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 Recognizing the early symptoms of the SARS-CoV-2 virus (COVID-19) is 

essential for minimizing its spread. One of the typical symptoms of a person 

infected with COVID-19 is increased body temperature beyond the normal 

range. Facial recognition can be used to separate healthy people from those 

with high body temperatures based on thermal images of the faces. In this 

study, the XEAST XE-27 thermal imager modes 2, 3, and 4 comprising 1500 

thermal images each were compared. The facial recognition was performed 

using a convolutional neural network. Additionally, body temperatures were 

extracted from thermal images using matrix laboratory (MATLAB) by 

considering the minimum and maximum temperatures of each mode and class. 

The network training results indicate that the accuracies achieved by the 

proposed facial recognition system in modes 2, 3, and 4 are 87.33%, 92.33%, 

and 91.66%, respectively. Furthermore, the accuracies of body temperature 

extraction in modes 2, 3, and 4 are 70%, 60%, and 40%, respectively. Thus, 

the proposed system serves as a contactless technique for the early detection 

of COVID-19 symptoms by combining facial recognition and body 

temperature measurements.  
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1. INTRODUCTION 

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2; COVID-19) caused the deaths of 

millions of people worldwide in 2020 [1]. The rapid transmission of this virus has increased the number of 

people affected by it in various countries. Song et al. [2] reported that all persons affected by COVID-19 

exhibited symptoms of fever, followed by cough and fatigue. The fever symptoms of COVID-19 are mainly 

characterized by body temperatures exceeding the normal range. Thus, body temperature can be used as an 

early indicator for detecting COVID-19 infection.  

Infrared thermometers are often used to measure body temperatures. When employing this method, 

data corresponding to an individual, such as the name of the person and other details, need to be recorded 

manually. This can result in inaccurate data collection. A person’s identity can be obtained through facial 

recognition technology; therefore, a system that combines facial recognition and body temperature 

measurements is essential. 

Facial recognition is a prevailing technology in the field of biometrics and has one of the highest 

levels of acceptance from users among biometric features, such as fingerprints or retina scans [3]. The use of 

infrared thermal images for recognizing faces is a commonly used approach to obtain data in terms of the 

subject’s body temperature. The human body emits thermal radiation continuously. The higher the body 
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temperature, the greater is the intensity of the emitted infrared energy [4]. Infrared thermography is a 

contactless, adaptable, and noncalamitous technique used to measure body temperatures [5]. 

Some studies have been conducted to apply recognition to thermal images. Seal et al. designed a 

thermal infrared face recognition scheme using the gappy principal component analysis (PCA) method [6]. In 

this study, linear regression was used as the classifier. Joardar et al. discussed the impact of face pose to 

recognize thermal infrared face images. This study used feature extraction from raw images using patch-wise 

self-similarity [7]. Kantarci and Ekenel focused on the matching of the thermal-to-visible cross-domain  

face [8]. Litvin et al. also discussed the reconstruction of facial images in the visible spectrum using thermal 

images [9]. However, thermal images are very important for measuring temperature as they contain such 

information. Thus, this study focuses on the recognition of thermal images that can also be used to measure 

temperature.  

The subject’s face must be detected before performing facial recognition. The Haar cascade is an 

algorithm used to perform facial detection owing to its fast and highly efficient computations in terms of 

recognition of facial patterns [10]. However, this algorithm has several drawbacks, e.g., it can only detect faces. 

Therefore, the facial detection process must be supported by deep learning in the facial recognition phase.  

A convolutional neural network (CNN) is a deep-learning method with the most significant results for 

image recognition [11]. An additional CNN study was conducted for thermal face recognition [12]. However, 

this study used secondary data of thermal images obtained from a specific database. In this study, the dataset 

contained primary data obtained from the thermal imager camera. Another study related to this work was 

conducted by Tan and Liu [13]. However, these authors utilized a combination of two cameras and used the 

thermal images to measure the temperature and a visible-light red–green–blue (RGB) camera to detect and 

recognize faces. The contribution of this study pertains to the use of thermal images to measure temperature 

using a pixel-based approach and recognize thermal images in three different modes using a combination of 

Haar cascade and CNN. In this study, the Haar-cascade method was combined with a CNN to test the trained 

data in the form of infrared images for facial recognition and obtaining body temperatures from subjects. 

Considering that there is a lack of literature on comparisons between facial recognition using infrared images 

and visible light, this study presents a thermal-image-based facial recognition system. 

