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 Cryptocurrency is a digital currency used in financial systems that utilizes 

blockchain technology and cryptographic functions to gain transparency and 

decentralization. Because cryptocurrency prices fluctuate so much, tools for 

monitoring and forecasting them are required. Long short-term memory 

(LSTM) is a deep learning model that is capable of strongly predicting data 

time series. LSTM has been used in previous studies to predict the common 

currency. In this study, we used the gate recurrent unit (GRU) and 

bidirectional–LSTM (Bi-LSTM) hybrid model to predict cryptocurrency 

prices to improve the accuracy and normalize the root mean square error 

(RMSE) score of previously proposed prediction Using four 

cryptocurrencies (Bitcoin, Ethereum, Ripple, and Binance), the LSTM 

model predicts the Bitcoin. The RMSE obtained based on the best 

experimental results was 2343, Ethereum 10 epoch 203.89, Binance 200 

epoch 32.61, and Ripple 200 epoch 0.077, while the mean absolute 

percentage error (MAPE) obtained for Bitcoin was 4.0%, Ethereum 5.31%, 

Binance 5.64%, and Ripple 4.83%. The results after normalization RMSE 

are Bitcoin 0.0062, Ethereum 0.063, Binance 0.073, and Ripple 0.055. The 

GRU Bi-LSTM hybrid model obtained very good results, yielding small 

RMSE results. After normalization, the results get closer to 0 and MAPE 

scores below 10% with RMSE. 
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1. INTRODUCTION 

Cryptocurrency is a type of virtual or digital currency that is utilized in financial systems that make 

use of blockchain technology and cryptographic functions to obtain transparency, decentralization, and 

permanence [1]–[3]. The cryptocurrency market is affected by uncertainty factors such as political issues and 

economic problems at the global level. Therefore, interpreting predictions accurately is a complicated task. 

Another problem, which is the focus of this study, is the daily fluctuating prices of cryptocurrencies, which 

needs to be addressed with an application tool that can monitor and prevent uncertainty in transactions. 

Automated forecasting techniques are required to assist investors in choosing Bitcoin or other cryptocurrency 

market assets in order to address the aforementioned fluctuation problem. Now, stock market predictions are 

often made with the help of automated tools, and strategies for cryptocurrencies are similar.  

There are many cryptocurrencies in the cryptocurrency market that are popular today, such as 

Bitcoin (BTC), Ethereum (ETH), Binance Coin (BNB), and Ripple (XRP). The prices of these 

https://creativecommons.org/licenses/by-sa/4.0/
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cryptocurrencies can be influenced by outside parties, such as news, social media, and cryptocurrency 

brokers. Hence, to ensure the accuracy of our prediction model, we used these four cryptocurrencies. 

Previous research has only used neural network algorithms with long short-term memory (LSTM) to forecast 

the bitcoin. We therefore attempted to improve previous models by using a stacked neural network layer 

approach consisting of gated recurrent units (GRU) and bidirectional-LSTM (Bi–LSTM) because it processes 

datasets by looping repeatedly, which increases the predictive ability of the model. In this study, the neural 

network layer was used because the prediction model used target output in the form of a price prediction 

from Bitcoin data using historical data and time series over the past 5 years. So, the results can be used as 

suggestions, and the general public or cryptocurrency traders can use them to make better predictions about 

the price of Bitcoin. 

This study endeavor makes some contributions in the domain of cryptocurrency prediction. Initially, 

we propose the Hybrid Algorithm GRU and Bi-LSTM models for daily cryptocurrency pricing. To eliminate 

RMSE anomalies caused by changes in value fluctuations, the researcher normalized the RMSE value, which 

had not been done in numerous experiments [4]–[7]. The RMSE score is good, and visually the predicted 

value and the real value are quite close together. Therefore, it is deemed effective in forecasting 

cryptocurrency. But the RMSE value is high owing to the high and diverse variance from 2,000 to 50,000 

dollars. Normalizing and RMSE number might help you understand if it is "good" or not [8]. This attempt 

was made to balance the MAPE Score, which was fairly excellent. The rest of the paper is organized as 

follows: section 2 addresses relevant research; section 3 discusses research techniques; section 4 discusses 

experimental findings and analysis; and section 5 summarizes this study. 

 

 

2. RELATED RESEARCH 

Based on a previous study using LSTM, McNally et al. [9] proposed a Bitcoin price method using 

recurrent neural networks (RNN) and combined RNN with LSTM [10] to propose an automated 

cryptocurrency price prediction using machine learning techniques based on historical trends (daily trends). 

