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 In combinatorial testing development, the fabrication of covering arrays is 

the key challenge by the multiple aspects that influence it. A wide range of 

combinatorial problems can be solved using metaheuristic and greedy 

techniques. Combining the greedy technique utilizing a metaheuristic search 

technique like hill climbing (HC), can produce feasible results for 

combinatorial tests. Methods based on metaheuristics are used to deal with 

tuples that may be left after redundancy using greedy strategies; then the 

result utilization is assured to be near-optimal using a metaheuristic 

algorithm. As a result, the use of both greedy and HC algorithms in a single 

test generation system is a good candidate if constructed correctly. This 

study presents a hybrid greedy hill climbing algorithm (HGHC) that ensures 

both effectiveness and near-optimal results for generating a small number of 

test data. To make certain that the suggested HGHC outperforms the most 

used techniques in terms of test size. It is compared to others in order to 

determine its effectiveness. In contrast to recent practices utilized for the 

production of covering arrays (CAs) and mixed covering arrays (MCAs), 

this hybrid strategy is superior since allowing it to provide the utmost 

outcome while reducing the size and limit the loss of unique pairings in the 

CA/MCA generation. 
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1. INTRODUCTION 

Testing all possible combinations of configuration parameters using a sample of all possible 

configurations is called combinatorial interaction testing (CIT), which is an alternative to exhaustive testing. 

An exponential increase of test cases is seen during exhaustive testing; however, the number of configuration 

options grows at a maximum logarithmic rate [1]–[3]. Testing the interactions between multiple 

configuration options is critical to reducing the likelihood of interacting problems in software that is 

extremely flexible. A system having m configuration options, for example, would require an exhaustive test 

set to comprise mn test cases in order to cover entirely probable permutations of the configuration parameters 

in use. When configuration choices are offered, the number of test cases grows at an exponential rate. Due to 

lack of resources or time, it may be hard to thoroughly test a highly flexible system in its entirety. Over than 

70% of computing system failures are caused by the interplay of configuration settings in two directions at 

the same time [4]. 
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In software testing, test cases are represented as combinatorial objects known as covering arrays 

(CAs) and mixed covering arrays (MCAs). Constructing a CA/MCA that is both effective and efficient is 

necessary in order to get the most out of pair-wise testing. This is an intractable problem. Thus, researchers' 

key goal is to develop an effective strategy for building an optimal CA/MCA. As a consequence of this, it is 

more practical to make use of approximate approaches that are able to produce (almost) optimal solutions in 

a reasonable amount of time when the problem at hand is extremely complex. Heuristics and metaheuristics 

are two types of approximation strategies that can be used to solve problems [5], [6]. Whenever dealing with 

CA, it is advisable to use metaheuristics like: Hill climbing (HC) [7], harmony search algorithm (HSA) [8], 

particle swarm optimization (PSO) [9], tabu search (TS) [10], ant colony optimization (ACO) [11], and 

simulated annealing (SA) [12]. 

For the advancement and improvement of CA, a variety of meta-heuristic methodologies are 

available. This study anticipates one-test-at-a-time technique to build a valid CA with N rows intended for a 

specific CIT problem instance in several procedures. Meta-heuristic search algorithms are used to condense 

the number of arrays used in the initial CA repeatedly. This process is repetitive until all arrays are 

eliminated. Once a predetermined stopping criterion, including the amount of retries or the allotted time 

constraint, is met, the procedure is repeated. Greedy algorithm is a straightforward and fast method since it 

only selects solutions that satisfy greedy requirements. Numerous papers combined greedy with their hybrid 

algorithm like [13], [14] in the aim that the greedy solution will assist the hybrid algorithm in getting closer 

to the nearest solution. To address these concerns, this article offers a new greedy technique for array 

generating limitations based on the HC algorithm, named hybrid greedy hill climbing algorithm (HGHC). As 

with rival meta-heuristic-based methods, HGHC produces results that are sufficiently optimum in 

comparison to general computational-based and meta-heuristic strategies [15], [16]. 

Although a greedy strategy provides good coverage and run speed, there are some trials in which it 

fails to provide the test cases that are required [17]. It is proposed in this study that the HGHC method be 

used to tackle this problem by integrating the HC and greedy algorithms into a single solution. In this 

technique, the HGHC algorithm takes use of the iterative nature of the HC algorithm, which always results in 

feasible test cases, while the greedy section is added later to boost the optimality of the solutions produced by 

the HC algorithm, as Figure 1 found in section 5. 

This paper has seven more sections: section 2 reflects the work that is related with this. Section 3 

presents combinatorial testing methods; section 4 describes meta-heuristic algorithms. In section 5, the 

specifics of the hybridization strategy that has been presented. Section 6 the experimental data is summarized 

and analyzed. Section 7 assesses the statistical analysis. After that, section 8 contains the conclusion and 

specifics on future works. 