 

 

2. CNN 

A CNN is a deep-learning method with a high degree of tissue depth. Therefore, it is efficient for 

classifying image data [14] to obtain the best representation. CNNs were developed from multilayer 

perceptrons (MLPs), which exhibit certain drawbacks, such as the inabilities to store spatial information from 

image data and to consider each pixel as an independent feature [15]. Figure 1 depicts the workflow of the 

CNN method. The CNN is composed of various layers, such as convolutional, activation, pooling, fully 

connected, and batch normalization layers in its architecture [14]. However, the typical CNN architecture 

involves three layers of neurons, namely convolutional, pooling, and fully connected layers. 

The convolutional layer performs convolution operations on the output of the previous layer. This 

layer underlies the CNN architecture generated by the kernels or convolution filters. It comprises a small filter 

of weights that convolves the one-dimensional input as an image represented in the form of a matrix [10]. The 

convolution operation on this layer can be calculated using the following equation,  

 

ℎ(𝑡) =  ∑ 𝐼(𝑎). 𝐾(𝑡 − 𝑎)∞
𝑎=−∞  (1) 

 

where ℎ(𝑡) denotes the convolution result, 𝐼(𝑎) indicates the input image, and 𝐾(𝑎) represents the kernel.  

 

 

 
 

Figure 1. Illustration of the workflow of a convolutional neural network (CNN) 
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The pooling layer comprises hyperparameter stride and pooling size [16], which are shifted alternately 

throughout the feature map area. Average and max pooling are the commonly used pooling layers [17]. The 

data in the pooling layer are downsampled to decrease the feature map size and extract features to achieve an 

efficient training process [17]. The max pooling has a feature pattern output (z) that can be obtained by 

determining the maximum value [18] for each spatial block at each shift. The max pooling equation is 

expressed,  
 

𝑢𝑖,𝑗
(𝑘)

= max 𝑧𝑝,𝑞
(𝑘)

 (2) 

 

Meanwhile, the average pooling generates the output of the feature pattern by reporting the average 

values over blocks of each input feature [19]. The average pooling equation is given,  
 

𝑢𝑖,𝑗
(𝑘)

=  
1

𝐻2
∑ 𝑧𝑝,𝑞

(𝑘)
(𝑝,𝑞)∈𝑃𝑖𝑗  (3) 

 

The fully connected layer is completely connected to all the previous layers and produces the final 

prediction output [20]. This layer is used in the application of MLPs to transform data dimensions for linear 

data classification [21]. The feature map obtained in the previous layer undergoes a flattening process to 

produce a vector that can be input from the fully connected layer. To generate feature patterns in the network 

architecture, the activation function is placed either after convolution, after pooling calculations, or in the final 

calculation of the feature map output; softmax is a commonly used activation function. The softmax activation 

function is used to convert the actual values generated by the CNN layers into probabilities [22]. This activation 

function is used for more than two classes and is based on consideration of the probability of the target class 

in the final layer of the neural network. The greater the softmax activation value, the higher is the probability 

of the data being part of a class. The softmax activation function is given,  

 

𝑓𝑖(𝑍) =
𝑒𝑧𝐽

∑ 𝑒𝑧𝑘
𝑘

, (4) 

 

where the notation fi is the result of the function for each jth element in the class output vector, argument z denotes 

an arbitrary vector with actual values generated at the ith CNN layer, and k indicates the vector size [22]. Softmax 

provides a better probability interpretation than other classification algorithms because of its ability to calculate 

the probabilities of all labels and predict the probability of the input image for each category [23]. 

During CNN training, a learning parameter exists in the form of a loss function. Two types of loss 

functions, namely the mean-squared error (MSE) and categorical cross-entropy [24], are used often. The MSE 

loss function can be calculated using the following equation,  

 

 𝐿(𝑦, 𝑦̂) =
1

𝑁
∑ (𝑦 − 𝑦𝑖̂)

2𝑁
𝑖=0  (5) 

 

where 𝑦 is the actual value and 𝑦̂ is the predicted value. 