Pant et al. [11] proposed a prediction of Bitcoin price with looping artificial neural network techniques based 

on Twitter sentiment, the results of which are quite impressive, showing the relationship between sentiment 

and LSTM results [12]. Wu et al. [12] developed a new framework for predicting the price of bitcoin using 

LSTM and suggested two different LSTM models: standard LSTM and LSTM with autoregressive integrated 

moving average (ARIMA) with 208 record datasets, compared to mean absolute error (MSE), root mean 

square error (RMSE), and mean absolute percentage error (MAPE). A common stock market prediction 

model based on LSTM was created by Qian and Chen [13] under various market-influencing conditions. The 

authors chose three equities with a similar trend. The LSTM prediction model is well done. Hamayel and 

Owda [5] used three algorithms that each used GRU, LSTM, and Bi–LSTM to get better results and make 

predictions about cryptocurrencies.  

In a previous study [4], a model successfully predicted Bitcoin stock market prices on Yahoo 

Finance. By sharing the data used to train and test the models outlined above, our model may anticipate 

prices for the days to come by using time series approaches to generate results. However, in Table 1, the 

disadvantage is that the results regarding RMSE are not good enough and far from 0. 

 

 

Table 1. LSTM results 
No Epoch Model dropout RMSE results 

1 10 0 631.749630 

2 100 0 455.981070 

3 1000 0 825.375050 
4 200 0 360.645110 

5 400 0 354.183680 

6 500 0 288.598660 
7 800 0 292.789670 

8 2000 0 477.914280 

9 5000 0 474.930575 
10 500 0.1 602.140637 

11 500 0.5 313.662300 

 

 

3. METHOD 

Cryptocurrency prediction is not much different from the stock prediction method. Better results can 

be obtained by combining other methods, such as time series data analysis, stock market technical analysis, 

and historical data from price, with several algorithms [14]–[16]. Furthermore, we can obtain different results 
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by combining several other techniques, such as time series data analysis, market technical analysis that uses 

historical price data, and combining them with several algorithms to enrich the results. Time-guided data 

analysis is on historical data presented with 4 periods per day for 5 years. 

 

3.1.  Gated recurrent unit 

GRU [6] is also a RNN similar to LSTM. However, GRU has a simpler structure than LSTM. GRU 

does not have an output gate, but it has an update gate zt and a reset gate rt. This gate is a vector that 

determines whether information should be passed on as an output. Figure 1 describes the GRU unit. The reset 

gate defines how to combine new input with previous memory. At the update gate, the amount of memory 

that was last saved is found.  

 

 

 
 

Figure 1. GRU gate 

 

 

Each element in Figure 2 has the following equations: 

− Update gate 

zt=σ(Wzht−1+Uzxt) 

− Reset gate 

rt=σ(Wrht−1+Urxt)  

− Cell state 

h˜t=tanh(WC(ht−1∗r)Ucxt) 

− New state 

ht=(z∗c)+((1−z)∗ht−1) 

⊗ Element-wise multiplication 

⊕ Element-wise summation/concatenation 

 

3.2.  LSTM and Bi-LSTM 

One more variety of RNN is the LSTM network [7]. With successive data, such as time-series data, 

LSTM can learn long-term reliance. The input gate it, the forget gate ft, and the output gate ot are the gates 

used by LSTM cells. Depending on the importance of the data, this gate determines what can pass. The 

network can learn what needs to be saved, forgotten, remembered, observed, and created thanks to gates. 

Data that will be needed for the next state is collected using the cell state and concealed state. Figure 2 

depicts the LSTM unit's internal structure. 

 

 

 
 

Figure 2. LSTM gates 
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The gates have the following equations: 

− Input gate: it=σ(Wiht−1+Wiht) 

− Forget gate: ft=σ(Wfht−1+Wfht) 

− Output gate: ot=σ(Woht−1+Woht) 

− Intermediate cell state: C˜=tanh(Wcht−1+Wcht) 

− Cell state (next memory input): ct=(it∗C˜)+(ft∗ct−1) 

− New state: ht=ot∗tanh(Ct) 

− Xt : Input vector 

− ht : Output vector 

− W, U, and f: Parameter matrices and vectors 

⊗ Element-wise multiplication 

Unlike LSTM, bidirectional LSTM uses two layers, where one layer performs operations in the 

same direction of time on data while the other layer does the opposite, as shown in Figure 3. BI-LSTM has 

proven to be more effective than LSTM, which cannot be used in some applications, such as phoneme 

classification [17]. 

 

 

 

 
 

Figure 3. Bi-LSTM workflow 

 

 

3.3.  GRU Bi-LSTM model 

A study framework in Figure 4 is a model based on a combination of GRU and Bi-LSTM 

algorithms that begins by entering a dataset that has been determined by lag windowing with size 2 and batch 

size 64 based on random tests. These inputs provide better and optimal results for computing. The processed 

data then passes through two layers of GRU with tanh activation, where the first layer uses 256 units and the 

second layer uses 128 units. In the Bi-LSTM algorithm, the number of layers used is equal to 2, with the 

number of units on the first layer being 128 and the number of units on the second layer being 64. However, 

bidirectional use separates the algorithm into two directions so that the number of parameters generated when 

data processing is twice as large. The return sequences used at each layer are true [18]. 

