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 Autonomous driving is one solution that can minimize and even prevent 

accidents. In autonomous driving, the vehicle must know the surrounding 

environment and move under the provisions and situations. We build an 

autonomous driving system using proximal policy optimization (PPO) in 

deep reinforcement learning, with PPO acting as an instinct for the agent to 

choose an action. The instinct will be updated continuously until the agent 

reaches the destination from the initial point. We use five sensory inputs for 

the agent to accelerate, turn the steer, hit the brakes, avoid the walls, detect 

the initial point, and reach the destination point. We evaluated our proposed 

autonomous driving system in a simulation environment with several 

branching tracks, reflecting a real-world setting. For our driving simulation 

purpose in this research, we use the Unity3D engine to construct the dataset 

(in the form of a road track) and the agent model (in the form of a car). Our 

experimental results firmly indicate our agent can successfully control a 

vehicle to navigate to the destination point.  
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1. INTRODUCTION 

Nowadays, technology is developing so fast, one of them being in the transportation field. Everyone 

wanted to do something instantly. Even though people are already supported by high technology, a chance 

for a horrible incident might still happen because of human negligence factors [1]. In the case of driving a 

car, with a lot of technology implemented in a vehicle, there are still many car accidents in this world. 

According to this condition, many researchers have researched to solve the vehicle accident problem. One is 

autonomous driving [1], a car that can move without a driver. Not just moving, the car must avoid an 

accident in the environment. The vehicle is forced to know about its environment and move based on some 

rules and situations. In fact, collecting and analyzing information related to driver behavior while driving is 

essential as an input for the automation system connected to the agent learning process [2].  

The rapid advances in autonomous driving technology are mainly supported by advances in the area of 

deep learning and artificial intelligence, especially the increasing use of convolutional neural network (CNN) 

dan deep reinforcement learning (DRL) [3]. Some researchers integrated CNN in their proposed autonomous 

driving and related system [4]–[9] for processing spatial information and can be viewed as image feature 

extractors. Tian et al. [4] conducted the autonomous driving experiment using a deep neural network (DNN) by 

incorporating several inputs such as steering angle, brake, acceleration, light detection and ranging (LIDAR) 

input, and infrared (IR) sensor input; thus, there will be many variances of the possibility observed. Li et al. [5] 

proposed a human-like driving system to give autonomous vehicles the ability to make decisions like humans 
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using CNN to detect, recognize and abstract the information in the input road scene captured by the onboard 

sensors. Instead of using color images, in terms of red-green-blue (RGB) images, which is unstable as they 

claimed, they used only depth information in their system. Wu et al. [6] proposed convolutional layers to extract 

feature maps and compute bounding boxes and class probabilities as the output layer. They claimed that their 

model leads to a small model size and better energy efficiency as these constraints were needed in the real-time 

inference of autonomous driving. Navarro et al. [7] also proposed several end-to-end DNN architectures to 

generate vehicle speed and steering wheel angle control actions. Teti et al. [8] studied using several CNN 

architectures on an end-to-end steering system. They showed their findings by reporting each network's lap 

completion rate and path smoothness. Also, Dai and Lee [9] used fully CNN to detect curve lanes in the real-

time lane detection for their autonomous driving simulation system 

Meanwhile, the use of DRL is equally essential, along with the increasing complexity of learning 

policies in high-dimensional environments [10], [11]. DRL cannot be separated from reinforcement learning 

(RL), where RL is a promising solution, especially in driving policy, predictive perception, and path and 

motion planning. Also, the integration of DRL in the autonomous driving system is heavily influenced by the 

advantages of exploration and exploitation features in RL [12]–[17]. Yu [13] experimented with using DRL 

to capture the environment object using a camera and detect the distance between the agent and the object 

using a LIDAR sensor. They produce output in terms of Q-Value. The reward and punishment value will be 

recorded within Q-Value into experience replay. In the end, the experience replay will have a role in updating 

the weight in the network, which will affect the agent in finding the destination point. Sallab et al. [12] 

incorporated recurrent neural network (RNN) for information integration in their proposed DRL framework 

for autonomous driving. They used long short-term memory (LSTM) networks to model the long-term 

dependencies on previous states as an addition to the current observation.  