Conversely, the categorical cross-entropy loss function can be calculated mathematically,  

 

𝐿 = − ∑ 𝑦𝑖 . 𝑙𝑜𝑔𝑦𝑖̂
𝑜𝑢𝑡𝑝𝑢𝑡 𝑠𝑖𝑧𝑒
𝑖=1  (6) 

 

 

3. RESEARCH METHODOLOGY 

3.1.  Data collection 

Datasets were obtained in the form of thermal images using the thermal imager XEAST XE-27, which 

has a tolerance of ±2% for temperatures > 0 °C. The thermal imager XEAST XE-27 has five types of thermal 

imager modes, where the higher modes are more difficult to recognize using naked eyes. The second, third, 

and fourth thermal imager modes were thus used because these modes can determine whether the images can 

be recognized. The resulting images were of size 320×240 pixels. The face was imaged at a distance of 

approximately 35–40 cm from the camera. Twenty students from the Faculty of Electrical Engineering at 

Sriwijaya University were the subjects in this research; all participants provided informed consent regarding 

the use of their data. Images of the subjects’ faces with expressions were captured from different angles. The 

intensity of the ambient light was constant in each sample. The thermal images included 20 classes, with each 

class comprising 75 images. In each class, 60 and 15 thermal images were used as the training and test data, 

respectively. Figures 2(a) to 2(e) depict an image captured in first, second, third, fourth, and fifth modes of the 

thermal imager, respectively. 
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(a) (b) (c) (d) (e) 
 

Figure 2. Thermal images captured from the thermal imager in the (a) first, (b) second, (c) third, (d) fourth, 

and (e) fifth modes 

 

 

3.2.  Body temperature measurements 

Temperatures were extracted from thermal images of the participants’ faces using matrix laboratory 

(MATLAB) (R2018a, MathWorks, Natick, MA, and USA). The limitation of the XEAST XE-27 thermal 

imager is that it can only obtain the final temperature data of the detected object. However, the temperature 

from thermal images that are not preprocessed can be extracted only if the minimum and maximum 

temperatures can be detected by the camera. Additionally, the minimum and maximum temperatures of each 

image exhibit a probability of variation based on variations in the ambient temperature. Thus, the coefficients 

associated with the minimum and maximum temperature limits must be determined for each frame; 

accordingly, a fixed value cannot be used for all frames.  

To read the facial image files from which the temperature is extracted, the system reads the file path 

of the facial image as an input. The thermal image is considered as a grayscale image (0–255) to ease the 

temperature interpolation. Subsequently, the pixel values in the image were interpolated into temperatures by 

assuming that the minimum and maximum temperature limits indicate the lowest and highest intensities, 

respectively. In this study, the temperature limits for the minimum and maximum values were set to 32 °C and 

42 °C, respectively. These values were chosen as they are the range of values of the thermo gun used to measure 

body temperatures. The final temperature of the input image was obtained by determining the average of all 

pixels that were converted into temperatures using interpolation. 

 

3.3.  CNN architecture 

The reliability of a neural network can be determined using the CNN architecture. In this study, the 

best architecture used in the fourth mode of XEAST XE-27 was tested. The CNN architecture used in each 

mode comprised seven layers, namely convolutional layer 1, pooling layer 1, convolutional layer 2, pooling 

layer 2, flatten layer, and two fully connected layers. Figure 3 illustrates the CNN architecture.  

 

 

 
 

Figure 3. Architecture of the convolutional neural network model 
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3.4.  Testing phase 

System testing was performed using the confusion matrix method, which measures the classifier in 

terms of predicting various classes. The confusion matrix contains information on the classification system in 

the form of actual classes and prediction classes, represented by rows and columns, respectively [25]. Table 1 

lists the parameters used in the confusion matrix model. These parameters are the basis for calculating the 

accuracy, precision, and recall values.  

 

 

Table 1. Parameters of the confusion matrix 
Confusion matrix Actual values  

True False  

Predicted values 
True True positive False positive  

False False negative True negative  

 

 

4. RESULTS AND DISCUSSION 

4.1.  Preprocessing dataset 

The thermal images were preprocessed into some steps. It aims to ease the training of the CNN 

algorithm. This phase involved three steps, namely scaling, grayscaling, and augmentation. 

 

4.1.1. Scaling 

The scaling process was performed to obtain thermal images of equal sizes without affecting image 

quality. In this study, the Haar-cascade (Viola–Jones) algorithm was used for face detection. Thereafter, the 

faces in the images were localized to ensure identical dimensions of 128×128 pixels across all datasets.  

Figure 4(a) depicts the results of face detection using the Haar-cascade algorithm and Figure 4(b) is the scaling 

result, which were then used as the inputs to the grayscaling process. 

 

4.1.2. Grayscaling 

Grayscaling was achieved by converting the scaled infrared image to a grayscale image. This process 

resulted in more efficient storage of the image data, and the algorithm obtained the image characteristics 

conveniently. Figure 5 depicts the results of the grayscaling process.  

