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 Oil palm is a perennial plant that thrives well in tropical climate. Apart from 

humid environment, the plant also requires a wide variety of nutrients. Any 

deficiencies will directly affect its growth and palm oil production. These 

can often be detected from the change of leaf colour and texture. Deviations 

from the standard dark green colour indicates lack of certain nutrients. 

Therefore, this study proposes convolutional neural network (CNN) to 

classify nutrient deficiency in oil palms using leaf images. A total of 180 

leaf images are acquired using standardized protocol. The samples are 

evenly distributed into healthy, nitrogen-deficient, and potassium-deficient 

groups. Residual network (ResNet)-50, visual geometry group-16 (VGG-

16), Densely connected network (DenseNet)-201, and AlexNet are trained 

and tested using the randomized samples. Each attained classification 

accuracies of 96.7%, 100%, 98.3%, and 100% respectively. Despite yielding 

similar performance, AlexNet is the more computational efficient 

architecture with less convolutional layers compared to VGG-16. 
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1. INTRODUCTION 

Oil palm (Elaeis guineensis) was first introduced in Malaysia as an ornamental plant [1]. However, 

due to its widespread commercial value, the oil palm is grown in large scale plantation estates. The plantation 

area grew from 1.5 million hectares in 1985 to 4.7 million hectares in 2009. This shows the significant 

contribution of oil palm to the economy and has since become an important commodity crop for the  

country [2]. Currently, Malaysia is the second largest producer of palm oil in the world and provides 38% of 

the global supply. The production has increased steadily over the years, reaching 39.04 million tons in 2011 

alone. The industry easily meets the local demand for oil and fat, and the surplus is exported overseas. 

Manufacturers have also invested in the post-processing of palm oil to ensure efficient refining and 

fractionation process [1]. However, the growth of oil palm also contributes to the amount and quality of oil 

yield. Hence, monitoring of the plant during the early phase of growth is equally important. 

The perennial plant grows well in tropical climate and is highly productive under the appropriate 

environment conditions [3]. Oil palm requires a variety of nutrients such as nitrogen, potassium, phosporus, 

magnesium, boron, copper, and zinc for optimum growth and productive yield [4]. Nutrient deficiency can be 

https://creativecommons.org/licenses/by-sa/4.0/


Int J Artif Intell  ISSN: 2252-8938  

 

Classification of nutrient deficiency in oil palms from leaf images using … (Muhammad Ikmal Hafiz Razali) 

1315 

detected at early stage of growth. This can be physically observed from the characteristics of the trunk and 

leaves. Oil palm that lacks phosphorus will result in a trunk structure that is narrow and tapered [5]. 

Meanwhile, deficiency of specific nutrients such as nitrogen and potassium can be observed from the leaves. 

Healthy oil palms have dark green leaflets, with strong and flexible characteristics. Conversely, nitrogen-

deficient plants can be detected from light green- and yellow-coloured leaves. Lack of potassium is indicated 

by confluent orange spotting on the leaflets [6]. 

The evaluation is subjective and performed by trained operators [7]. To address this limitation, a 

computerized system that assess nutrient deficiencies from leaf images is required. These images can be fed to 

deep learning algorithms for extracting intrinsic information related to specific nutrient deficiency. The method 

imitates the human brain in generalizing solution from new experience [8]. Deep learning allows machines to 

solve complex problems even from diverse and unstructured data. The technique requires less data pre-

processing than the more primitive architectures. Theoretically, a deeper structure should result in improved 

performance compared to shallower network structure [9]. The method can generally be segregated based on the 

type of data being used. While the long short-term memory (LSTM) network specifically caters for time-series 

information [10], convolutional neural network (CNN) is developed for image recognition [11]. 

Various pre-trained CNN structures are readily available and new models can be built to enhance the 

existing network. These include the residual network (ResNet) [12], visual geometry group network  

(VGGNet) [13], densely connected network (DenseNet) [14], and AlexNet [15]. Each of these differ in the 

number of deep layers involved. Comparatively, report has been conflicting on the best performing 

architectures. Several literatures claimed DenseNet [16], [17], while others highlighted AlexNet [18], [19] as the 

better alternative. Therefore, it is assumed that the performance is dependant on the problem and parameters 

being studied. Another parameter to be considered when assessing the performance is computational cost which 

is proportional to the number of convolutional layers [20]. Generally, these CNN structures have been 

successfully implemented in agriculture for monitoring agriculture areas based on satellite images [21], 

prediction of crop yield [22], fruit counting [23], weed and crop recognition [24], leaf stress [25] and  

diseases [19], as well as detection of post-harvest pesticide residue [26]. CNN has also been applied to detect  

multiple plant diseases from leaf image with excellent classification accuracy [17]. Therefore, this highlights the 

potential of CNN for classifying nutrient deficiency in oil palms from the leaf images. 