Legrand et al. [17] investigated whether DRL can train efficient self-driving cars by applying DRL 

in single and multi-agent settings. In his experiment, Legrand et al. [17] tried and identified what kind of 

neural networks perform well and how single-agent models can improve multi-agent learning. Yurtsever et al. 

[14] proposed a hybrid approach for integrating a path planning pipe into a vision-based DRL framework. 

They trained the agent to follow the path planner’s waypoints and defined a reward function to give the 

penalty to the agent when he strayed away from the path or had a collision. Wang et al. [15] applied the deep 

deterministic policy gradient (DDPG) algorithm [18] in their proposed DRL framework, designing their 

network architecture for both actors and critics inside DDPG. They used the open racing car simulator 

(TORCS) as a simulation environment. Further, Pérez-Gil et al. [16] compared the implementation of deep 

Q-network (DQN) [19] and DDPG in the DRL framework. They used the open-source simulator car learning 

to act (CARLA) as a simulation environment. 

Meanwhile, managing the trade-off between exploration and exploitation has become one of the 

main challenges in reinforcement learning. The learning agent must not only explore the unknown to make 

better choices for future actions but must also exploit what he already knows to gain a reward. Based on this 

condition, the proximal policy optimization (PPO) algorithm makes the exploration and exploitation process 

more efficient [20]. In addition, using PPO through a DRL framework has become a promising approach to 

controlling multiple autonomous vehicles [21]–[23]. On the other hand, several simulation approaches have 

been used in autonomous driving research to overcome the problem of training and validating the driving 

control models [16], [24], [25].  

This paper proposed an autonomous driving system using PPO-based DRL in a simulation 

environment, Unity3D [24]. The agent's mission in this system is to reach the destination point fastest 

without hitting the wall, besides dealing with the challenges of having many road intersections in getting to 

the destination point. We defined three kinds of reward values the agent obtained for each action it took 

which may affect the application of PPO. This paper is organized: section 2 explains our proposed system. 

Section 3 describes the experimental result and analysis. Finally, the conclusion is given in section 4. 

 

 

2. PROPOSED SYSTEM 

This research aims to build an autonomous driving system that can make a car move without a 

driver and not cause an accident. The agent is said to succeed if he meets three conditions, which are i) the 

agent must not hit the wall; ii) the agent reaches the destination; iii) the agent reaches the destination in the 

fastest way. The explanations of those three conditions are: 

a) The agent must not hit the wall. The agent must stay on track and not hit the wall or the initial point in a 

specified time step parameter. 

b) The agent reaches the destination. The agent can reach the destination point successfully in a specified 

time step parameter. 

c) The agent can find the fastest way to reach the destination point. The agent must reach the destination 

point and get a reward value as much as possible in a specified time step parameter. The reward value 



                ISSN: 2252-8938 

Int J Artif Intell, Vol. 12, No. 1, March 2023: 422-431 

424 

might take effect in measuring the distance to the destination point or the number of time step the agent 

has taken. 

Since we implement the system in a simulation environment, the term 'wall' can represent many road 

conditions that a car must not hit, such as pedestrian paths, buildings, or other vehicles. The stage of the 

process of our proposed autonomous driving system can be seen in Figure 1. 

 

 

 
 

Figure 1. Proposed autonomous driving system 

 

 

2.1.  Setting up the initial state for agent 

In this step, every agent has its track by default. Each track has five initial points, as depicted in 

Figure 2. The maximum agent we use is up to ten, and the minimum agent is one. Each agent must move along 

the track until he reaches the destination point from its initial point. To give the agent variance information 

about their initial state, we take at least two agents at the same initial point in the experiment. 

 

 

 
 

Figure 2. The initial points are depicted with numbers 1, 2, 3, 4, and 5, while the destination point is shown 

with a 'star' sign 

 

 

2.2.  Agent received input from sensor 

In this stage, the agent receives inputs from each sensor the agent has, with the value of each sensor 

being random. Based on those values, the agent observes to choose the best action, which is assumed to have 

contributed to maximizing the reward. The observation process will be supported by the value of the policy 

gradient known as the policy parameter or instinct. 

