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 Dynamic vehicle weight measuring, weigh-in-motion (WIM), is an important 

metric that can reflect significantly vehicle driving behaviour and in turn, it 

will affect both safety and traffic status. Several accurate WIM systems are 

developed and implemented successfully. These systems are using under road 
weighing sensor which are costly to implement. Moreover, it is costly and not 

very practical to embed a continuous weighing system in used cars. In this 

work, a low-cost varied-speed weigh-in-motion approach was suggested to 

continuously measuring vehicle load based on the response of smartphone 

sensors which is a reflection of vehicle dynamics. This approach can apply to 
any moving vehicle at any driving speed without the need for extra added 

hardware which makes it very applicable because smartphone is widely used 

device. The approach was tested through a six-trips experiment. Three 

capacities of load had been designed in this approach to be classified using a 

neural network classifier. The classification performance metrics are 
calculated and show an accuracy of 91.2%. This accuracy level is within error 

limits of existing WIM systems especially for high speed and proved the 

success of the suggested approach. 
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1. INTRODUCTION 

All user and road safety, pavement design, bridge design and other transportation issues depend 

mainly on dynamic vehicle weight or what is called weigh-in-motion (WIM) [1]–[3]. Numerous methods of 

dynamic vehicle weighing scales are developed to fit the requirements of this need. However, these methods 

used different types of sensors and load cells with data loggers to measure and record the weighing data.  

Recently, smartphone ubiquity and development of its hardware, built-in sensors, and software help 

to involve this device in most life applications. The use of smartphone sensors in these applications offers an 

easy and cost-effective solution. Different areas of transportation and vehicle safety utilized smartphone 

sensors rather than traditional systems as detailed below: 

A different area of smartphone-aided application is physical activity and health monitoring. Although 

it is not related to transportation but smartphone sensors are widely used in this area. In 2013, another 

researchers studied the utilization of smartphone accelerometer, gyroscope, and magnetometer in recognizing 

the physical activity. They presented the evaluation of three sensors in four body situations position s by using 

seven classifiers while identifying six physical activities [4]. Hernandez et al. have developed a method that 

benefits from accelerometer data for extracting breathing and heart rate [5]. Another researcher used 

smartphone texting activity to identify operator fatigue [6]. In 2021, G. Ali and her team proposed a recognition 
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system for human physical activity. The system is based on data extracted from smartphone sensors i.e. 

gyroscope, accelerometer, and gravity sensor. The results presented high accuracy in recognition of all six 

activities especially with related to running, walking, sitting, and standing [7]. 

Many research papers were studying vehicle accidents and road conditions using smartphone sensors. 

In 2013, Roberto G. and his team introduced good results concerning utilizing smartphone in crash detection 

of vehicles. The presented model has been examined for early detection of traffic accidents [8]. While Adnan 

Bin Faiz et al developed an application based on Android to detect an accident and notify the nearest health 

care center and police station by emergency alert message. They utilize an external pressure sensor tends to 

extract the body outward force of the vehicle. Global positioning system (GPS) and accelerometer sensors have 

been used in the application, so they became capable to reduce the rate of false alarm by measuring speed and 

change of tilt angle respectively [9]. In 2017, another researchers presented an intelligent system for detecting 

road surface conditions. They used smart mobile relying on crowdsourcing and sensing technique. The sensors 

used in smartphone such as GPS and accelerometer have been utilized for monitoring several road  

conditions [10]. Moreover, different research areas related to use smartphone in vehicle and transportation 

areas such as internet of vehicles (IoV) [11], road condition [12], accident type classification [13]. 

Another field of using smartphone sensors in transportation area is  driving behaviour. In 2016,  

Li et al. [14] present a driving behaviour detection method using low accuracy accelerometers and gyroscopes. 