Based on the extensive review, two major gaps in the literature have been identified. First, a 

standardized protocol for the acquisition of leaf images is needed. This involve investigating suitable 

positioning of the camera, lighting, and uniformed background upon which the leaves will be placed against. 

Second, CNN has never been implemented for classifying nutrient deficiency from the leaf images. Several 

architectures can thus be evaluated for the best classification performance and computational efficiency. 

therefore, the study sets out to achieve the following objectives: i) To establish image acquisition protocol, 

and ii) to develop and assess CNN architectures for classifying nutrient deficiency from the leaf images. The 

study is significant as untrained operators can perform objective assessment on the nutrition status of oil 

palms through image acquisition protocol and deep learning classification model. 

 

 

2. RESEARCH METHOD 

Generally, the study sets out to solve two major objectives. The image acquisition protocol is first 

standardized. Subsequently, the leaf images are acquired based on the predefined procedure. Image samples 

are then segregated into healthy, nitrogen-deficient, and potassium-deficient groups. The data is randomized 

and next, partitioned for network training and testing. The classification model is then developed based on 

ResNet, VGGNet, DenseNet and AlexNet architectures. Consequently, the individual network is evaluated 

based on the best classification performance and computational efficiency. Figure 1 illustrates the general 

framework of research methods. 

 

2.1.  Protocol and acquisition of leaf images 

Initially, a suitable image acquisition protocol is standardized prior to the actual data collection. As 

shown in Figure 2, the leaves sampled from the oil palm is placed against a black background to avoid 

reflection of incoming light source. A camera with light source unit is placed 8 centimeters (cm) from the 

sample. A smartphone with 12 megapixels (MP) camera is sufficient to capture the leaf characteristics at 

great level of detail. Leaf samples are acquired from a plantation at Taman Tualang Indah, Temerloh, 

Pahang. The location is selected as the oil palms are still in the early growth phase. Therefore, the leaves can 

be obtained by cutting them from the main branch. The operators can periodically assess the plant conditions 

through visual observation of the leaf characteristics. These are based on subjective evaluations and the 

assessment varies from one individual to another. The dataset is segregated into the healthy controls, 

nitrogen-deficient, and potassium-deficient groups. 
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Figure 1. Framework of research methods 

 

 

 
 

Figure 2. Image acquisition setup 

 

 

2.2.  Convolutional neural network 

All image classification tasks using CNN are performed in matrix laboratory (MATLAB). CNN is 

comprised of four major components: the convolution layer, activation functions, pooling, and fully 

connected layers. The original 3,456×3,456 pixels images are resized using zero-center normalization method 

and makes use of the red-green-blue (RGB) channels. Normalization is required as it avoids gradient 

explosion in accelerated network convergence. These further reduces the number of feature maps [27]. 

Learnable filters are used by the convolutional layer to detect specific patterns from the input. The filter is 

slided across the area of the image and a dot product is computed to obtain an activation map. Rectified linear 

unit (ReLU) is implemented as the activation function in the convolutional layer as it does not activate all 

neurons simultaneously and thus, improves computational efficiency. Meanwhile, softmax function is used in 

the last fully connected layer. ReLU and softmax functions can each be expressed by (1) and (2), where K is 

the number of groups in the classifier. 

 

𝑓1(𝑥) = {
𝑥 , 𝑥 ≥ 0
0 , 𝑥 < 0

 (1) 

 

𝑓2(𝑥𝑖) =
𝑒𝑥𝑖

∑ 𝑒𝑥𝑗𝐾
𝑗=1

 (2) 
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Max-pooling is implemented between the convolutional layers. The operation only selects the 

maximum parameters from the pool. These decreases the number of parameters and computation in the 

network and therefore, control overfitting by progressively reducing the spatial size of the network. In the 

fully connected layer, the neurons have a complete connection to all the activations from the previous layers. 

