250, Apr. 2021, doi: 10.1108/DTA-05-2020-0120.

[9] Q. Zhai, Y. He, G. Wang, and X. Hao, “A general approach to solving hardware and software partitioning problem based on

evolutionary algorithms,” Adv. Eng. Softw., vol. 159, Sep. 2021, doi: 10.1016/j.advengsoft.2021.102998.
[10] X. Yang, Y. Zhou, A. Shen, J. Lin, and Y. Zhong, “A hybrid ant colony optimization algorithm for the knapsack problem with a

single continuous variable,” in Proceedings of the Genetic and Evolutionary Computation Conference, Jun. 2021, pp. 57–65., doi:

10.1145/3449639.3459343.
[11] O. Kabadurmus, M. F. Tasgetiren, H. Oztop, and M. S. Erdogan, “Solving 0-1 Bi-objective multi-dimensional knapsack problems

using binary genetic algorithm,” in Studies in Computational Intelligence, vol. 906, 2021, pp. 51–67., doi: 10.1007/978-3-030-

58930-1_4.
[12] A. Syarif, D. Anggraini, K. Muludi, W. Wamiliana, and M. Gen, “Comparing various genetic algorithm approaches for multiple-

choice multi-dimensional knapsack problem (mm-KP),” Int. J. Intell. Eng. Syst., vol. 13, no. 5, pp. 455–462, Oct. 2020, doi:
10.22266/ijies2020.1031.40.

[13] A. Rahmi, W. F. Mahmudy, and M. Z. Sarwani, “Genetic algorithms for optimization of multi-level product distribution,” Int. J.

Artif. Intell., vol. 18, no. 1, pp. 135–147, 2020.
[14] Q. Kotimah, W. F. Mahmudy, and V. N. Wijayaningrum, “Optimization of fuzzy Tsukamoto membership function using genetic

algorithm to determine the river water,” Int. J. Electr. Comput. Eng., vol. 7, no. 5, pp. 2838–2846, Oct. 2017, doi:

10.11591/ijece.v7i5.pp2838-2846.
[15] V. Meilia, B. D. Setiawan, and N. Santoso, “Extreme learning machine weights optimization using genetic algorithm in electrical

load forecasting,” J. Inf. Technol. Comput. Sci., vol. 3, no. 1, pp. 77–87, 2018.

[16] Z. A. Ali, S. A. Rasheed, and N. N. Ali, “An enhanced hybrid genetic algorithm for solving traveling salesman problem,”
Indones. J. Electr. Eng. Comput. Sci., vol. 18, no. 2, pp. 1035–1039, 2020, doi: 10.11591/ijeecs.v18.i2.pp1035-1039.

[17] S. D L, “Energy efficient intelligent routing in WSN using dominant genetic algorithm,” Int. J. Electr. Comput. Eng., vol. 10, no.

1, pp. 500–511, Feb. 2020, doi: 10.11591/ijece.v10i1.pp500-511.
[18] A. M. Hemeida, O. M. Bakry, A.-A. A. Mohamed, and E. A. Mahmoud, “Genetic algorithms and satin bowerbird optimization for

optimal allocation of distributed generators in radial system,” Appl. Soft Comput., vol. 111, Nov. 2021, doi:

10.1016/j.asoc.2021.107727.
[19] A. El Beqal, B. Benhala, and I. Zorkani, “A genetic algorithm for the optimal design of a multistage amplifier,” Int. J. Electr.

Comput. Eng., vol. 10, no. 1, pp. 129–138, Feb. 2020, doi: 10.11591/ijece.v10i1.pp129-138.

[20] W. F. Mahmudy, M. Z. Sarwani, A. Rahmi, and A. W. Widodo, “Optimization of multi-stage distribution process using improved
genetic algorithm,” Int. J. Intell. Eng. Syst., vol. 14, no. 2, pp. 211–219, 2021.

[21] K. Kamil, K. H. Chong, H. Hashim, and S. A. Shaaya, “A multiple mitosis genetic algorithm,” IAES Int. J. Artif. Intell., vol. 8, no.

3, pp. 252–258, Dec. 2019, doi: 10.11591/ijai.v8.i3.pp252-258.
[22] S. Malik and S. Wadhwa, “Preventing premature convergence in genetic algorithm using DGCA and elitist technique,” Int. J.

Adv. Res. Comput. Sci. Softw. Eng., vol. 4, no. 6, pp. 410–418, 2014.

Int J Artif Intell ISSN: 2252-8938 

Optimization of agricultural product storage using real-coded … (Wayan Firdaus Mahmudy)

835

[23] S. Masrom, M. Mohamad, S. M. Hatim, N. Baharun, N. Omar, and A. S. Abd. Rahman, “Different mutation and crossover set of
genetic programming in an automated machine learning,” IAES Int. J. Artif. Intell., vol. 9, no. 3, pp. 402–408, Sep. 2020, doi:

10.11591/ijai.v9.i3.pp402-408.

[24] G. E. Yuliastuti, A. Mustika, W. Firdaus, and I. Pambudi, “Optimization of multi-product aggregate production planning using
hybrid simulated annealing and adaptive genetic algorithm,” Int. J. Adv. Comput. Sci. Appl., vol. 10, no. 11, pp. 484–489, 2019,

doi: 10.14569/IJACSA.2019.0101167.