 

 

2. RELATED WORK 

Numerous algorithms are used to construct near optimal CAs and MCAs, including those that use 

algebraic, greedy, metaheuristic, and random techniques for construction. It is not uncommon for 

mathematicians to use algebraic methods. Because separately parameter must have the same number of 

values, algebraic approaches despite their speed are rarely used in CIT. 

Greedy methods are preferred by the software testing community when it comes to producing CAs. 

There are two methods for building CAs with a greedy approach: one parameter per test and one-test per 

attempt. The CA is built up row by row, and the manner in which each row is built can vary depending on the 

approach used. When it comes to one test at a time (OTAT) methodologies, a comprehensive test case is 

constructed for each iteration that incorporates the interface components that have been the most recently 

uncovered. The same method is used to cover all areas of interaction with the system. Several other tools and 

tactics are presented in the literature, all of which are derived from the OTAT method. such as automatic 

efficient test generator (AETG) [18], pairwise independent combinatorial testing (PICT) [19], classification-

tree editor extended logics (CTE-XL) [20], deterministic density algorithm (DDA) [21], in parameter order 

general (IPOG) [22], GTWay [23], in parameter order d-construction (IPOD) [24], and genetic multi-

parameter-order-algorithm (MIPOG)/(GMIPOG) [25] strategies are examples of techniques that have 

adopted this approach. 

In recent years, researchers have looked into metaheuristic techniques such as SA [12], [26] and 

HSA [8], [27]. Heuristic techniques were used by Cohen et al. [26] to generate CAs and MCAs of strength 

t=3, as well as the experimental outcomes indicated that heuristic strategies outclassed greedy approaches for 

strength-2 CAs but not for higher strength CAs, notably at t=3. Regarding the number of iterations required 

to reach an acceptable solution, HC surpassed SA in producing equal lower bounds. 

Many approaches have been developed by Cohen et al. [28]–[30] which produce uniform covering 

arrays, and variable coverage arrays using a mixture of varied methods (for example, algebraic and 

computational techniques). Constrained systems complicate CIT because the resulting CA may contain 
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certain parameter values that are incompatible with the restrictions. As a result, it is best to exercise caution 

when dealing with such limits. Garvin et al. [6] developed an extension of the SA technique to create CAs for 

limited interaction testing. Calvagna and Gargantini [31] make usage of satisfiability modulo theory (SMT) 

solvers, which they developed to produce pair-wise test coverage for CA. 

Alazzawi et al. proposed several studies in the field of t-way testing, some of them employed hybrid 

techniques such a hybrid artificial bee colony (HABC) approach [32] constructed on the HABC algorithm 

and PSO to build optimal test suite with variable strength interaction. The hybrid nature of PSO is due to the 

fact that it was integrated into the artificial bee colony (ABC) as an exploitation agent. ABC's performance is 

improved by PSO's information-sharing via the weight factor. A T-way generating approach for both a 

uniform and variable strength test suite called (ABCVS) is [33] by utilizing the ABC technique to reduce the 

overall size of a test suite while simultaneously improving the interaction between tests in the suite. Alazzawi 

et al. [34] proposed a new meta-heuristic-based t-way approach called hybrid artificial bee colony 

(HABCSm). It combines the advantages of the ABC algorithm and PSO. HABCSm is the first t-way strategy 

to use the HABC algorithm with hamming distance as its fundamental approach for creating a final test set 

and final selection criterion for boosting the discovery of new solutions. 

Gravitational search test generator is the name given to the novel t-way method that was developed 

by Htay et al. [35] and is based on the gravitational search algorithm (GSA). The most significant 

contribution of this research is the adaptation of GSA to the production of t-way test data for the first time. 

Recently, Guo et al. [36] provides a synergistic solution for the constrained covering array generation 

(CCAG) problems that is initially based on quantum particle swarm optimisation (QPSO). Three auxiliary 

procedures are presented to increase QPSO's performance: contraction-expansion coefficient adaptive 

modification, differential evolution, and discretization. 

 

 

3. COMBINATORIAL TESTING 

An insight to combinatorial testing is provided in this section. Combinatorial testing can be used for 

a plethora of ways including drug screening and data compression as well as graphical user interface (GUI) 

testing and web application testing. More than one area is covered by this umbrella, including drug screening 

and data compression. There is at least one CA/MCA for every t-way combination of parameter value. Since 

CAs and MCAs have proven to be useful in numerous industries, researchers are looking at the best 

approaches to develop optimal CAs and MCAs [37], [38]. 

 

3.1.  Covering arrays 

It's called a covering array, and its notation is CA (N; t, k, v). A two-dimensional array with K 

signifies how many parameters there are in S; N indicates how many columns there are; and v represents how 

many possible values each parameter might have. t denotes how strong an interaction there is. Ideally, a CA 

should have a minutest number of rows in order to mollify all of the criteria of the full covering array. An 

abbreviation for the covering array number is covering array number (CAN); it stands for (t, k, v). An input 

parameter is represented by a column and the values in that column indicate its respective input parameter's 

range [1], [39]. 

