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 The storage of fresh agricultural products is a combinatorial problem that 

should be solved to to maximize number of items in the storage and also 

maximize the total profit without exceed the capacity of storage. The 

problem can be addressed as a knapsack problem that can be classified as 

NP-hard problem. We propose a genetic algorithm (GA) based on sub-

population determination to address the problem. Sub-population GA can 

naturally divide the population into a set of sub-population with certain 

mechanism in order to obtain a better result. GA based on sub-population is 

applied by generating a set of sub-population which is happened in the 

process of initializing population. A special migration mechanism is 

developed to maintain population diversity. The experiment shows GA 

based on sub-population determination provide better results comparable to 

those achieved by classical GA. 
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1. INTRODUCTION 

Fresh agricultural products are a daily need for the community. The products are perishable and 

must be stored at the proper condition before being shipped to distributors or retailers [1]. In doing product 

storage, we need to pay attention to the product value and the profit that must be gained. For agricultural 

products that the stock needs to be always available with a good quality, trader has to maximize number of 

items in the storage and maximize the total profit without exceed the capacity of storage. Therefore, trader 

should do the right way of product storage to get maximum profit. The storage of fresh agricultural products 

problem could be addressed as a knapsack problem. 

Knapsack problem is a combinatorial and optimization problem that is often encountered in daily 

life and real industrial problems such as project selection, capital budgeting, cargo loading, and bin packing. 

[2], [3]. Knapsack problem also has a set of application for budgeting project, selection of items, material, 

and cost-effective development [4]–[6]. Optimization of knapsack problems is implemented to determine a 

number of items with a certain value that will be included into a container without exceeding the capacity of 

the container. The item selection is expected to provide maximum profit [7]. 

Various methods have been developed to solve knapsack problems such as local search, heuristics, 

meta-heuristic, and hybridization methods. For example, a local search is modified to efficiently solve a large 

scale knapsack problem [8]. An evolutionary algorithm based approach is developed to solve 

hardware/software partitioning that is considered as a variant of knapsack problem [9]. A hybrid approaches 

are also developed to addres the complexity of the knapsack problem. For instance, ant colony optimization 

https://creativecommons.org/licenses/by-sa/4.0/
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and differential evolution algorithm are combined to explore strong characteristic of each method to solve 

different part the knapsack problem [10]. 

In this research we propose genetic algorithm (GA) to solve the problem because it is simple, easy 

to use and has a wide search area. GA is one of the meta-heuristic methods which has been proven that can 

be used to solve knapsack problems [11], [12]. GA is a meta-heuristic search algorithm that can provide 

optimal solutions by adopting mechanism of biological evolution and natural selection [13], [14]. GA 

consists of several steps including population initialization, crossover and mutation as a reproductive process 

to produce new solutions and the last is selection to get the best solution [15], [16]. GA is proved to 

effectively solve the optimization problem [17]–[19]. However, GA has weakness that is easy to be trapped 

in local optimum [20], [21]. It happens when the population of GA reaches a suboptimal state that the genetic 

operators produce offspring with a performance that can not be better than their parents [22]. The previous 

research uses dynamic genetic clustering algorithm and elitist technique to prevent premature convergence in 

GA [9]. A proper combination of crossover and mutation methods may be used to increase the GA 

performance [23]. The other research uses hybrid adaptive GA to overcome GA weakness. It combines GA 

with other algorithms to get better solutions [24]–[28]. The other way to solve GA weakness is by giving 

random injection [29]. 

To solve that weakness of GA, we propose GA based on subpopulation. This approach is adopting 

mechanism of parallel GA with the population that is naturally divided into a number of sub-populations that 

evolve and converge with a significant independence level [30]. Parallel GA can improve computational 

efficiency over classical GA. It also facilitates parallel exploration of solution space to get the better solutions 

[31]. GA based on sub-population determination solves GA weakness by keeping individual variety by 

setting the best individual of one sub-population to another population. A special migration mechanism is 

developed to maintain population diversity [32]. It is applied to get out of local optimum that cause 

premature convergence and increase the quality of the solutions. Therefore, in this research we propose GA 

based on sub-population determination to solve knapsack problem of agricultural product storage. 