The algorithms have been proved experimentally [14]. And in 2019, Sasidhar and Upasini developed a method 

uses a smartphone accelerometer for detecting and identifying abnormal driving behaviour such as lane 

changing, weaving, and sudden braking [15]. Recently, Rishu Chhabra and his colleagues designed and 

implemented an accelerometer to detect any unexpected changes in acceleration, sharp turns, and braking using 

gyroscope. The method categorized the driver as an aggressive or nonaggressive  driver according to the 

observed pattern [16]. And in 2019, Papadimitriou et al. [17] explored driver behaviour using smartphone 

sensors. They suggested using mobile phone while driving for more accuracy [17]. Although of many research 

papers that had been presented in on-road weighing area [2], [18], [19], to our best knowledge there were not 

trials of using smartphone sensors to handle this task. In this work, a new approach is proposed to classify on -

road truck weight into three classes using smartphone magnetometer and inertial (accelerometer and 

gyroscope) sensors. This approach is very cost-effective and can be implemented easily to any vehicle without 

the need for extra hardware to be installed by professional workers. 

 

 

2. BACKGROUND 

Different approaches, methods and systems had been proposed in research papers to investigate the 

accuracy of these proposals and their ability to keep this accuracy in real road environments. It is known that 

static weighing is more accurate than dynamic weighing. However, still, dynamic weighing is preferable 

because of its ability to ensure traffic flow and reduce the need for stopping at the entrance of static weighing 

platforms. In the next subsections, several topics related to our work are detailed with its background theory.  

 

2.1. WIM 

Weigh-in-motion systems are used to measure weight of traveling vehicle at normal or reduces speed. 

Collected data from WIM system is very useful for vehicle suspension system, pavement and traffic control 

and other applications. WIM systems can be classified into two major classes: i) low-speed WIM (LS-WIM) 

and ii) high-speed WIM (HS-WIM). This classification is come up based on vehicle speed. The system is 

counted as LS-WIM if the measuring speed is up to 15 km/hr, while it will be under HS-WIM class if it crosses 

the 15km/hr, threshold [20]. The weight sensors may be embedded in roads, bridges or installed in vehicles 

(on-board WIM). LS-WIM can be implemented using road sensors while HS-WIM can be implemented using 

all three systems as illustrated in Figure 1 [21], [22]. 

Accuracy, cost, traffic management, availability and frequency of calibration are main issues need to 

be investigated to improve the use of WIM systems in real environments. The accuracy of WIM existing 

systems is around 5-15% depending on vehicle speed and number of sensors and other parameters [21]–[23]. 

However, increasing number of sensors makes the system costly and sophisticated and rise the need for a more 

frequent calibration process. The proposed approach is suggested to in keep the existing accuracy and, at the 

same time, improve the cost and ease of use with increasing frequency of calibration. 

 

2.2. Vehicular dynamics 

Vehicle movement follows mainly Newton’s second low which describe the relation between mass 

(m), acceleration (a) and vehicle net forces (F) as shown in (1): 

 

Fnet=ma (1) 
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Figure 1. Weigh-in-motion classes 

 

 

where the net forces (Fnet) is the resultant of traction force and resistance forces [24]. Starting from Newton’s 

second low more detailed formula is derived from [20]: 

 

𝐹 = 𝑚 × 𝑎 + 𝑚 × 𝑔 × sin𝜃 +𝑅 (2) 

 

where F is the combustion engine driving force, m is the mass of the derived vehicle, a is the vehicle 

acceleration, 𝑔 is the gravitational acceleration, 𝜃 is the slope angle of the driving road and R is the moving 

resistance force. (2) can be re-arranged: 

 

𝑎 =
𝐹−𝑅

𝑚
− 𝑔 × sin𝜃 (3) 

 

It can be noticed from (3) that the vehicle acceleration is inversely proportioned to the vehicle mass. 

However, the acceleration is a function not limited to mass but also to driving force, resistance force and road 

inclination angle. Assuming that the proposed system is calibrated (trained) in similar road environments, the 

acceleration values can be a good representative of vehicle mass. As a result, the acceleration measu rements 

can be used to capture vehicle weight. The proposed machine learning approach is used as a classifier function 

to map the acceleration measures with weight class after training. 

 

2.3. Smartphone inertial sensors and vehicle sensors  

Smartphone using is increasing dramatically in the last few years. Smartphones are equipped with 

many built-in sensors that are used to manage smartphone functionality. Accuracy and quality of these sensors 

usually depend on smartphone brand and price. In this work, we are focusing on sensors affected by motion. 