 

3.2.  Mixed covering arrays 

In this case, the cardinality vectors v1v2...vk correspond to the values for each column in the mixed 

covering array, resulting in an N-by-k two-dimensional array. MCAs have the following two features, both of 

which are present: At least once, the rows of each N t sub-array contain all t-tuples of values from each of the 

N t columns, with the exception of those in the set Si where |Si|=vi. This is true for all N t sub-arrays. It is 

denoted by the symbol MCA (N (t, k, (v1 v2...vk))), and it represents the smallest number of variables for 

which an MCA exists, which is also known as the mixed covering array number. It is possible to represent 

MCAs in a shorthand notation by merging equal elements in (vi: 1... k) by merging equal values [40]. 

 

 

4. METAHEURISTIC APPROCH 

Optimizing techniques that start with the best possible answer and enhance it over time are known 

as metaheuristics. This work employs greedy and HC metaheuristic search approaches to solve optimization 

problems. A metaheuristic is a way of improving a problem by iteratively improving a prospective solution's 

quality. Metaheuristics can seek large spaces of possible solutions with little or no prior knowledge about the 

problem. In the absence of a perfect solution, metaheuristics assure a workable one and prevent the issue 

from being stalled. Optimization concerns three operators: i) refining the optimal solution by either reducing 
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it or increasing it, ii) the objective function is controlled by moves, and iii) a conventional of constraints that 

allows the moves to exclude some data while keeping others [41], [42]. 

It's possible to solve difficult issues using metaheuristic algorithms, even though it's impossible to 

ensure that they'll find the global best solution. Metaheuristic-based algorithms are used to search the issue 

space in an effort to find a better solution. This type of navigation is guided by an understanding of the issue 

and the hope of locating a global optimum. The majority of metaheuristic implementations are based on local 

search algorithms as well as population search algorithms. 

The initial step in population-based approaches is to generate a collection of solutions chosen at 

random. A subsequent step is to combine characteristics from many solutions in order to create better ones. It 

is possible to simultaneously scan large areas of the search space with an algorithm that uses a large 

population. These algorithms may miss the local optimum in each section. Because of this, it's possible that 

the algorithm won't produce the best outcome. A few examples of population-based algorithms in use are the 

genetic algorithm, bee colony optimization, and particle swarm optimization. Local search-based strategies 

begin with a single solution, which is then iterated upon by a neighborhood-based strategy. Initially when it 

finds a locally optimal solution, the algorithm comes to a halt. It is possible to break down the search area 

into smaller parts. In contrast to population-based search methods, local search approaches focus on a smaller 

search area in order to determine the most suitable way to perform the search. In spite of this, these strategies 

do not cover a large portion of the possible search areas. HC is a local search method that is regarded to be 

the most basic. Population-based approaches can be boosted in their ability to find local optima by using this 

technique [12], [43]. 

 

 

5. THE PROPOSED APPROACH  

This section provides in-depth information regarding the HGHC algorithm, which was developed 

for the first time. Demonstrate how it incorporates the benefits of both the greedy and the HC algorithms 

when they are combined to form a hybrid algorithm, and then explain why HGHC outperforms both the 

greedy algorithm and the HC algorithm when they are deployed separately. In addition, the whole procedure 

for developing HGHC test data is provided in order to achieve branch coverage with the fewest possible test 

cases by applying HGHC. Using both greedy and HC algorithms, this is the first study of its kind to create a 

hybrid solution to solve a wide variety of issues, making it unique in the area. Beginning with its intrinsic 

limitations, the HC is prone to becoming caught in a local optimal, rendering it useless for determining 

discrete issues. Nevertheless, the greedy method assumes a much simpler premise, making it easier to 

incorporate, and is more effective; but it does not ensure that it will give a globally optimal solution. Due to 

the complementing nature of the two procedures, it appears as though they might be utilized in conjunction to 

tackle a wide variety of optimization issues. Our hybrid approach, which accepts as input a preliminary 

covering array generated previously using the greedy method and then adds additional rows to it. When 

adding a new row to the existing covering array, the initial stage is to use a greedy method to allocate distinct 

element of the new row to the current covering array. If an element has an unallocated value, the greedy 

algorithm iteratively tests separately possible value assignment to the unassigned element and formerly 

chooses the assignment that results in the fewest missing tuples. Tuples that were not covered in the first 

stage of the algorithm are covered in the second stage, which is when the HC method is used as explained in 