The activations are computed with a matrix multiplication, followed by a bias offset. The number of 

convolutional and fully connected layers vary between CNN architectures. Figure 3 shows an example of the 

connections between the convolutional layers, activation functions, pooling, and fully connected layers. 

 

 

 
 

Figure 3. Example of connections between the convolutional layers, activation functions, pooling and fully 

connected layers 

 

 

The study assesses four pre-trained modules that include ResNet-50, VGG-16, DenseNet201 and 

AlexNet architectures. The ResNet-50 is comprised of 49 convolutional layers and one fully connected layer. 

The first convolutional layer takes input image of 224×224 pixels. Meanwhile, VGG-16 consists of 13 

convolutional layers and three fully connected layers. Similar with ResNet-50, the first convolutional layer 

takes in input image of 224×224 pixels. The DenseNet201 architecture has the deepest number of layers, 

comprising of 200 convolutional layers and one fully connected layer. The first convolutional layer also takes 

input image of 224×224 pixels. Conversely, AlexNet architecture has the least depth, consisting of five 

convolutional layers and three fully connected layers. The first convolutional layer takes in input image of 

224×224 pixels. 

The experiment runs on advanced micro devices (AMD) Ryzen 5 3400G with Radeon Vega 

Graphics processor, 32 GB random-access memory (RAM) and NVIDIA GeForce giga texel shader extreme 

(GTX) 1070 graphics processing unit (GPU) on Windows 10 operating system. Samples for the respective 

groups are initially randomized to avoid bias during classification. Then, the images are segregated for 

training and testing with 80:20 split ratio. A stochastic gradient descent algorithm is implemented for training 

the CNN. The randomized selection of data point from the set of data at each training iteration decreases the 

computation significantly [28]. At the end of training stage, the fully connected layers, softmax function and 

output layers for each architecture are replaced with the new layers that are developed for classifying leaves 

with nutrient deficiencies. 

The performance of each architecture is assessed in terms of accuracy, specificity, sensitivity, and F-

score. Accuracy represents the proportion of true positive (TP) and true negative (TN) results in the selected 

population. Meanwhile, recall is the ratio of TP that are correctly predicted by the classifier. Precision 

represents the probability that samples with positive classification that truly have the nutrient deficiency [29]. 

Specificity is the probability of the system predicting a particular class without giving false positive (FP) 

results [30]. Accuracy, recall, precision, and specificity are each presented by (3), (4), (5) and (6). FN denotes 

the false negative classifications. Meanwhile, F-score combines both recall and precision into a single 

measure that captures both properties. The parameter expressed by (7) is essentially the harmonic mean of 

the two fractions [31].  

 

Accuracy =
TP + TN

TP + TN + FP + FN
 (3) 

 

Recall =
TP

TP + FN
 (4) 
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Precision =
TP

TP + FP
 (5) 

 

Specificity =
TN

TN + FP
 (6) 

 

F − score =
2 × Recall × Precision

Recall + Precision
 (7) 

 

 

3. RESULTS AND DISCUSSION 

The results are presented in two sections. Initially, the discussion focuses on the features of healthy 

control, nitrogen-deficient, and potassium-deficient leaf images. This is then followed by the development of 

deep learning classification models using ResNet-50, VGG-16, DenseNet201 and AlexNet architectures. The 

performance of each CNN structure is compared based on accuracy, specificity, and F-score measures. 

 

3.1.  Acquisition of leaf images 

A total of 180 leaf images were obtained based on the specified acquisition protocol. Equal number 

of samples have been acquired for healthy, nitrogen-deficient, and potassium-deficient leaves. Sample 

images for each class is shown in Figure 4. Notable features of nutrient deficiency can be observed. As 

shown in Figure 4(a), the colour of healthy leaves is dark green. Meanwhile, the nitrogen-deficient oil palm is 

presented by yellow-coloured leaflets in Figure 4(b). The potassium-deficient leaves shown in Figure 4(c) 

may be dark green, but with orange spots on the surface. The healthy leaves are used as control reference. 