 

2.3.  Agent takes an action 

This step will be conducted after the agent observes the sensor input value and predicts the best action 

the agent might take. The agent will execute the action to get the reward value and create a new state. There 

are 3 (three) types of actions that the agent might use, namely:  
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a) Accelerate: the value ranges from 0 to 1; 0 for not using acceleration at all and 1 for using maximum 

acceleration. 

b) Hit the brake: the value ranges from 0 to 1; 0 for not using the brake and 1 for using a maximum brake.  

c) Turn the steer: the value ranges from −1 to 1; −1 for rotating the steer to the left at maximum and 1 for 

rotating the steer to the right at maximum. 

 

2.4.  Calculating reward 

Each action the agent carries out will obtain a reward value. We designed 3 (three) kinds of reward 

values based on the conditions the agent must meet, as mentioned at the beginning of section 2. In subsection 

2.4.1, 2.4.2, and 2.4.3 we explained the formula used for determining the reward. 

 

2.4.1. Regarding distance to radius 

Formula (1) encourages the agent to move forward based on the agent's reward value. The reward 

depends on the position of the agent regarding a particular radius 𝑅𝑎𝑑 value in time step 𝑡, with  

𝑡 = 0, 1, 2, … , 𝑇. 𝐴𝑡 represents the agent position from radius 𝑅𝑎𝑑 of time step 𝑡, which also shows whether 

the agent is in the coverage of the radius determined. 

 

𝑅𝑒𝑤𝑎𝑟𝑑 = {

−1

√∑ (𝐴𝑡−𝐴𝑡−1)
2𝑇

𝑡=1

            , 𝐴𝑡 < 𝑅𝑎𝑑 

                    0                 , 𝐴𝑡 ≥ 𝑅𝑎𝑑 

 (1) 

 

Suppose the agent is still inside the radius coverage. In that case, the agent will get a penalty based on 

the Euclidean distance value from the current agent position 𝐴𝑡 with the previous agent position 𝐴𝑡−1. The 

closer the agent to the radius edge, the more minor the penalty will be. The example of the reward value 

obtained by the agent regarding the agent's distance to radius is shown in Table 1. To clarify, in Figure 3, we 

illustrate the agent condition inside and outside the radius. Figure 3(a) shows the agent’s position inside the 

radius. Meanwhile, in Figure 3(b), the agent appears outside the radius. 

 

 

Table 1. Example of reward values regarding agent’s distance to the radius 
Distance to radius Reward value Explanation 

50 -0.02 Inside the radius, near the radius edge 
1 -1 Inside the radius, far from the radius edge 

≥ 60 0 Outside the radius 

 

 

  
(a) (b) 

 

Figure 3. The agent position (a) the agent inside the radius and (b) the agent is outside the radius. A black 

circle represents the radius 

 

 

2.4.2. Regarding maximum time step 

In the running simulation, the agent is given a limit in carrying out the action. The time step is a 

variable that shows each action performed by the agent to produce a new state. We configure the reward value 

for each time step the agent takes to encourage the agent to find the destination.  

 

𝑅𝑒𝑤𝑎𝑟𝑑 =  −1 + (−0.01 ∗  √(𝐴𝑐 − 𝐴𝑓)
2) (2) 

 

Formula (2) is used to calculate the reward when the agent reaches the maximum time step by 

considering the distance between the agent’s current position vector 𝐴𝑐 and the finish position vector 𝐴𝑓 using 
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Euclidean distance, where 𝑐 and 𝑓 represent the coordinate position of the agent 𝐴. The more distant the agent 

from the destination point, the smaller the reward value obtained. If the agent reaches the maximum time step 

and the distance between the agent and the finish point is too far, the agent will get a significant penalty value. 

This applied to the opposite. 

 

2.4.3. Regarding collision 

Our simulation track has three types of walls: wall, initial point, and destination point. We define 

different reward values if the agent hits those walls, as shown in (3):  

a) If the agent hits the destination point, the agent will get the maximum reward (which is 15), reduced by the 

proportion of the total steps that the agent used.  

b) If the agent hits the wall, the agent will get reward −1, added with the proportion of the total steps the 

agent used and Euclidean distance value between the agent’s current position 𝐴𝑐 and finish position 𝐴𝑓. 

c) If the agent hits the initial point, the agent will get a reward value of −10, added with the proportion of the 

total steps used.  