Algorithm 1. If the HC algorithm fails to cover the entire array, repeat the HC algorithm by adding a new row 

to the existing array and running it as stated in Figure 1. A covering array is shaped in two steps: first, build 

the covering perfect hash families (CPHF). A CPHF (n;k,v,t) is an array of size n * k over 𝑭𝒗
𝒕  such that every 

sub array of t columns cotains at least one row with a covering tuple as Figure 2. Let’s take an exmple of 

CPHF (2;16,5,3); here the elements of 𝑭𝟓
𝟑 are written as c0 c1 c2 instead of (c0, c1, c2 )T: 

This array, which is composed of three columns, has at minimum one covering tuple present in each 

and every one of its rows [44]. As explained in Algorithm 2, CPHFs is utilized in the first step to quickly 

construct huge covering arrays, which is followed by the addition of rows to the resulting array while 

maintaining the same number of columns throughout both processes. Non-redundant members from one row 

can be copied to redundant elements in subsequent rows using this operation if it uses the greedy method. 

The next stage of the metaheuristic method is to fill in the missing tuples that were introduced by the row 

deletion. A new round of optimization takes place if the algorithm completes the array.  

 

Algorithm 1: Hill climbing algorithm 
Step 1: Evaluate the initial state. If it is a goal state then stop and return success. 

Otherwise, make intial state as current state. 

Step 2: Loop until the solution state is found or there are no new operators present whick 

can be applied to the cirrent state. 

a) Select state that has not been yet applied to the cureent state and apply it to 

produce a new state 
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b) Perform these to evaluate new state 

i. If the current state is a goal state, then stop and return success. 

ii. If it is better than the current state, then make it cureent state and proceed 

further. 

iii. If it is not better than the current state, then continue in the loop until a 

solution is found. 

Step 3: Exit 

 

 

 
 

Figure 1. The proposed HGHC approach 
 

 

Algorithm 2: CPHF algorithm 
Input: n: target number of rows, t: strength, k: number of factors, q:v symbols; 

Output: A; a CPHF(M;k, q, t) with m ≤ n upon termination 

Construct an n × k array A with each entry chosen independently; 

Repeat 

Set covered:= true; 

Set M:=0; 

for each t-set T of columns, in the same fixed order do 

if T is covered in A then 

Let R be the index of the first row covering T; 

Set M:=max(M,R) 

else 

Set covered:= false; 

Set missing set;= T; 

Break; 

If not covered then 

Choose all the entires in the t columns of missing-set independently and uniformly at 

random; 

Until covered = true; 

Output the first M rows of A; 

 

 

 
 

Figure 2. Covering perfect hash families (CPHF) array 
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For an improved covering array, the final step of the HGHC technique involves optimizing the 

covering array called A1. Using a greedy approach, the optimization algorithm first searches A1 for 

redundant items. The optimization method then uses a greedy approach to remove a row from A1 and then an 

HC algorithm to fill in any missing tuples that may have appeared as a result of removing the row. Once a 

row has been cleared, the procedure repeats again until all of the empty tuples have been filled. In  

Algorithm 3, the algorithm is depicted in pseudocode.  

 

Algorithm 3: Optimization pseudocode 
Fungtion optimization (A 1)( 

Do A 2 A 1; 

Find redundant elements in A 1 using a greedy algorithm; 

A row from A 1 using a greedy algorithm is deleted; 

If a missing tuple is in A 1 

Then cover missing tuples in A 1 using a HC 

algorithm; 

Until the HC algorithm cannot cover the missing tuples in A 1; 

return A 2; 

 

In order to concealment a relatively insignificant number of uncovered combinations, a technique 

that constructs complete CPHFs may necessitate the insertion of an entire row to the derivative covering 

array. To wrap up, consider how a greedy algorithm works in practice. In this case, the goal is to discover a 

solution as quickly as possible by selecting a choice that appears to be local optimal at the time. Using the 

greedy method, each iteration generates a random sample from an unknown distribution. The greedy method 

has an effect on the distribution's mean and variance. If it's limited to a single component, the iterative 

solution will be the same. The distribution's mean equals the greedy solution's value, and its variance is zero. 

A search that is conducted in this manner repeatedly is referred to as an iterative search. Prior decisions are 

relevant, but the option is independent of those made in the future or of those inherent in the sub-problem. In 

other words, the greedy still commonly employed as a backup technique or to generate accurate estimations 

of the optimal for particular instance scenarios. Meanwhile, the greedy strategy works well for problems 

involving optimal substructures, where the globally optimal solution embraces local solutions to 

subproblems. 

 

 

6. RESULTS AND DISCUSSION 

The results reported in Tables 1 to 5 was obtained using the hybrid approach outlined in this section. 