 

 

  

(a) (b) 
 

 

  

Figure 4. Scaling preprocessing: (a) facial 

detection and (b) 128×128-pixel image 

Figure 5. Grayscaling preprocessing 

 

 

4.1.3. Augmentation 

Data augmentation was performed by shifting, brightening, darkening, magnifying, and flipping each 

image that had undergone grayscaling. This augmentation process aims to increase the variety of data without 

losing the primary characteristics of each image. Table 2 lists several types of facial image augmentation 

methods. 

 

4.2.  Temperature readings 

The temperature was extracted by initializing the minimum and maximum temperature limits of the 

tested image. In the second mode, the minimum and maximum temperatures used were 33.05 °C and 40.1 °C, 

respectively. The third mode used minimum and maximum temperatures of 33.05 °C and 40.35 °C, 

respectively. In the fourth mode, the minimum and maximum temperatures used were 32.93 °C and 42 °C, 

respectively. To validate the accuracy of the extraction process, trials of each mode were performed using 10 
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thermal images from an individual sample. Table 3 summarizes the test results for the temperature readings in 

modes 2 to 4. 

 

 

Table 2. Augmentation for the preprocessing phase 
Augmentation method Image results 

Height shifting Shift the image pixels by 10% of 

the height of the image dimensions 

 

 

Width shifting 

 

Shift the image pixels by 10% of the height of 
the image dimensions 

Horizontal flip 

 

Flip the image horizontally 

Zoom 

 

Enlarge the image by 110% of its previous size 

Brightness 
Brighten the image with a value of 1.3 (right) 

and darken the image with a value of 0.8 (left) 

 

 

 

 

Table 3. Temperature extraction from modes 2 to 4 of the thermal imager XEAST XE-27 
Mode 2 Mode 3 Mode 4 

Actual 

temperature 

(°C) 

Measured 

temperature 

(°C) 

Results 

Actual 

temperature 

(°C) 

Measured 

temperature 

(°C) 

Results 

Actual 

temperature 

(°C) 

Measured 

temperature 

(°C) 

Results 

35.8 35.8 Correct 35.6 35.6 Correct 35.4 35.4 Correct 

35.9 35.8 Correct 35.7 35.6 Wrong 35.5 35.5 Correct 

35.7 35.7 Correct 35.8 35.6 Wrong 35.5 35.5 Correct 
35.6 35.7 Wrong 35.8 35.6 Wrong 35.5 35.5 Correct 

35.7 35.7 Correct 35.6 35.6 Correct 35.6 35.5 Wrong 

35.6 36.0 Correct 35.7 35.7 Correct 35.5 35.3 Wrong 
35.6 36.0 Correct 35.7 35.7 Correct 35.5 35.3 Wrong 

35.6 36.1 Correct 35.8 35.8 Correct 35.6 35.2 Wrong 

35.8 36.0 Wrong 35.4 35.5 Wrong 35.6 35.2 Wrong 
35.8 35.9 Wrong 35.6 35.6 Correct 35.6 35.5 Wrong 

 

 

As shown in Table 3, extraction in mode 2 indicated that 7 of the 10 test images yielded accurate 

extraction temperatures, whereas the third and fourth modes yielded six and four correct predictions, 

respectively. However, these results indicate that the measured temperatures using the proposed approach of 

body temperature measurement were close to the actual temperatures measured directly from the thermal 

imager. From the table, it can be seen that the minimum and maximum values can be used to extract the 

temperatures from the images. This indicates that the colors in the thermal image represent the spread of human 

body temperatures. 

 

4.3.  Facial recognition 

Facial recognition was performed by loading the designed CNN architecture model of the 

preprocessed thermal facial image data. The training process in this study used 80% of the total data, which 

comprised 1,200 images. This training process was implemented for 20 types of architecture model scenarios 

based on various learning parameters. The architecture model tested herein was created by changing the 

learning parameters, such as the number of epochs, filter size, kernel size, optimizer type, loss function type, 

and learning rate. The training process aimed to identify the CNN architecture model that produced the best 

classification performance. Furthermore, the architecture model was stored and used in the testing process for 

local thermal facial images. The faces were recognized using the three modes of the thermal imager XEAST 

XE-27, namely modes 2 to 4. 
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4.3.1. Effects of the number of epochs 

The first parameter considered in the training process is the number of epochs. In this study, five 

different numbers of epochs were used, namely 50, 100, 150, 200, and 250. As indicated in Figure 6, the highest 

accuracy achieved was 86.67% at 100 epochs in the case of the second mode shows in Figure 6(a), 91.33% at 

200 epochs in the case of the third mode shows in Figure 6(b), and 94.33% at 100 epochs in the case of the 

fourth mode shows in Figure 6(c). However, the accuracy decreased when the number of epochs increased, 

indicating that higher numbers of epochs can result in overfitting that may render the network incapable of 

generalizing the existing parameters. Thus, the best number of epochs in this study is 100 for thermal images 

in modes 2 and 3.  