 

 

2. THE PROPOSED APPROACH  

This section is divided into three parts that consists of problem statement, proposed fitness function 

to evaluate the quality of solutions, and mechanism of sub-population GA (SPGA) with a special migration. 

First, we make the detail of statement problem to prepare the basic formulation to create fitness function. 

Then, we present fitness function before entering the main procedure of SPGA. 

 

2.1.  Problem statement 

The problem addressed in this study is optimization of agricultural product storage that is conducted 

by traders. The agricultural product is stored in storage with certain quantity in kilograms without exceed the 

capacity and represented by product 1, product 2, product 3, and so on. In this study, it is assumed that the 

available capacity is 5,000 kg. Although storing more items will potentially get higher profits, but there are 

additional costs that must be incurred if the items exceed the storage capacity. If the agricultural product 

quantity exceeds the available capacity, it is necessary to rent a storage place to another party at a cost of IDR 

100 per kg. Example of possible solutions are presented in Table 1. 

 

 

Table 1. Example of product quantity combination 
No Product 1 Product 2 Product 3 Product 4 Product 5 Product 6 Product 7 Product 8 

1 4,000 1,500 2,000 200 200 150 150 150 

2 5,500 4,000 1,000 300 500 150 100 200 
3 3,000 5,000 1,500 200 100 150 300 200 

4 5,000 2,000 1,500 300 170 100 250 150 

5 2,000 4,000 3,000 100 100 250 150 100 

 

 

Based on Table 1 there are five combinations of the product quantity where the first one shows that 

the quantity of product 1 is 4,000 kg, product 2 is 1,500 kg, product 3 is 2,000 kg and the last product which 

is product 8 is 150 kg. Trader should find the appropriate quantity combination of the product because the 

quantity combination affects the profit. The calculation of gaining profit is showed in (1) to (5). 

 

𝑇𝐶 = (∑ 𝑃𝑥1𝑖𝑄𝑖
𝑛
𝑖=1 ) + 𝑃𝑥2 (1) 

 

𝑇𝑅 = (∑ 𝑃𝑦1𝑖𝑄𝑖
𝑛
𝑖=1 ) (2) 
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𝑇𝑅𝑐𝑢𝑟𝑟𝑒𝑛𝑡 =  ∑ (𝑃𝑦1𝑖𝑄𝑦1𝑖 +𝑛
𝑖=1 𝑃𝑦2𝑖𝑄𝑦2𝑖) (3) 

 

𝑇𝑃𝐹𝑚𝑎𝑥 = 𝑇𝑅 − 𝑇𝐶 (4) 
 

𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 𝑙𝑜𝑠𝑒𝑠 = 𝑇𝑅𝑐𝑢𝑟𝑟𝑒𝑛𝑡 − 𝑇𝐶 (5) 
 

𝑇𝑃𝐹 is the total profit which is gained from total revenue and total cost. Total revenue is represented 

by 𝑇𝑅 while total cost is represented by 𝑇𝐶. 𝑇𝐶 is obtained from the purchase price per product (𝑃𝑥1) 

multiplied by quantity (𝑄) and summed by other expenses represented by 𝑃𝑥2. 𝑇𝑅 is the selling price per 

product represented by 𝑃𝑦1 and multiplied by Q. Maximum profit represented by 𝑇𝑃𝐹𝑚𝑎𝑥 . 𝑇𝑃𝐹𝑚𝑎𝑥  is 

obtained by all products that are stored as many as Q without exceeding the capacity. Those all products also 

should be sold out. However, not all products are sold out because the products are sold according to demand 

represented by 𝑄𝑦1 with a selling price of 𝑃𝑦1 so that there was a remaining stock of 𝑄𝑦2 which experienced 

a decrease in the selling price of 𝑃𝑦2. Therefore, the actual income obtained is the sales profit based on 

demand and stock sales with a decrease in price which is defined as the current total revenue 𝑇𝑅𝑐𝑢𝑟𝑟𝑒𝑛𝑡 . So 

that the profit is generated from total income minus expenses, namely as potential losses. An example of 

calculating profit is presented in Table 2. 