The hybrid approach uses CPHFs massively reduce the time it takes to build covering arrays when using a 

metaheuristic technique. An array with as many rows as possible is a good place to start when developing the 

procedure. The greedy method is exceptionally fast when only t-combinations that may contain missing 

tuples are considered. Column vectors of length v can be substituted for the CPHF's elements to create an 

array subarray arrays that cover the entire t-tuple domain or have only a few missing tuples. This can be seen 

when the CPHF's row count exceeds v and only a few more rows are required to complete the coverage. A 

comparison of current state-of-the-art approaches is presented using Python to code the suggested algorithm 

on a computer with a Core i7-7th Generation Intel processor, 8 Giga of random-access memory, and 

Windows 10. 

 

 

Table 1. The array size of the proposed approach vs other approaches at t = 2. 
 Jenny TConfig PICT IPOG CPSO DSPO GS GALP ABCVS HABS HABCSm Proposed 

HGHC 

CA (N; 2,27) 8 7 7 7 7 7 6 6 NA 7 7 6 
CA (N; 2,33) 9 10 10 9 9 9 9 9 9 9 9 9 

CA (N; 2,34) 13 10 13 9 9 9 9 9 9 9 9 11 
CA (N; 2,35) 14 14 13 15 11 11 11 11 11 12 11 13 

CA (N; 2,36) 15 15 14 15 14 14 13 13 13 13 13 14 

CA (N; 2,37) 16 15 16 15 15 15 14 14 15 15 14 15 
CA (N; 2,38) 17 17 16 15 15 15 15 15 15 15 15 16 

CA (N; 2,39) 18 17 17 15 16 15 15 15 16 16 15 15 

CA (N; 2,310) 19 17 18 15 16 16 16 16 17 17 16 17 
CA (N; 2,311) 17 20 18 17 16 17 16 16 17 18 17 18 

CA (N; 2,312) 19 20 19 21 17 16 16 16 18 18 18 18 

CA (N; 2,47) 28 28 27 29 25 24 24 24 NA 25 24 24 
CA (N; 2,57) 37 40 40 45 36 34 36 35 NA 37 34 34 
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Table 2. The array size of the proposed approach vs other approaches at t=3. 
 Jenny TConfig PICT IPOG CPSO DSPO GS GALP ABCVS HABS HABCSm Proposed 

HGHC 

CA (N; 3,27) 14 16 15 16 12 15 12 12 NA 14 13 12 

CA (N; 3,28) 14 18 17 18 16 16 14 12 NA NA NA 13 

CA (N; 3,29) 17 20 17 20 16 16 16 16 NA NA NA 16 
CA (N; 3,210) 18 20 18 20 16 16 16 16 NA NA NA 18 

CA (N; 3,34) 34 32 34 32 38 41 38 37 27 27 27 32 

CA (N; 3,35) 40 40 43 41 30 28 27 27 38 39 39 28 
CA (N; 3,36) 51 48 48 46 42 33 43 40 44 43 43 32 

CA (N; 3,37) 51 55 51 55 49 48 49 48 49 47 46 48 

CA (N; 3,38) 58 58 59 56 53 52 54 52 54 53 45 55 
CA (N; 3,39) 62 64 63 63 58 56 58 56 58 56 56 61 

CA (N; 3,310) 65 68 65 66 61 59 61 59 62 61 61 64 

CA (N; 3,311) 65 72 70 70 63 63 63 62 66 68 65 62 
CA (N; 3,312) 68 77 72 73 68 65 67 65 70 72 68 64 

CA (N; 3,47) 124 122 124 112 115 112 116 112 NA 114 110 110 

 

 

Table 3. The array size of the proposed approach vs other approaches at t=4 
 Jenny TConfig PICT IPOG CPSO DSPO GS GALP ABCVS HABS HABCSm Proposed 

HGHC 

CA (N; 4,27) 31 36 32 35 24 31 27 24 NA 29 27 28 

CA (N; 4,28) 37 38 35 39 32 32 30 29 NA NA NA 32 

CA (N; 4,29) 37 41 41 41 33 34 33 25 NA NA NA 35 

CA (N; 4,210) 39 45 43 46 37 34 25 26 NA NA NA 38 

CA (N; 4,35) 109 97 100 97 94 81 88 88 98 81 81 81 

CA (N; 4,36) 140 141 142 141 132 131 129 129 135 134 132 131 

CA (N; 4,37) 169 166 168 167 153 150 152 152 157 155 149 148 

CA (N; 4,38) 187 190 189 192 174 171 171 171 179 177 159 171 

CA (N; 4,39) 206 213 211 210 191 187 187 189 197 196 185 185 

CA (N; 4,310) 221 235 231 233 211 206 206 206 215 217 212 209 

CA (N; 4,311) 236 258 249 251 226 221 223 221 234 237 229 220 

CA (N; 4,312) 252 272 269 272 242 237 236 237 251 257 246 236 

 

 

Table 4. The array size of the proposed approach vs other approaches at t>4 
 Jenny TConfig PICT IPOG CPSO DSPO GS GALP Proposed HGHC 