 

 

  

(a) (b) 

 
(c) 

 

Figure 6. Effects of the epoch number on modes (a) 2, (b) 3, and (c) 4 

 

 

4.3.2. Effects of filter number and kernel size 

The convolution layer has a filter with small dimensions in the form of the kernel, which is represented 

as a matrix to perform convolution with the thermal face images. Thus, the filter number and kernel size are 

important in the training process. To evaluate their effects, various filter numbers and kernel sizes were 

examined, where the loss parameter used in the test was the MSE and optimizer was RMSprop with a learning 

rate of 0.001. As indicated in Figure 7, the highest accuracies were achieved for each case using a 5×5 kernel 

size and 64 filters; the accuracies obtained were 86.67%, 91.33%, and 94.33% for the second in Figure 7(a), 

third in Figure 7(b), and fourth modes in Figure 7(c), respectively. If the number of filters was reduced to 32 

and kernel size was reduced to 3×3, the accuracy decreased slightly, and the resulting losses tended to increase. 

This can be attributed to the input image size used, which is 128×128 pixels. Specifically, more image details 

can be obtained from a kernel size of 5×5 compared with those extracted with a kernel size of 3×3. 

 

4.3.3. Effects of optimizer and loss function type 

The optimizer aims to maximize the accuracy and minimize the loss value so that optimal weights can 

be obtained from the training process. Thus, it is essential to find a suitable optimizer and loss function type. 

Stochastic gradient descent (SGD), root mean-squared propagation (RMSprop), and Adam were evaluated as 

optimizers in this study. Meanwhile, the loss functions used were MSE and cross entropy. As indicated in 

Figures 8(a) to 8(c), the highest accuracies achieved were 81.67%, 89.99%, and 94.33% for the second, third, 

and fourth modes, respectively, with the MSE as the loss function and RMSprop as the optimizer. The MSE 

obtained a loss of < 5% for all modes. The MSE loss function tended to yield a lower loss percentage in 
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comparison with the categorical cross-entropy loss function. The optimizers were compared in terms of the 

highest accuracy results generated by the RMSprop optimizer with the MSE loss function and the Adam 

optimizer with the categorical cross-entropy loss function. Conversely, the SGD optimizer yielded the lowest 

accuracy for both loss functions in comparison with the other two optimizers. Thus, the results indicate that 

RMSprop (as an optimizer) and MSE (as a loss function) are ideal for training the CNN using thermal image data. 
 

 

  

(a) (b) 

 
(c) 

 

Figure 7. Effects of filter number and kernel size in modes (a) 2, (b) 3, and (c) 4 
 

 

4.3.4. Effects of learning rate 

This study also involved evaluation of the learning rate in the training process of the thermal images 

using CNN. The learning rate has a significant role in the performance of the training model because it renews 

the weights in the training process. The effects of the learning rate are shown in Figure 9. As indicated in the 

Figures 9(a) to 9(c), the highest accuracies were achieved when the learning rate was 0.001; these were 86.67%, 

91.33%, and 94.33% for the second, third, and fourth modes, respectively. If the learning rates were increased to 

0.005 and 0.01 or decreased to 0.0001 and 0.00001, the accuracies were substantially lower and the losses tended 

to increase. Therefore, a learning rate of 0.001 was considered optimal for the training process in this study. 

Based on the training process by comparing the effects of various parameters, the best architecture 

model exhibited the highest level of accuracy and lowest loss over other architecture models. The feature map 

was obtained from the trained image by performing parameter iterations for 100 epochs. The process was 

repeated 100 times, where each iteration used a batch size of 20. The filter size used was 64, and the kernel 

size was 5×5. MSE was used as the loss parameter in this architecture model, and RMSprop with a learning 

rate of 0.001 was selected as the optimizer for the best architecture model to update the weights. The accuracy 

and model loss were 94.33% and 0.53%, respectively. This model was later used with the test data that were 

not included in the training process.  
 