Motion-related sensors which are embedded in smartphone are accelerometer and gyroscope. Figure 2 shows 

an example of smartphone and graphical representation of the two motion sensors (accelerometer and 

gyroscope) and will be described in more details next subsections  

 

 

 
 

Figure 2. Smartphone and its inertial sensors  
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2.3.1. Accelerometer 

Accelerometer is a device used to measure acceleration that is manufactured using micro -electro-

mechanical systems (MEMS) technology. Recently, majority of smartphones are equipped with tri-axial 

accelerometer as illustrated in Figure 1 where the orientation of accelerometer axes is aligned with smartphone 

body. In this work, it is not necessarily to align the smartphone body with vehicle heading. Acceleration is an 

essential motion metric which proportions inversely with mass as Newton’s second law says [19]. Several 

vehicle dynamic measures can be affected directly by vehicle mass and these measures can be c aptures by 

accelerometer (and gyroscopes) devices [25]. A brief description of these measures is listed. 

a)  Suspension dynamics: Vehicle suspension system carries load and vehicle mass against gravity force. 

Also, this system is responded directly to vertical vehicle inertia changes while driving status. All 

these changes can be captured by accelerometer. 

b)  Lateral/yaw dynamics: Due to vehicle manoeuvring or turning, lateral forces appear in a magnitude 

that is directly proportional to vehicle mass. These forces can be easily captured by tri-axial 

accelerometer (and gyroscope). 

c)  Longitudinal dynamics: Vehicle engine generates certain amount of traction power and force. 

Consequently, the longitudinal acceleration and deceleration (or braking) relate directly to the 

effective mass of vehicle. The changes in vehicle speed can be effectively captured by accelerometer 

measures. 

 

2.3.2. Gyroscope 

Gyroscope is a MEMS sensor that smartphone is equipped with. It is used to measure angular velocity 

and usually to maintain orientation. Similar to accelerometer structure, gyroscope also has three axes 

component usually named roll, pitch and yaw according to the rotation axis (Y, X or Z respectively) as 

illustrated in Figure 1. Again, in this work the alignment of smartphone inside the vehicle is not a crucial point 

because reflection of vehicle mass changing can be captured by either of the gyroscope components. Vehicle 

turning and maneuvering (Lateral/yaw dynamics) causes changes in the angular velocity of the vehicle. These  

changes can be effectively recorded by smartphone gyroscope sensors when it is located inside the vehicle.  

 

 

3. THE PROPOSED APPROACH 

The proposed weigh-in-motion approach is described and overviewed in this section. This approach 

includes four stages as shown in Figure 3. These stages are started with the experiment and data collection, 

pre-processing, feature extraction, and finally classification stage. In this section these stages will be detailed 

in subsection as follows: 

 

 

 
 

Figure 3. The proposed approach 
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3.1. Experiment and data collection 

A small truck (pick-up truck) is used in this work to conduct the experiment and to collect data from 

smartphone. The full load capacity of the used vehicle is 1000 KGM. A local road of around 1 Km long is 

chosen to do the experiment which is usually a busy road to enhance the experiment with realistic vehicle 

behaviour. Low-cost smartphones (Xiaomi Redmi 5 and Sony Xperia Z3) are used in this experiment to test 

the ability of the solution to work with any type of smartphone. Numerous sensors are equipped with this 

smartphone. However, three sensors have been chosen in this work and they are; Accelerometer, Gyroscope, 

and Magnetometer. 

Three loading levels are chosen in this work to test the ability of the algorithm to distinguish between 

them. These levels are empty, half load, and full load levels. Six trips with the truck are traveled while the 

smartphone is collecting data from its built-in sensors using the mentioned application. Every two trips have 

been represented one of three load levels. The smartphone has been used as a data logger with aid of a 

commercial application named sensor kinetics pro [26]. The application can collect all built-in smartphone 

sensors. In this work, three movement sensors (accelerometer, gyroscope, and rotation virtual sensors) have 

been selected to share their data. 