CA (N; 5,37) 458 477 452 466 441 428 431 432 429 

CA (N; 6,38) 1,466 1,515 1,455 1409 1,397 1,402 1,398 1,392 1,396 

CA (N; 7,39) 4,746 >day 4,618 NS 4,422 4,427 4,437 4,425 4,422 
CA (N; 8,310) 14,999 >day 14,599 NS 13,925 13,933 13,907 13,903 13,909 

CA (N; 9,311) 47,009 >day 45,521 NS 43,587 >day 43,808 43,543 45,520 

CA (N; 10,312) 147004 >day 141,990 NS 135,498 >day 136,096 135,381 135,391 
CA (N; 11,312) 3,057,977 >day 278,993 NS 268,173 >day 267,630 267,803 267,630 

CA (N; 12,214) 9,422 >day 9,112 NS 8,882 8,972 8,890 8,904 8,890 

CA (N; 13,214) 13,251 >day 12,441 NS 11,588 >day 10,251 11,051 10,250 
CA (N; 14,215) 26,579 >day 25,036 NS 23,889 >day 23,377 22,642 23,360 

CA (N; 15,216) 53,977 >day 51,127 NS 45,838 >day 46,575 41,820 42,990 

 

 

Table 5. For various MCA configurations, a comparison of existing techniques 
 Jenny TConfig PICT IPOG CPSO DSPO GS GALP Proposed HGHC 

MCA(N; 2, 51 38 22) 23 22 15 16 15 NA 21 20 15 

MCA(N; 2, 71 61 51 46 38 23) 50 51 42 42 42 48 51 48 44 

MCA(N; 3, 52 42 32) 131 136 100 106 108 NA NA 113 100 
MCA(N; 3, 101 62 43 31) 399 414 360 361 361 385 393 365 360 

 

 

First, the CPHF is constructed using the first of two algorithms; the second used algorithm is to fill 

in the missing tuples afterwards removing a row from the covering array. Range of 2 ≤v ≤12 and 2 ≤t ≤10 

was used to evaluate the suggested system's performance. A combination of greedy and metaheuristic 

algorithms, as well as the partition of the process into three stages, has resulted in a significant number of 

improvements for our technique. It is necessary to compare HGHC's effectiveness in decreasing the size of 

the test suite with that of other existing approaches as deliberated in [34]–[36]. A total of five sets of 

comparisons are made in the experiment: 

− HGHC is compared to the results of techniques for various setups involving t=2. 
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− HGHC is compared to the results of techniques for various setups involving t=3. 

− HGHC is compared to the results of techniques for various setups involving t=4. 

− HGHC is compared to the results of techniques for various setups involving for CA, t varied from 2 to 10. 

− HGHC is compared to the results of techniques for various setups involving for MCA different 

configurations involving: MCA (N; 2, 51 38 22), MCA (N; 2, 71 61 51 46 38 23), MCA (N; 3, 52 42 32), and 

MCA (N; 3, 101 62 43 31). 

Based on a comparison of the findings, it is clear that the HGHC strategy surpasses the original 

existing techniques (hill climbing and greedy) in terms of covering array size. As shown in Figure 3, that the 

original two algorithms (hill climbing and greedy) are somewhat close, while the HGHC algorithm produces 

less CA size. Figure 4 shows that the two original algorithms, hill climbing and greedy, are comparable in 

certain tests, but the HGHC approach results in a smaller CA size from the fifth case and beyond. Regarding 

the value of t=4, we can observe that the outcomes are rather near to one another in terms of the validity of 

the HGHC algorithm. as illustrated in Figure 5. 

 

 

  
Figure 3. New algorithm vs original performance for 

t=2 

Figure 4. New algorithm vs original performance 

for t=3 

 

 

 
 

Figure 5. New algorithm vs original performance for t=4 

 

 

According to results, meta-heuristic-based techniques surpass those that are based on computation in 

terms of performance. Compared to existing techniques, the suggested HGHC strategy performed well, as 

shown in Table 1 Similar findings were achieved by HGHC, GALP, and HABCSm in configurations no. (2, 

8, and 12) when the interaction was 2. In terms of configurations no. (3, 4, and 7) conventional PSO (CPSO) 

and discrete particle swarm optimization (DSPO) came up with the ideal test set size. The worst results were 

obtained by using Jenny, TConfig, PICT, IPOG and harmful algal blooms (HABS). For setups no. (7, 12, and 

13) When the interaction is equal to 3, HGHC discovered the appropriate size for the test set. As with genetic 
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strategy (GS) and GALP, the HABC method yielded the smallest possible test set for configuration No. (1 

and 3). As for configuration no. (1, 3 and 4) the CSPO method provided the ideal test set size, whereas the 

HABCSm method produced the most effective size of the test set with the other three configurations (9,10 

and 14). When compared to HABC, Jenny, TConfig, PICT, IPOG, ABCVS, and HABCSm consistently 

produced the lowest outcomes as Table 2. Constructed on the results obtainable in Table 3, it is clear that the 

HGHC method achieved excellent results for the configurations no. (7, 11 and 12); as configuration no. 9 

produced a competitive test set that was somewhat near to the ideal test set. In Table 4, when the interaction 

value is equal to 4, HGHC provided the ideal test set size for configurations no. (3, 5, 7, and 9), whereas 

GALP created the optimal test set size for configurations no. (2, 4,6,10, and 11) correspondingly. HABC 

approach yielded a set of tests that was competitive with the optimal set for configurations 1, 3, and 4, as can 

be Table 5. 