The proportion of total steps is calculated by comparing the last time step 𝑡 (where the agent was at the time of 

the collision) with the maximum time step 𝑇. 

 

𝑅𝑒𝑤𝑎𝑟𝑑 =

{
 
 

 
 15 −

𝑡

𝑇
                                                        , 𝑎𝑔𝑒𝑛𝑡 ℎ𝑖𝑡𝑠 𝑡ℎ𝑒 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑝𝑜𝑖𝑛𝑡 

(−1 +
𝑡

𝑇
) + (−0.01 ∗ √(𝐴𝑐 − 𝐴𝑓)

2)  , 𝑎𝑔𝑒𝑛𝑡 ℎ𝑖𝑡𝑠 𝑡ℎ𝑒 𝑤𝑎𝑙𝑙 

−10 +
𝑡

𝑇
                                                    , 𝑎𝑔𝑒𝑛𝑡 ℎ𝑖𝑡𝑠 𝑡ℎ𝑒 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑝𝑜𝑖𝑛𝑡

 (3) 

 

2.5.  Checking the end of training process 

The training process will be finished when it reaches the maximum number of episodes specified in 

the experiment. We set the maximum number of episodes to five million episodes. In that condition, if the 

agent does not hit the track wall or does not yet reach the maximum step, the agent will go back to observe the 

input in the new state. Contrarily, the agent will be spawned again to the initial point. 

 

2.6.  Starting a new state 

The agent will create a new state after the agent does the action and has got the reward value based on 

the action that has been taken. The agent will record the previous action when the agent has a new state. In our 

proposed system, there will be a chance for the action and step to be used again as we were using PPO for the 

policy gradient. The explanation of why the same action might be reused in PPO will be explained in the 

following process. 

 

2.7.  Updating PPO 

The agent will update the gradient using the PPO algorithm in this stage. The agent uses policy 

parameters or instincts to choose an action based on this gradient. The process in policy gradient is shown in 

Figure 4. The explanation of Figure 4 is: i) the agent takes action based on instinct (π); ii) the agent does the 

action 𝐴𝑡; iii) the agent has formed a new state; iv) the agent adjusts the instinct based on the total reward 𝑅𝑡; 
and v) the agent takes further action based on the observed state 𝑆𝑡. The main point in the policy gradient is 

configuring instinct. To get the instinct value, we must define a set of parameters (θ). The total reward 𝐽(𝜃) for 

a given trajectory (or time step) 𝑟(𝜏) is calculated using (4). 

 

𝐽(𝜃) =  𝔼𝜋[𝑟(𝜏)] (4) 

 

 

 
 

Figure 4. Policy gradient flow 
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Formula (4) shows that the policy gradient maximizes the expected reward following a parametrized 

policy 𝔼𝜋. PPO tries to optimize the policy parameters by using a clipped surrogate objective (LCLIP(θ)), which 

follows the calculation as shown in (5) [20]. 𝜃 is the policy parameter, �̂�𝑡 denotes the empirical expectation 

over time step, 𝑟𝑡(𝜃) is the probability ratio between the old and new policies, and �̂�𝑡 is the estimated 

advantage at time step 𝑡. PPO imposes the constraint by forcing 𝑟𝑡(𝜃) to stay within a small interval around 1, 

precisely [1 − 𝜀, 1 + 𝜀], where 𝜀 is a hyperparameter, usually 0.1 or 0.2. 

 

𝐿𝐶𝐿𝐼𝑃(𝜃) = �̂�𝑡[min(𝑟𝑡(𝜃)�̂�𝑡 , 𝑐𝑙𝑖𝑝(𝑟𝑡(𝜃), 1 − 𝜀, 1 + 𝜀)�̂�𝑡)] (5) 

 

Based on the total reward that the agent obtained, the PPO formula will choose between using the old 

policy parameter or updating the new policy parameter. After the policy parameter is updated, the instinct will 

also be updated. That is why it will give the agent better instinct [20]. 