[25] A. P. Rifai, P. A. Kusumastuti, S. T. W. Mara, R. Norcahyo, and S. Z. Md Dawal, “Multi-operator hybrid genetic algorithm-
simulated annealing for reentrant permutation flow-shop scheduling,” ASEAN Eng. J., vol. 11, no. 3, pp. 109–126, Apr. 2021, doi:

10.11113/aej.v11.16875.

[26] A. Iranmanesh and H. R. Naji, “DCHG-TS: a deadline-constrained and cost-effective hybrid genetic algorithm for scientific
workflow scheduling in cloud computing,” Cluster Comput., vol. 24, no. 2, pp. 667–681, Jun. 2021, doi: 10.1007/s10586-020-

03145-8.

[27] A. K. Ariyani, W. F. Mahmudy, and Y. P. Anggodo, “Hybrid genetic algorithms and simulated annealing for multi-trip vehicle
routing problem with time windows,” Int. J. Electr. Comput. Eng., vol. 8, no. 6, pp. 4713–4723, 2018, doi:

10.11591/ijece.v8i6.pp.4713-4723.

[28] A. A. K. Taher and S. M. Kadhim, “Improvement of genetic algorithm using artificial bee colony,” Bull. Electr. Eng. Informatics,
vol. 9, no. 5, pp. 2125–2133, Oct. 2020, doi: 10.11591/eei.v9i5.2233.

[29] M. L. Seisarrina, I. Cholissodin, and H. Nurwarsito, “Invigilator examination scheduling using partial random injection and

adaptive time variant genetic algorithm,” J. Inf. Technol. Comput. Sci., vol. 3, no. 2, pp. 113–119, Nov. 2018, doi:
10.25126/jitecs.20183250.

[30] F. Uysal, R. Sonmez, and S. K. Isleyen, “A graphical processing unit‐based parallel hybrid genetic algorithm for resource‐

constrained multi‐project scheduling problem,” Concurr. Comput. Pract. Exp., vol. 33, no. 16, Aug. 2021, doi: 10.1002/cpe.6266.
[31] A. Marrero, E. Segredo, and C. Leon, “A parallel genetic algorithm to speed up the resolution of the algorithm selection

problem,” in Proceedings of the Genetic and Evolutionary Computation Conference Companion, Jul. 2021, pp. 1978–1981., doi:

10.1145/3449726.3463160.
[32] W. N. Abdullah and S. A. Alagha, “A parallel adaptive genetic algorithm for job shop scheduling problem,” J. Phys. Conf. Ser.,

vol. 1879, no. 2, May 2021, doi: 10.1088/1742-6596/1879/2/022078.

[33] X. Shi, W. Long, Y. Li, and D. Deng, “Multi-population genetic algorithm with ER network for solving flexible job shop
scheduling problems,” PLoS One, vol. 15, no. 5, May 2020, doi: 10.1371/journal.pone.0233759.

BIOGRAPHIES OF AUTHORS

Wayan Firdaus Mahmudy obtained a Bachelor of Science degree from the

Mathematics Department, Brawijaya University in 1995. His Master in Informatics Engineering

degree was obtained from the Sepuluh Nopember Institute of Technology, Surabaya in 1999

while a Ph.D. in Manufacturing Engineering was obtained from the University of South

Australia in 2014. He is a Professor at Department of Computer Science, Brawijaya University

(UB), Indonesia. His research interests include optimization of combinatorial problems and

machine learning. He can be contacted at email: wayanfm@ub.ac.id.

Nindynar Rikatsih received Bachelor of Computer degree and her Master in

Computer Science degree from Faculty of Computer Science, Brawijaya University (UB) in

2016 and 2020 respectively. She is currently a lecturer in Institut Technology, Science and

Health of Hospital dr. Soepraoen, Malang. Her research interests include evolutionary

algorithms, optimization problems, and data mining. She can be contacted at email:

R.Nindynar@gmail.com.

Syafrial received Bachelor of Socio-economic degree from Faculty of Agriculture,

Brawijaya University (UB) in 1982 and received Master and Doctor degree in the field of

Agricultural Economic Science, Bogor Agricultural University in 1986 and 2003 respectively.

He is currently a senior lecturer of Agricultural Sosio-Economic Department in Faculty of

Agriculture, Universitas Brawijaya. He can be contacted at email: syafrial.fp@ub.ac.id.

https://orcid.org/0000-0002-0965-206X
https://scholar.google.com/citations?user=E40omM8AAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=55779190600
https://publons.com/researcher/4868896/wayan-firdaus-mahmudy/
https://orcid.org/0000-0001-9380-8006
https://scholar.google.com/citations?user=ReU9XxcAAAAJ&hl=id
https://www.scopus.com/authid/detail.uri?authorId=57208597678
https://publons.com/researcher/4915018/nindynar-rikatsih/
https://orcid.org/0000-0002-7394-9044
https://scholar.google.com/citations?hl=en&user=x5lKf-8AAAAJ