 

 

Table 2. Profit calculation 
Product Product 1 Product 2 Product 3 Product 4 Product 5 Product 6 Product 7 Product 8 

Product quantity (kg) 4,000 1,500 2,000 200 200 150 150 150 

Purchase cost per 

kilogram (Rp) 

3,200 5,500 1,500 3,000 8,000 9,000 5,000 2,500 

Purchase cost of each 

product (Rp) 

12,800,000 8,250,000 3,000,000 600,000 1,600,000 1,350,000 750,000 375,000 

Total purchase cost (Rp) 28,725,000 

Expenses (Rp) 3,075,000 

Excess capacity cost 
(Rp) 

335,000 

Total cost (TC) 32,135,000 

Market demand (kg) 3,000 1,000 1,500 160 180 100 120 100 
Selling price per 

kilogram 

3,700 6,500 2,000 5,000 9,000 11,000 6,000 4,000 

Selling price according 
to market demand 

11,100,000 6,500,000 3,000,000 800,000 1,620,000 1,100,000 720,000 400,000 

Total revenue (TR) 25,240,000 

Stock (kg) 1,000 500 500 40 20 50 30 50 
Selling price of stock per 

kilogram 

3,500 6,000 1,000 4,500 8,500 10,000 5,000 3,000 

Selling price of stock 3,500,000 3,000,000 500,000 180,000 170,000 500,000 150,000 150,000 
Total revenue (TR) of 

stock 

8,150,000 

Current total revenue 
(TR current) 

33,390,000 

Maximum selling price 14,800,000 9,750,000 4,000,000 1,000,000 1,800,000 1,650,000 900,000 600,000 

Maximum total revenue 
max (TR max) 

34,500,000 

Maximum total profit 

(TPF max) 

2,365,000 

Potential Loses 1,255,000 

 

 

2.2.  Proposed fitness function 

Fitness value represents the quality of the solution produced by GA. The solution that provides 

maximum benefit is considered as a good solution. High fitness value represents high quality of solution 

which shows the high profit that can be provided. The determination of fitness function depends on 

calculating profit based on formulas (1) to (5). Hence, we consider the fitness function that is showed in (6). 
 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 =
1000

𝑇𝑃𝐹𝑚𝑎𝑥− 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 𝑙𝑜𝑠𝑒𝑠
 (6) 

 

2.3.  Special migration on sub-population genetic algorithm (GA) 

The GA is proposed by John Holand in 1975. GA is a heuristic method that mimic the mechanism 

of biological evolution and applies natural selection to obtain optimal solutions [5]. We apply classical GA 

with sub-population to solve the problem in this study. 
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Sub-population GA which is called SPGA in this research adopts mechanism of parallel GA with 

the population that is naturally divided into a number of sub-populations [33]. Similarity of sub-population 

GA and single-population GA is both of them applies several steps that are preceded by initialization of the 

population containing chromosomes that represent the solution. Furthermore, chromosomes are developed to 

get new variations by using crossover mutation process and selection. However, there is the difference of 

Sub-population GA with respect to single population GA that each sub-population of SPGA iterates in 

parallel and share each other their individuals that are called migrant to improve the solutions. There are 

many ways to implement SPGA but this study uses a different SPGA from the other SPGA. We use 

Euclidean Distance in migrating the solutions, thus we call it Euclidean Distance sub-population GA 

(EDSPGA). The Euclidean Distance will be explained in section of migration. 

 

 

3. METHODOLOGY  

3.1.  General steps of genetic algorithm 

SPGA begins with population initialization and being continued by crossover, mutation, evaluation, 

migration between sub-population and finally the selection. Based on the approaches in knapsack problems, 

we propose real-coded chromosome representation as shown in Figure 1. Each number represents the 

quantity of product stored.  

The chromosomes which have been initialized are improved by a reproduction process consisting of 

one cut point crossover and random mutation. The crossover and mutation mechanisms are shown in Figure 2 

and Figure 3. In the crossover process, each child inherits some of the genes from the parent. In the mutation 

process, some genes from the parent are shifted to produce a child. After reproduction process, then it goes 

into evaluation to combine the reproductive chromosomes with the existing population. The selected 

chromosomes will be passed to the next generation. 