 

 

3. EXPERIMENTAL RESULTS AND DISCUSSION 

This section explains the result and analysis of simulating our proposed autonomous driving system 

in Unity3D autonomous driving simulation [24]. We also provide the data and the parameter set used in our 

simulation. We also explain the various conditions of the agent when trying to reach the destination point in 

the simulation we designed. 

 

3.1.  Data and parameter setting 

We create a simulation environment representing the actual track of one area in Bandar Lampung, 

Indonesia, as seen in Figure 5. The challenge of this track is that it has many intersections, as seen in  

Figure 5(a). Each time the agent encounters an intersection, the agent must take corrective actions to reach the 

destination. As agents, we use the car model depicted in Figure 5(b). The number of agents used in the 

experiment ranges from 1 to 10. Each agent has five sensors, which are used to detect the environment, such as 

walls, initial point, and destination point. We use the Raycast provided by Unity3D software [24] for the 

sensor to represent LIDAR. In our simulation, the agent can move forward, hit the brake, and take a turn based 

on the wheeling steer. 
 

 

  
(a) (b) 

 

Figure 5. The illustration of the simulation environment in Unity3D (a) sample track and (b) the agent 
 

 

We conducted ten scenarios using the parameter set as shown in Table 2. Each scenario is applied to 

one track, so in total, we have ten similar tracks in conducting the experiment. This parameter setting affects 

the process in PPO, like a chance to maintain the old policies and update the instinct. The parameter values 

used in each column other than "observation_vector (P8)" follow the recommendations from Unity3D. The 

description of each parameter used in our experiment is: a) Use_curiosity: the agent will have more varied 

steps; we set this parameter to true for all experiments, b) Gamma (P1): discount factor for future rewards, c) 

Learning_rate (P2): the strength of each step to update gradient descent, d) Batch_size (P3): the number of 

experiences in one iteration, e) Buffer_size (P4): used to store the experiences conducted by agents before the 

model update process, f) Beta (P5): entropy that affects the exploration level of the agent, g) Time_horizon 

(P6): number of experience step, h) Max_step (P7): number of the maximum time step for the agent, i) 

Observation_vector (P8): input value that observed for choosing action value to get the maximum possible 

reward. The value in the observation_vector parameter comes from the five sensors with each sensor value in 
(𝑥, 𝑦) 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒, represents the interaction value between each sensor and the wall, initial point, and 

destination point, acceleration value, brake value, and steer value. 
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In the training process, the agent learns how to move forward and find a way to reach the destination 

point. Each agent is positioned on a different track and at other initial points. We use ten tracks in the training 

process, each having 1 to 10 agents. The result of this training process is a model with information about the 

agent’s steps to get the maximum reward. We also use ten tracks in the testing process. In the testing, how the 

agent moves forward will differ depending on the model resulting from the training process. Placing the agent 

at a random initial point can indicate whether the agent is succeeded or not in reaching the destination point. 

 

 

Table 2. Parameter setting for ten scenarios. P1=gamma, P2=learning rate, P3=batch size,P4=buffer size, 

P5=entropy, P6=time horizon, P7= maximum time step, P8=obervation_vector 
No P1 P2 P3 P4 P5 P6 P7 P8 #agent 

1 0.8 1.00E-05 512 2048 1.00E-04 32 7000 28 1 

2 0.8 1.00E-05 512 2048 1.00E-04 32 7000 28 10 

3 0.8 1.00E-05 512 2048 1.00E-04 32 7000 28 10 
4 0.85 1.00E-05 512 2048 1.00E-04 32 5000 28 10 

5 0.85 1.00E-04 512 2048 1.00E-04 32 5000 30 10 

6 0.95 1.00E-04 512 5120 1.00E-04 2048 3000 30 10 
7 0.9 1.00E-05 2024 5120 1.00E-03 2048 3000 31 10 

8 0.9 1.00E-05 2024 5120 1.00E-03 2048 3000 31 10 

9 0.9 1.00E-05 512 5120 1.00E-03 1280 3000 32 10 
10 0.9 1.00E-05 2024 20240 1.00E-03 1280 3000 32 10 

 