Data that has passed through the GRU and Bi-LSTM layers then passes through the flattening layer, 

which is used to combine the input data into single data. For example, if the flatten layer is used as input data 

in the form of (batch_size 2,2), the result of that data will be (batch_size, 4). Then the data is processed 

through a dense layer. The dense layer is a traditional model of neural networks that performs classification 

according to the class of the output. The dense layer has an input and an output based on the number of 

classes predicted. The dense layer in this model uses three layers with different numbers of units: 64, 32, and 

1. Lastly, all layer models are arranged using the compiler model with the Adam optimizer. For each 

cryptocurrency tested, we used historical data over a span of five years. The results obtained for each 

cryptocurrency will certainly differ. But the MAPE and RMSE values that were found were better than what 

was found in a previous study that used several other layers.  
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3.4.  Evaluation 

3.4.1. Root mean square error  

The RMSE will always be greater than or equal to the mean absolute error (MAE). The RMSE 

matrix assesses how well the model can forecast continuous values. When determining if the error rate is 

high or low, the RMSE unit is helpful because it is the same unit as the data variable/dependent goal (if it is 

dollars, then the RMSE is likewise dollars) [19], [20]. Better model performance is associated with a reduced 

RMSE. In (1) is an explanation of the RMSE formula: 

 

RMSE = √
𝟏

𝑵 
∑ (𝑵

𝒊=𝟏 𝒙i - 𝒙i) 2 (1) 

 

where N is the total number of observations, 𝒙i is the actual value, and 𝒙i is the predictive value. The main 

benefit of using RMSE is that it penalizes big mistakes. It also scales the score in the same unit equal to the 

approximate value [21].  

 

 

Input

5 Years Dataset 

(Batch_Size = 64)

GRU|TANH|Layer = 256 

return_sequences=True

GRU|Layer = 128

return_sequences=True

LSTM|Layer = 128

return_sequences=True

LSTM|Layer = 64

return_sequences=False

Compiler (Optimizer Adam (Output Layer), Metrics = Mae)

Dense Layer = 64 Dense Layer = 32 Dense Layer = 1

Prediction

Results

 
 

Figure 4. Research framework 

 

 

3.4.2. Mean absolute percentage error  

Similar to mean absolute deviation (MAD) and RMSE, the MAPE is a measure of relative 

inaccuracy. MAPE is typically more meaningful than MAD because it gives information about error 

percentages that are either too high or too low when forecasting actual results over a given period. In other 

words, MAPE is the average of absolute errors over a given period, which is then multiplied by 100% to get 

the percentage result [22], [23].  

 

MAPE = ∑ |𝑛
𝑡=1

𝛾𝑖−𝑦�̂�

𝑦�̂�
|  × 100% (2) 
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where: 

MAPE = Mean absolute percentage error 

n = Total data 

y = Actual result value 

ŷ = Estimation result value 

MAPE value interpretation 

Based on Lewis [24], MAPE values can be interpreted into four categories: 

<10% =Very accurate 

10–20% =Good 

20–50% =Fair 

>50% =Not accurate 

 

The smaller the MAPE value, the smaller the error in the estimation result; conversely, the larger the MAPE 

value, the greater the error in the estimated result. The result of the prediction method has excellent 

forecasting capabilities if the MAPE value<10% and has good predictive capability if the MAPE value is 

between 10% and 20%. 

 

3.5.  Dataset 

The datasets for the study were collected from Yahoo Finance’s stock market based on the USD 

exchange rates [25]. Currency in USD, with a 5-year period from August 01, 2017 to January 08, 2022, is the 

price of the historical data. This study used time-series data in this experiment. The number of rows was 1827 

for BTC dataset, for ETH, BNB, and Ripple the total row was 1522 datasets in comma separated value 

(CSV) format. Figure 5 shows one of the cryptocurrency data used. 

 

 

 
 

Figure 5. Bitcoin dataset sample 

 

 

4. RESULTS AND DISCUSSION 

Figure 6 shows the preprocessing process for loading datasets into machines and dividing them into 

the training, validation, and development datasets. For the data split step, we divided the data into 70% for 

training, 10% for dataset validation, and 20% for tests. In this study, we used Anaconda and Python for 

simulation and visualization. We used a Jupyter notebook to display the research results. 