 

 

7. STATISTICAL EVALUATION 

The use of statistical analysis is yet another approach that can be taken in order to evaluate the 

proposed strategy in terms of its efficacy and determine the significance of the strategy. With a confidence 

level of 95 percent (i.e., α=0.05), the Wilcoxon signed-rank test is utilized in order to evaluate the HABC 

strategy in comparison to other existing strategies from Tables 1 to 4. The Wilcoxon signed-rank test will be 

used to determine if there is a statistically significant difference between the suggested approach and the 

other strategies being examined for this comparison. This test is ideal for measuring the difference between 

the two sets because it compares them side by side. When multiple comparisons are involved, Bonferroni-

Holm correction (i.e., Holm's sequentially rejective step-down process) was used to adjust value. the 

asymptotic significance (2-tailed) of the first value is used to scale the data [45]. As a result, Holm is 

recalculated using the following factors, 

 

∝ 𝐻𝑜𝑙𝑚 =  
∝

𝑀−𝑖+1
  

 

where M is the total number of paired comparisons, and i is the number of tests. HGHC has three ranks: 

HGHC>, HGHC<, and HGHC= are used to evaluate it. Other existing tactics are either greater, smaller or 

equal to the suggested strategy's results. Asymptotic sig. (2-tailed) and Z are the two values that have a 

statistical test component asymp. sig. (2-tailed) shows a significant difference between the two sets, and the 

corresponding hypothesis will be retained if the value exceeds Holm. The Z value is not addressed in this 

study (i.e., not considered). If the asymp. sig. (2tailed) value is less than Holm, the associated hypothesis is 

rejected. Once a certain null hypothesis cannot be ruled out, the rest of the hypotheses are also kept. As there 

is no test configuration for which a result is provided, the strategies with N/A results are regarded as 

incomplete and ignored samples. The statistical findings from the wilcoxon test for Tables 1 to 4 are 

presented in Tables 6 to 9, which may be seen. A considerable difference may be seen in asymp between 

HABS and HABCSm alone. From Table 6, HGHC is clearly better to all other approaches, with the 

exception of HABC and HABCSm. A look at Table 7 reveals that even though HGHC outperformed Jenny, 

IPOG, CSPO, DSPO, GS, GALP, PICT, HABC, and HABCSm, it was inferior to TConfig. In Table 8, 

HGHC did better than TConfig, IPOG, CSPO, DSPO, GS, GALP, HABC, and HABCSm, but not as well as 

Jenny and PICT. The findings of the tests presented in Table 9. shows HGHC is significantly different from 

those of CSPO, GS, JENNY, and PICT. The GALP strategy, on the other hand, outperformed the performers 

of the HABC strategy. The other approaches' conclusions are labeled "missing" because they are either 

unavailable or do not support a certain set up. 

 

 

Table 6. Analysis of data from Table 1 using the wilcoxon signed rank sum test 
Pairs Ranks Test statistics Conclusion 

HGHC< HGHC> HGHC= Z Asymp. sig. (2-tailed) α Holm 

HGHC-CPSO 9 3 3 0.8664 0.0707 0.05 Reject the null hypothesis 
HGHC-DSPO 7 3 3 1.9439 0.0564 0.025 Reject the null hypothesis 

HGHC-GALP 11 7 7 2.3102 0.0207 0.0167 Reject the null hypothesis 

HGHC-GS 38 18 18 1.8363 0.0679 0.0125 Reject the null hypothesis 
HGHC-HABC 9 4 4 0.07 0.11 0.0100 Retain the null hypothesis 

HGHC-HABCSm 29 17 17 2.0304 0.0401 0.0083 Retain the null hypothesis 

HGHC-IPOG 10 6 6 1.0703 0.0036 0.0021 Reject the null hypothesis 
HGHC-JENNY 4 0 0 0.9435 0.0067 0.0060 Reject the null hypothesis 

HGHC-PICT 6 4 4 2.6656 0.0079 0.0050 Reject the null hypothesis 

HGHC-TCONFIG 9 3 3 2.6229 0.0085 0.0045 Reject the null hypothesis 
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Table 7. Analysis of data from Table 2 using the wilcoxon signed rank sum test 
Pairs Ranks  Test statistics Conclusion 