 

 

 
 

Figure 1. Real-coded chromosome representation 

 

 

 
 

Figure 2. One cut poin crossover 

 

 

 
 

Figure 3. Insertion mutation 

 

 

3.2.  ED-Migration of SPGA 

Each subpopulation improves separately. There is one individual in each subpopulation that will be 

migrated to the next subpopulation in order to improve the variety of solutions. The migrations scheme is 

presented in Figure 4. 
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Figure 4. Migration sceme 

 

 

Ten individuals from first subpopulation and the best individual from the next population have been 

choosen. The ten individuals of first subpopulation are compared to the best individual of next subpopulation 

by using one dimention Euclidean Distance. The Euclidean Distance formulation is presented in (1). 

 

𝐸𝐷 =  √(𝑥1 − 𝑥2)2 (7) 

 

ED means the distance between chromosome x1 and x2. x1 is a chromosome on the first sub-

population and x2 is a chromosome on the second sub-populasi. By applying Euclidean Distance formulation, 

we cam found the chromosomes with the longest distance. The chromosome with the longest distance will 

replaces the best individual in the next subpopulation. 

 

 

4. EXPERIMENTAL RESULT AND ANALYSIS 

This section explains the experimental results of all three methods performance consists of classical 

GA, SPGA and EDSPGA. The results refer to parameter testing of classical GA as the basis SPGA and 

EDSPGA parameter testing. First, we evaluate the parameter of classical GA that consist of population size 

(popsize) testing showed in Figure 5 for fitness value and Figure 6 for computational time. Figure 5 shows 

that the convergence point is at popsize 600. Popsize is tested from 10 and stopped at 1,000 because after 

popsize 600 there is no significant increase in fitness value. While it is showed in Figure 6 that the 

computational time is continuously increasing as the popsize value increases. 

 

 

 
 

Figure 5. Fitness value in population size testing 
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Figure 6. Computational time in population size testing 

 

 

The next parameter test is number of generations testing showed in Figure 7 for fitness value and 

Figure 8 for computational time. Figure 7 shows that there is no significant change in the fitness value after 

70 generations. Therefore, the best solution can be reached at 70 generations. Meanwhile, the computational 

time increase continuously as generation raises as shown in Figure 8. In this case, we found that small 

number of generations with the bigger population size can provide better result than small number of 

population size with bigger number of generations. 

 

 

 
 

Figure 7. Fitness value in number of generations test 

 

 

 
 

Figure 8. Computational time in number of generations test 

 

 

Good result is a good solution that is provided not only with a good fitness value but also a short 

computational time. Therefore, we set the number of generations as 70 wich is got from the test before with 

popsize 600. Last parameter testing of classical GA is crossover rate (cr) and mutation rate (mr) combination. 

The test uses 600 populations and 70 generations that is showed in Figure 9 for fitness value and Figure 10 

for computational time. 
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Figure. 9 Fitness value in cr and mr testing 

 

 

 
 

Figure 10. Computational time in cr and mr testing 

 

 

Test for cr and mr is carried out several times the best combination values of cr and mr. The values 

are used for population size and number of generation test. Figure 9 showed that the best value of cr and mr 

is 0.8 and 0.2 respectively. However, the computation time is lower in cr and mr of 0.9 and 0.1 with slighthy 

lower fitness value. Therefore, cr and mr used in this case are 0.9 and 0.1. The best values of each parameter 

of classical GA is used to discover the best number of subpopulations in SPGA and EDSPGA that is showed 

in Figure 11 for fitness value and Figure 12 for computational time. 

 

 

 
 

Figure. 11 Fitness comparation of SPGA and EDSPGA 

 

 

Crossover and mutation rates for SPGA and EDSPGA are 0.9 and 0.1, referring to the results of the 

classical GA parameter tests that were carried out previously. The generation is determined to be 20 because 

there are no significant changes in the 20th generation of SPGA. Population size and number of sub-
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populaton tests are carried out concurrently because high popsize does not always provide a better fitness 

value but provides a longer computational time referring to Figure 11. This is influenced by the generated 

number of sub-population. In Figure 8 it can be seen that population size of 40 and sub-population of 40 

produce the highest fitness value and faster computation time than the larger number of popsize and subpop. 