 

3.2. Pre-processing 

Different sources of noise commonly contaminate the collected data. The common method to reduce 

the effect of inertial sensors noise is to use a moving average window filter [27]. The window size of the 

moving average filter is depending on the sampling rate and time response of the vehicle. For this work, a 

window size of 60 samples is chosen to trade-off between the sampling rate (200 Hz) and the time response of 

vehicle activity (acceleration and deceleration). This selection has been cho sen to achieve maximum 

classification (next stage) performance. 

Pre-processing stage is added to reduce the noise effect and prepare data for the feature extraction 

stage. Figure 4 shows an example of this job. It is clear that noisy filtered raw (grey color) has been filtered 

and present in clearer form (black line) which is ready to feature extraction stage. Moreover, several time slots 

of data have been removed from the dataset when the vehicle is in idle status because this work is proposed to 

measure weight in motion. When the vehicle is in movement status, inertial sensors can capture vehicle 

behaviour including weight effect. However, this is not the case when the vehicle is in idle status. 

Figure 4 shows several acceleration and deceleration tie intervals which are presented as positive and 

negative acceleration values respectively. Changes in inertial sensor behaviour capture changes in vehicle 

activity. These changes are used to capture the effect of vehicle mass on its behaviour. 

Vehicle dynamics quantities such as acceleration, braking, cornering, and inertia have a direct relation 

with vehicle mass. Acceleration and braking have a proportional inverse relation to vehicle mass as stated in 

Newton’s second law of motion. So, inertial sensors which are functioned based on the same principles can 

capture changes in vehicle mass. Figure 5 shows an example of collected data belongs to three load levels of 

the vehicle under test. 

 

 

  
  

Figure 4. An example of pre-processing stage with 

raw and filtered data imposed on same graph and 

showing different vehicle movement statuses  

Figure 5. An example of filtered data imposed on 

the same graph showing different vehicle loading 

levels 
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3.3. Feature extraction 

The pre-processed data has been statically analyzed to the first and second momentum levels. Two 

hardware built-in sensors (accelerometer and gyroscope) and one software computed sensor (rotation) are 

selected to generate features. Many combinations sets of features tested and the set with the best classifica tion 

performance have been chosen. The selected feature set includes eight features and they are: 

(1) X component of accelerometer. 

(2) Y component of accelerometer. 

(3) Z component of accelerometer. 

(4) Magnitude of gyroscope. 

(5) Magnitude of rotational sensor. 

(6) Standard deviation of acceleration magnitude.  

(7) Standard deviation of gyroscope magnitude. 

(8) Standard deviation of rotation magnitude.  

These features are extracted and stored in a database of 42000 records. Each record includes 8 values 

from the aforementioned sets. This features dataset is used to feed the neural network classifier (next 

subsection). This dataset is labeled with three labels (empty, half load and full load) according to trip status. 

 

3.4. Neural network classifier 

Neural network is widely used as a machine learning technique. It is used mainly when there is a 

complex relationship between input and output relation and it can capture the pattern and classify it based on 

a previous learning phase [28]. In this work, the neural network is used to classify one of three classes based 

on a set of eight previously mentioned features. The structure of the neural network consists of three layers; 

the input layer with eight neurons and the hidden layer with twenty neurons and finally the output layer with 

three neurons to simulate the three classes. The features dataset is divided into three subsets including 60% of 

data as training subset, 20% as a testing subset and 20% as validation subset. 

 

 

4. RESULTS AND DISCUSSION 

The ternary (three classes) neural network (NN) classifier is designed and tested with different hidden 

layer neuron numbers. The feature dataset is fed to the input layer of NN classifier and the performance metrics 

are calculated based on data gained from the output layer. The receiver operating characteristic curve (ROC) 

is commonly used to test classifier performance metrics [29]. This ROC for the implemented classifier is shown 

in Figure 6 and it illustrates the three classes  performance with three different line types. The area under this 

curve (AUC) is a sign for classifier accuracy. It is noticeable the three classes have presented good accuracy 

since the AUC for the three classes is close to 1 (the perfect classification results). However, the “empty” class 

shows the best AUC and best classifying results, which is expected, because the vehicle moving behaviour will 

be much more different than the other two classes. When the vehicle is empty, it accelerates and decelerates 

faster than when it is loaded. The ROC graph which is shown in Figure 6 Illustrates graphically the 

classification results. 