HGHC< HGHC> HGHC= Z Asymp. sig. (2-tailed) α Holm 

HGHC-CPSO 15 11 11 0.9478 0.0038 0.4258 Reject the null hypothesis 

HGHC-DSPO 21 13 13 0.169 0.0167 0.932 Reject the null hypothesis 

HGHC-GALP 20 14 14 0.0845 0.0125 0.100 Reject the null hypothesis 
HGHC-GS 17 17 17 0.6516 0.0100 0.5703 Reject the null hypothesis 

HGHC-HABC 15 13 13 0.8885 0.0083 0.4258 Reject the null hypothesis 

HGHC-HABCSm 15 11 11 0.8885 0.0071 0.4258 Reject the null hypothesis 
HGHC-IPOG 5 0 2 2.5205 0.0063 0.0141 Reject the null hypothesis 

HGHC-JENNY 6 3 0 2.6656 0.0050 0.0039 Reject the null hypothesis 

HGHC-PICT 4 2 1 2.6661 0.0045 0.0039 Reject the null hypothesis 
HGHC-TCONFIG 3 0 0 2.5205 0.0321 0.0014 Retain the null hypothesis 

 

 

Table 8. Analysis of data from Table 3 using the wilcoxon signed rank sum test 
Pairs Ranks  Test statistics Conclusion 

HGHC< HGHC> HGHC= Z Asymp. sig. (2-tailed) α Holm 

HGHC-CPSO 3 0 0 2.5205 0.025 0.0141 Reject the null hypothesis 

HGHC-DSPO 7 4 4 0.9439 0.0167 0.4164 Reject the null hypothesis 

HGHC-GALP 7 3 5 1.5213 0.0125 0.1501 Reject the null hypothesis 
HGHC-GS 7 5 5 1.0215 0.0100 0.1493 Reject the null hypothesis 

HGHC-HABC 7 5 0 2.3664 0.0083 0.0225 Reject the null hypothesis 
HGHC-HABCSm 7 5 2 1.1531 0.0071 0.2945 Reject the null hypothesis 

HGHC-IPOG 4 0 1 2.0205 0.0167 0.0143 Reject the null hypothesis 

HGHC-JENNY 15 11 11 2.5115 0.0125 0.0441 Retain the null hypothesis 
HGHC-PICT 5 0 2 2.0005 0.0100 0.0514 Retain the null hypothesis 

HGHC-TCONFIG 6 3 0 2.1105 0.0083 0.0742 Reject the null hypothesis 

 

 

Table 9. Analysis of data from Table 4 using the wilcoxon signed rank sum test 
Pairs Ranks Test statistics Conclusion 

HGHC< HGHC> HGHC= Z Asymp. sig. (2-tailed) α Holm 

HGHC-CPSO 13 11 11 1.3624 0.0925 0.0100 Reject the null hypothesis 

HGHC-GALP 25 25 25 0.2548 0.8384 0.0083 Retain the null hypothesis 
HGHC-GS 15 11 11 0.9802 0.0604 0.0171 Reject the null hypothesis 

HGHC-JENNY 6 0 2 2.0361 0.0079 0.0063 Reject the null hypothesis 

HGHC-PICT 3 1 0 2.8031 0.0059 0.0050 Reject the null hypothesis 

 

 

8. CONCLUSION 

Findings from comparative studies shows that the proposed strategy outperforms existing techniques 

when it comes to CA/MCA generation quality and the number of generations it takes to get there. Most of the 

time, when comparing CA/MCA size; The new method outperforms conventional methods. encompassing 

orders of coverage arrays 2 ≤v ≤5 and strengths 2 ≤t ≤10 were constructed using an innovative hybrid 

greedy-metaheuristic technique. This proves that it is a highly competitive technology for the production of 

such arrays of coverings. In order to achieve the best outcomes, one needs to use both greedy as well as 

metaheuristic algorithms. When it comes to evaluating the composition of compost, uniform cover arrays of 

degree four are used, and it was offered as an illustration of how they can be used. The HGHC 

experimentations were premeditated and carried out appropriate to appraise the influence of each decision on 

the resultant array size. Observations based on the data allow us to say that i) the framework's configurations 

have a substantial impression on the performance of the covering array. When compared to established 

methods such as IPOG, PICT, and DSPO, ii) find that the optimal configuration has apparent advantages, and 

in some systems, it is even improved than the existing methods. As a result, the proposed HGHC algorithm 

may prove to be a more efficient tool for autonomously producing test data, particularly because it ensures 

adequate coverage, optimality, and minimal complexity. In the future, investigate to see if the greedy strategy 

is capable of being utilized to generate CAs and MCAs with higher strength, and consider the scenarios of 

seeds and limitations in the production of a covering array. 
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