 

3.2.  Result and analysis 

Here we show some visualization of screen-captured the agent's position in the track in time step 𝑡. 
Figure 6 until Figure 9 shows the agent movement, which starts at 1st initial point and succeeds in reaching the 

destination point, with its total score obtained. Figure 6 shows the visualization of agent position at time step 

𝑡 = 10. It can be seen in Figure 7 that the agent has moved position at time step 𝑡 = 30. Furthermore, at the 

time step 𝑡 = 50 in Figure 8, the agent has moved closer to the destination point. Finally, in Figure 9, at the 

time step 𝑡 = 70, the agent managed to reach the destination point. 

 

 

  
 

Figure 6. Agent (black circle) with ray beam (red) 

from its sensors at 𝑡 = 10 

 

Figure 7. Agent (black circle) with ray beam (red) 

from its sensors at 𝑡 = 30 

 
 

 

  
 

Figure 8. Agent (black circle) with ray beam (red) 

from its sensors at 𝑡 = 50 

 

Figure 9. Agent (black circle) with ray beam (red) 

from its sensors at 𝑡 = 70 

 

 

As shown in Figures 6 to 9, we use 2 (two) scores in the experiment, namely ‘score’ and ‘total’. 

‘Score’ is a value that provides information about the reward agents obtained in each time step. ‘Total’ is a 
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value that provides information about the total reward obtained after the agent hits the wall or reaches the 

maximum step limit. An agent’s maximum score is 15, and the minimum score an agent can get is an infinite 

negative. This score can be assumed to determine whether the agent succeeded in the training process. The 

example of score value when the agent hits the wall is shown in Table 3. 

 

 

Table 3. Example of score value regarding a collision 
Distance to finish point Last_step Score value 

500 500 14.9 
500 3500 14.3 

20 500 14.9 

20 3500 14.3 

 

 

Table 4 shows the result of our experiments consisting of ten scenarios with the parameter values for 

each scenario shown in Table 2. Max_reward: maximum total reward value that agent ever obtained; 

min_reward: minimum total reward value that agent ever obtained; #success_agent: the number of agents that 

successfully reach the destination point, #total agent: the number of agents used in each track. The 

explanation of each scenario’s result is as follows:  

Result of scenario #1. The agents only stay in place. Even if agents remain in the area, it does not 

mean they do nothing. The value of the acceleration action on the agent never exceeds the value of the brake 

action on the agent. This condition makes the agent cannot move forward. 

Result of scenario #2. The agent slowly moves forward but still hits the wall. In this experiment, we 

configure an agent's reward and then increase the number of agents. Compared to scenario #1, this scenario is 

better as the agent succeeds in moving forward even with prolonged speed. However, the agent still cannot 

turn left or right correctly. In addition to not successfully turning, agents tend to crash into the "wall" before 

finding a turning trajectory. This experiment does better because of the number of agents added to the 

training process. Each agent has its environment to explore. These conditions help agents to distinguish 

between the track and the wall. For the case of an agent who crashes too quickly, this is still due to the 

provision of less-than-optimal rewards. In the end, the agent is stuck at the local maximum. 

Result of scenario #3. The agent slowly moves forward but succeeds in turning to the right. We 

focus on configuring the reward for this experiment, such as not giving too much penalty or extreme reward 

value when hitting the destination. The agent learns how to turn with the same parameter setting but is still 

very slow to move forward. 

Result of scenario #4. The agent can move forward but hit the wall as soon as possible. We 

encourage the agent to move faster in this experiment, giving a time limit and radius. If the agent reaches the 

time limit and is still inside the radius, the agent will get a reduction in a reward. This can be beneficial or 

harmful based on the size of the radius or the ability agent to explore. We found in this experiment that the 

agent cannot move forward like in the previous experiment. 