We used four cryptocurrencies as a reference to determine whether this GRU Bi-LSTM model 

provides more accurate predictive results than previous models. RMSE and MAPE were used to determine 

the accuracy rate of the research with regression data. The magnitude of the RMSE value depends on the 

value of the dataset used; the greater the RMSE value, the better the accuracy of the model. However, the 

small value of RMSE also depends on how much value the dataset used [26]. The following formula was 

used to normalize the RMSE value: 

 

Normalized RMSE=RMSE/(max value−min value) 
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The RMSE value obtained by the model was divided by the maximum value of the dataset, which 

was reduced by its minimum value. Using this method, the RMSE value obtained will have a distance 

between 1 and 0. Based on Lewis (1982) [24], MAPE scores below 10% are considered very accurate. Table 

2 shows comparative results from Hybird GRU-Bi-LSTM Models. According to Table 2, the GRU Bi-LSTM 

hybrid model yielded small RMSE results and MAPE scores below 10%. The RMSE obtained based on the 

best experimental results for the Bitcoin dataset within 10 epochs was 2343, Ethereum 10 epoch 203.89, 

Binance 200 epoch 32.61, and Ripple 200 epoch 0.077, while MAPE obtained based on the Bitcoin dataset 

was 4.0%, Ethereum 5.31%, Binance 5.64%, and Ripple 4.83%. The values of RMSE and MAPE among 

cryptocurrencies differed due to differences in the values of each cryptocurrency and the fluctuations within 

the cryptocurrency that we tested for the prediction value of the model. After using the normalized RMSE 

formula, the RMSE value of Bitcoin was 0.0062, Ethereum 0.063, Binance 0.073, and Ripple 0.055. There is 

a difference in the experimental epoch results in the test due to the different value ranges for each 

cryptocurrency, resulting in different RMSE and MAPE values as well. Based on Figures 7 to 10, we 

observed differences in the test data and predictions. The difference between the test data and the prediction 

data was not significantly different, which proves that the GRU Bi-LSTM hybrid model gave good results. 

 

 

 
 

Figure 6. Split data 
 

 

Table 2. Comparative results 
No Cryptocurrency Epoch RMSE Normalize RMSE MAPE (%) 

1 Bitcoin 10 2343.2200 0.062 4.0 

200 2760.5400 0.073 4.56 
450 3851.0700 0.101 6.53 

2 Ethereum 10 203.8900 0.063 5.31 

200 230.7700 0.071 5.86 
450 233.8500 0.072 5.65 

3 Binance 10 404.1800 0.916 88.18 

200 32.6100 0.073 5.64 
450 33.2300 0.075 5.69 

4 Ripple 10 0.0933 0.066 5.82 

200 0.0770 0.055 4.83 

450 0.0820 0.058 5.37 

 

 

  
 

Figure 7. Actual price and Bitcoin prediction 
 

Figure 8. Actual price and Ethereum prediction 
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Figure 9. Actual price and Binance prediction 
 

Figure 10. Actual price and Ripple prediction 

 

 

In Figures 11 to 14, the red line is a graph of the test data used, while the blue line is the result of the 

prediction. The visualization in these graphs was 20% of the total dataset used. Figure 11 shows that the 

Bitcoin price data chart has a considerable distance. This is because very high price fluctuations cause the 

model to require more effort to research the data provided. However, the pattern in the data is obvious. 

Figure 14's chart comparing Ripple prices is the most similar because Ripple prices don't change too much. 

This shows that the model can learn the data quickly.  

 

 

 
 

Figure 11. Comparison of actual data and Bitcoin price prediction 

 

 

 
 

Figure 12. Comparison of actual data and Ethereum price predictions 
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Figure 13. Comparison of actual data and Binance price predictions 

 

 

 
 

Figure 14. Comparison of actual data and Ripple price predictions 

 

 

5. CONCLUSION 

In this study, we proposed a hybrid model of GRU Bi-LSTM to improve the prediction of 

cryptocurrency prices. Previous studies have used only one type of deep learning layer, such as GRU or 

LSTM. The proposed model yielded good results, but the values of RMSE and MAPE still need to be 

improved. Several approaches were taken in this study to predict the price of cryptocurrency using historical 

data obtained from the Yahoo Finance website with a timescale of 5 years. Four different cryptocurrencies: 

Bitcoin, Ripple, Binance, and Ethereum were used to test the accuracy of the suggested model in providing 

optimal results for each different type of cryptocurrency. Each predicted dataset provided MAPE and RMSE 

values, which were compared to determine the accuracy of the model. The GRU Bi-LSTM in this study 

exhibited an excellent level of accuracy. However, the results were not the most accurate, as the RMSE and 

MAPE values approached 0. Nevertheless, the model improved the accuracy of predicting cryptocurrency 

prices more than the models offered in previous studies. A future research challenge is to create a model 

capable of predicting every cryptocurrency with a high level of accuracy. Because cryptocurrencies fluctuate 

a lot and are all different, it is hard to come up with a prediction model that can give the best RMSE and 

MAPE values for each coin. 
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