 

 

   
(a) (b) (c) 

 

Figure 4. Sample images for (a) healthy control, (b) nitrogen-deficient, and (c) potassium-deficient leaves 

 

 

3.2.  Classification of nutrient deficiency using CNN 

The leaf images were uploaded to the pre-trained CNN. Figure 5 shows the first convolutional 

weights for each architecture. Figure 5(a) refers to ResNet-50, Figure 5(b) represents VGG-16, Figure 5(c) is 

for DenseNet201, and Figure 5(d) represents AlexNet. The convolution process for each architecture shows 

different feature pattern being extracted from the same set of training images. These are then learned by the 

deeper network layers which combine the first convolution features to form the higher-level images. 

All CNN architecture has attained training accuracies of 100%. Subsequently, each developed deep 

learning model is then tested using the remaining unseen images. VGG-16 and AlexNet has successfully 

yielded 100% testing accuracy, followed by DenseNet201 at 97.2%, and ResNet-50 at 94.4%. Confusion 

matrices for DenseNet201 and ResNet-50 are each shown by Table 1 and Table 2. 

Based on the confusion matrices, it is evident that both architectures have misclassified images from 

potassium-deficient leaf as a healthy sample. These are attributed by the similar dark green-coloured leaves. 

Therefore, the size and distribution of yellow-coloured spotting on the surface of the leaves influences the 

capability of both architectures in the prediction process. Table 3 compares the performance of ResNet-50, 

VGG-16, DenseNet201 and AlexNet architectures using the overall classification accuracy, specificity, and 

F-score. The parameters consider the network performance during both training and testing. 

By comparison, VGG-16 and AlexNet are the best performing architectures for classifying nutrient 

deficiency in oil palm from the leaf images. This is followed by DenseNet201 and subsequently, ResNet-50. 

Despite being trained with the same dataset, DenseNet201 and ResNet-50 were not able to perfectly classify 
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the unseen samples. Hence, both architectures are less efficient as they are comprised of significantly higher 

number of convolutional layers. Contrariwise, AlexNet presents the most viable solution with less complex 

network architecture. These supports the claim that VGG-16 is more computational costly than AlexNet in 

any classification problems [20].  

 

 

  
(a) (b) 

  

  
(c) (d) 

 

Figure 5. First convolutional layer weights for (a) ResNet-50, (b) VGG-16, (c) DenseNet-201,  

and (d) AlexNet 

 

 

Table 1. Testing accuracy, recall and precision for DenseNet201 

Nutrient Deficiency 
Predicted Recall 

(%) Healthy Nitrogen Potassium 

T
ar

g
et

 Healthy 12 0 0 92.3 

Nitrogen 0 12 0 100 

Potassium 1 0 11 100 

Precision (%) 100 100 91.7 97.2 
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Table 2. Testing accuracy, recall and precision for ResNet-50 

Nutrient Deficiency 
Predicted Recall 

(%) Healthy Nitrogen Potassium 

T
ar

g
et

 Healthy 11 0 1 91.7 

Nitrogen 0 12 0 100 

Potassium 1 0 11 91.7 

Precision (%) 91.7 100 91.7 94.4 

 

 

Table 3. Performance comparison between CNN architectures 
Architecture Accuracy (%) Specificity (%) F-score (%) 

ResNet-50 96.7 99.4 98.9 
VGG-16 100 100 100 

DenseNet201 98.3 99.7 99.4 

AlexNet 100 100 100 

 

 

4. CONCLUSION 

The study has initially set out to solve the following objectives: i) To establish a standard image 

acquisition protocol, and ii) To develop and assess CNN architectures for classifying nutrient deficiency from 

the leaf images. A standardized protocol for acquiring the leaf images has been successfully established. The 

acquired samples are validated by observing for characteristics of healthy, nitrogen-deficient, and potassium-

deficient leaves. Subsequently, the images are used to develop deep learning classification models. The CNN 

architectures studied are ResNet-50, VGG-16, DenseNet201 and AlexNet. Overall, VGG-16 and AlexNet 

have demonstrated superior performance, yielding 100% accuracy for training and testing. Further inspection 

on the network structure indicates AlexNet as the more computational efficienct architecture with less 

convolutional layers than VGG-16. Future improvement on the deep learning model includes expanding 

network capabilities to classify other classes of nutrient deficiencies. Furthermore, the proposed image 

acquisition protocol and use of smartphones hints at potential development of intelligent application for 

detecting nutrient deficiency from through the leaf images. These will reduce reliance on subjective 

evaluation of trained operators, thereby making the monitoring process more objective and efficient. 
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