We observed that the agent is trapped in a local maximum because the penalty value obtained when 

hitting the wall before the time limit is more minor than after the time limit. There are 2 (two) conditions of 

why the agent chooses to hit the wall as soon as possible: a) the agent reaches the time limit and is still inside 

the radius, then the agent hits the wall or reaches the maximum step limit (the agent get 2 (two) punishment); 

b) The agent is inside the radius but hit the wall or reach maximum step limit before agent reach the time 

limit (the agent get one punishment). Based on the comparison between (a) and (b), the agent tends to choose 

the action which leads to (b) just because the (b) condition is more profitable to the agent. 

Result of scenario #5. The agent can move forward but not towards the destination. We add 

acceleration observation in this experiment, in addition, to reward values to encourage agents to move toward 

the destination point. Acceleration is the value of the agent speed at each step, calculated based on the 𝑥 and 

𝑦 vector using the velocity formula. Observation of acceleration is used to encourage the agent to move 

forward at the proper speed. The results obtained in this scenario are pretty satisfactory because the agent 

fulfills the first objective, not to hit the wall. However, the agent cannot achieve the second goal, which is not 

driving toward the destination point. 

Result of scenario #6. The agents normally run, but only 2 (two) agents reach the destination point. For 

this experiment, we change some parameters, such as learning rate, buffer_size, time_horizon, and max_step. 

The 2 (two) agents that succeeded in exploring and finding destinations are the agents who came from the same 

initial point. The other agent starts from a different initial point does not move towards the destination. 

Result of scenario #7. The agents regularly run; only 2 (two) agents that reach the destination, but 

the cumulative reward value is better than before. In this experiment, we increase one of the parameters, 

namely batch_size, which helps use each iteration experience. Besides that, we add a new observation, which 
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is step observation, which affects the agent's reward. The more steps, the bigger the penalty value the agent 

obtained. It makes the agent use the step more efficiently.  

Result of scenario #8. All agents are initiated at one initial point and are failed to reach the 

destination. By creating the agent at the same and farthest initial point, we expect it will make it easier for the 

training process to be closest to the destination point. But the result obtained is far worse than before; the 

agent is trapped at the local maximum. We observed that if the agents are placed in different initial points, 

the agent's input value will be more varied than those set only in one initial point. 

Result of scenario #9. The agents normally run, and all agents move to the destination, but only 2 

(two) agents reach the destination. In this experiment, we decreased the parameter value for batch_size and 

time_horizon. This change is to make training more stable and focus on future rewards. Besides, we add a 

new observation value: the distance between the agent and the destination. The distance between the agent 

and destination is also used to calculate rewards. This value is applied to make the agent know the distance 

toward each step's destination. With that agent will try to move towards the destination. The result obtained 

for this change is quite good. Like the previous scenarios, only two agents managed to hit the destination. But 

the difference is that this agent comes from an initial point different from before. In this scenario, all agents 

also moved towards the destination, although some are stuck on the local maximum. 

Result of scenario #10. The agents normally run, and all agents move to the destination, but only 5 

(five) agents reach the destination point. We modify the parameter and give some obstacles on several tracks. 

It is intended for the agent to explore a new environment and influence other agents. We observed that each 

agent managed to find a destination point given an obstacle. Meanwhile, other agents that do not have 

barriers at their track are stuck at the local maximum. 

 

 

Table 4. The result of ten scenarios of our experiment 
No. Max_reward Min_reward #Success_agent #Total_agent 

1 -1 -1 0 1 
2 -3.52 -23.5 0 10 

3 -2.07 -17.64 0 10 

4 -2.73 -15.823 0 10 
5 -2.07 -18.74 0 10 

6 -0.3749 -14.67 2 10 

7 1.877 -12.35 2 10 
8 -5.325 -16.99 0 10 

9 -3.31 -10.13 2 10 

10 -2.05 -13.73 5 10 

 

 

4. CONCLUSION 

In this study, we successfully demonstrated the application of our proposed reward rules in the PPO 

as the policy gradient in the autonomous driving simulation system. As we all know, autonomous driving is a 

very complex problem. Based on the result of our experiment, we observe that it is necessary to have a 

proper technique for giving reward value so that the training process can go properly. For further studies, we 

expect to extend our work to a more complicated road track to represent high-dimensional state and action 

spaces, which is crucial in the autonomous driving system using deep reinforcement learning.  
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