Another classification performance metric is the confusion matrix (CM). This metric tends to present 

data in numbers form rather than graphical form (as in ROC). The confusion matrix of the implemented 

classifier is presented in Figure 7. The confusion matrix depicts a clear overview of the classifier results. The 

diagonal numbers of CM show the correctly classified samples which is in our case the major part of the dataset. 

However, there is still a small fraction of data is misclassified between the three classes. 

The best classification rate is gained by the first class (empty class) which is scored 97.3%. This result 

happened because of the damping, acceleration and declaration of vehicle, in this class, is significantly different 

from other classes when the vehicle is loaded. However, the overall accuracy of the three classes is 91.2% that 

shows the ability of this approach to classify correctly the load level of the tested vehicle. Error tolerance of 

implemented approach (8.8%) is within permissible error limit (5-15%) [20]–[22]. 

The classifier performance metrics are listed in Table 1. Again, the best accuracy is granted to the first 

class (“empty class”) as discussed earlier. Precision and recall are another performance metrics that are 

calculated based using the confusion matrix. These two metrics give another perspective to classifier results in 

companion with accuracy. The precision shows close results (around 0.9) for the three classes which is a sign 

for the classifier to work consistently for all classes. The recall metrics  which is sometimes called sensitivity, 

aims to capture the maximum number of instants belongs to that class. It is clear from recall numbers that the 

first class has the highest number. It seems that the data of this class can easily distinguish from the o ther two 

classes. Finally, F1 score is a single score that can balance precision and recall as its numbers seem to be the 

average of the other two metrics. 

 



                ISSN: 2252-8938 

Int J Artif Intell, Vol. 11, No. 4, December 2022: 1554-1562 

1560 

  
  

Figure 6. The Ternary NN classifier ROC and AUC 

performance metrics 

Figure 7. The Ternary NN classifier confusion 

matrix 

 

 

Table 1. Classifier performance metrics  
Class  Accuracy  Precision Recall  F1 Score  

Empty 96.26% 0.92 0.97 0.95 
Half load 93% 0.9 0.89 0.89  
Full load 93.11% 0.92 0.87 0.89 

 

 

Many research papers had been investigated WIM systems to improve their performance. The 

improvement usually aims to enhance cost, complexity, accuracy, and frequency of calibration. However, the 

proposed approach (using smartphone inertial sensors only) is not adopted in these research papers. Although 

the accuracy is within error tolerance of existing systems (5-15%), the accuracy is not one of the best results 

of the proposed approach. However, other evaluation metrics can be count for this approach. The proposed 

WIM approach is cost-effective compared to the existing system since it uses only smartphone embedded 

sensors. Also, after training, there is no need for calibration which is essential feature for such systems. Finally, 

the proposed WIN approach is easy to use and implement in any vehicle and there is no need for experts for 

installation. Table 2. Shows a comparison between the proposed and existing systems based on  most known 

evaluation metrics. 

 

 

Table 2. Comparison between existed technologies and the proposed  approach 
WIM technology Cost Complexity  Accuracy  Frequency of calibration  Sensors type 

LS-WIM High High  Moderate  Moderate Load cell/Bending plates 
HS-WIM High High Low High  Accelerometer/strain gauge  

Proposed WIM Low Low Low low Smartphone sensors 

 

 

5. CONCLUSION 

A new approach for on-road vehicle weighing scales using smartphone inertial sensors is proposed in 

this work. The proposed WIM approach has been planned, designed and implements successfully. This 

approach is achieved based on smartphone inertial sensors (accelerometer and gyroscope) and rotational sensor 

using an existing data collection application. These sensors can capture the dynamic behaviour of the vehicle. 

The approach has been tested through a small truck with six trips (two trips for each class). The approach is 

designed to distinguish the vehicle load among three classes (empty, half load and full load). The classifier 

performance results proved the successful rate of implemented approach to identify the actual class load with 

an accuracy of 91.2%. The results show the ability of the implemented approach to estimate the actual load of 

the moving vehicle without the need for any extra onboard hardware. More development can help to make this 

approach more practical by increasing the classes of vehicle load. 
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