 

 

 
 

Figure 12. Computational time of SPGA and EDSPGA 

 

 

Figure 11 shows that average fitness value of SPGA and EDSPGA are equally increase at 

population size of 30 and sub-population of 40 which is 0.975. Although at population size of 40 and sub-

population of 30 EDSPGA decreased by 2.56% compared to SPGA, EDSPGA iss able to provide a higher 

increase than SPGA without much different of the computational time from the previous population size of 

20 and sub-population of 20. It shows that EDSPGA directly gives better fitness value not far from begining. 

Therefore, we can say that the performance of EDSPGA is better than SPGA for the same number of 

popsizes and subpops. However, in this case, we found that in EDSPGA, a low populationsize along with a 

higher sub-population number provides better fitness value. This is indicated by an increase of fitness value 

on population size of 30 and sub-population number of 40 from 0.95 to 0.975 and a decrease in the fitness 

value on population-size 40 and sub-population number of 30 from 0.975 to 0.95. Based on the experiments 

that have been done, we compare the performance of SPGA with ED respect to classical GA and SPGA 

without ED. The comparation of fitness average is showed in Table 3. 

 

 

Table 3. Test Result of GA, SPGA, and SPGA with eulidean distance 
Test GA SPGA EDSPGA 

Fitness Time Fitness Time Fitness Time 

1 0.055555 0.158 1.0 2.81 1.0 2.1 

2 0.142857 0.0624 1.0 2.62 1.0 2.17 
3 0.058823 0.0625 1.0 2.56 1.0 1.04 

4 0.076923 0.0625 1.0 2.63 1.0 2.08 

5 0.166666 0.0817 1.0 2.51 1.0 2.04 
6 0.333333 0.0625 0.5 2.67 1.0 2.1 

7 0.25 0.0468 1.0 2.66 1.0 2.12 

8 0.5 0.0781 1.0 2.45 1.0 2.06 
9 0.333333 0.0683 1.0 2.71 1.0 2.02 

10 0.02439 0.0575 1.0 2.77 1.0 2.13 

11 0.071428 0.0625 1.0 2.57 1.0 2.24 
12 0.05 0.0625 1.0 2.72 1.0 2.17 

13 0.037037 0.0867 1.0 2.69 1.0 2.24 

14 0.125 0.0539 1.0 2.53 1.0 2.16 
15 0.5 0.0751 1.0 2.49 1.0 2.33 

16 0.017543 0.0583 1.0 2.44 1.0 2.25 

17 0.2 0.0697 1.0 2.62 1.0 2.27 
18 0.166666 0.0625 1.0 2.76 1.0 2.1 

19 0.111111 0.0708 1.0 2.84 1.0 2.27 

20 0.25 0.0781 1.0 2.76 1.0 2.15 
Average 0.173533 0.07102 0.975 2.6405 1.0 2.102 
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Table 3 summarizes the computational time of classical GA is 0.07102 seconds, SPGA is 2.6405 

seconds and SPGA with Euclidean Distance is 2.012 seconds. SPGA reaches the higher fitness value of 

2.102, while classical GA is 0.173533 and basic SPGA 0.95. Even the computational time of EDSPGA is 

longer than classical GA and basic SPGA, we have found that EDSPGA giving the best result in fitness 

average among classical GA and basic SPGA. Thus, it proves the effectiness of the proposed migration 

mechanism to maintain population diversity and avoid an early convergence. 

 

 

5. CONCLUSION  

The computational experiment proves that GA, SPGA and EDSPGA could effectively solve the 

problem the knapsack problem. However, based on the same parameters with SPGA, GA only reaches 17.8% 

of SPGA fitness value. On the other hand, although EDSPGA requires a longer computational time, the result 

of EDSPGA is increased by 2.56% from SPGA fitness value. The next research as future work can be 

considered as i) discovering SPGA and EDSPGA performance by not only test popsize and subpop but also 

the generation and adaptive changing of crossover rate and mutation rate and ii) exploring the complexity of 

the problem and applying the method to solve more complex problems.  
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