4.4.  Confusion matrix for testing data  

The best model obtained from training was used with the test data. The results of recognition on the 

test data are presented in the confusion matrix shown in Figure 10. Based on the results of the confusion matrix 

shows in Figure 10, the best CNN architecture model used 64 filters, a kernel size of 5×5, the MSE as the loss 

function, RMSprop as the optimizer, a learning rate of 0.001, and 100 epochs. The model exhibited accuracies 

greater than or equal to 94%, indicating that the CNN-based architecture can effectively recognize faces from 

thermal images even in mode 4, which entails more difficult recognition than the other two modes. Thus, the 

proposed model was able to recognize thermal images well despite image distortions from the applied thermal filter 

and feature distortions in the thermal images. This was further validated by the success of the local image testing. 
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(a) (b) 

 
 

(c) 
 

Figure 8. Effects of the optimizer and loss function types in modes (a) 2, (b) 3, and (c) 4 

 

 

  

(a) (b) 

 
(c) 

 

Figure 9. Effects of the learning rate in modes (a) 2, (b) 3, and (c) 4 
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4.5.  Recognition of thermal local images 

The CNN model was next used to recognize the thermal images. The tested local images contained 

raw (unprocessed) data obtained directly from the XEAST XE-27 thermal imager. The testing process was 

performed by detecting faces in the local images using the Haar-cascade algorithm. The best CNN architecture 

model with 64 filters, kernel size of 5×5, MSE as the loss function, RMSprop as the optimizer, learning rate of 

0.001, and 100 epochs was loaded for each mode and applied for testing the local images. The predicted subject 

names and recognition probabilities are displayed and applied to these tested local images. 

The recognition of local images was applied to the faces of all twenty participants for each mode 

(modes 2 to 4). Table 4 lists the sample results of the local images tested with the best CNN architecture model. 

As shown in the table, the local image testing verified that the names of 15 subjects were predicted correctly. 

For the testing performed in the three different modes, 16 images of mode 2, 16 images of mode 3, and 15 

images of mode 4 were recognized well. However, four images each in modes 2 and 3 and five images in mode 

4 were predicted incorrectly; this indicates that as the thickness of the thermal filter increases, a smaller 

minNeighbors parameter value must be applied because it is more difficult to detect faces with thick thermal 

filters. Table 4 also shows that the faces and temperatures are detected well from the thermal images. Hence, 

this combination can be used to detect the early symptoms of COVID-19 through body temperature 

measurements and identify the individual via face recognition.  
 
 

 
 

Figure 10. Confusion matrix test results 
 
 

Table 4. Some local image test results for modes 2 to 4 of the thermal imagers 
Mode 2 Mode 3 Mode 4 

Tested image Tested results Tested image Tested results Tested Image Tested results 
Prediction Accuracy Prediction Accuracy Prediction Accuracy 

 

Sample 1 88.17% 

 

Sample 6 92.30% 

 

Sample 11 99.10% 

 

Sample 2 62.85% 

 

Sample 7 100% 

 

Sample 12 100% 

 

Sample 3 91.56% 

 

Sample 8 99.99% 

 

Sample 13 100% 

 

Sample 4 99.99% 

 

Sample 9 100% 

 

Sample 14 100% 

 

Sample 5 99.71% 

 

Sample 10 99.27% 

 

Sample 15 92.29% 
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5. CONCLUSION 

In this study, the application of a deep-learning algorithm was validated for facial recognition and 

body temperature measurements based on thermal images. The experimental results confirm that the thermal 

image facial recognition process can be performed successfully using a CNN model with seven layers, namely 

convolution layer 1, pooling layer 1, convolution layer 2, pooling layer 2, flatten layer, and two fully connected 

layers. It was determined that the maximum accuracy could be achieved using the MSE as the loss function, 

RMSprop as the optimizer, 100 epochs, 64 filters, a kernel size of 5×5, and a learning rate of 0.001. The training 

process produced validation accuracies of 87.33%, 92.33%, and 91.66% for modes 2, 3, and 4, respectively. 

Furthermore, the temperature was successfully extracted from the thermal images using specific minimum and 

maximum temperature limits with accuracies of 70%, 60%, and 40% in the second, third, and fourth modes, 

respectively. Although the facial recognition and body temperature detection were successful, additional 

improvements are required to obtain more optimal results. As facial recognition was performed using local 

images, real-time thermal facial recognition needs to be explored using a high-quality, forward-looking infrared 

camera. Additionally, other CNN architectures can be investigated to achieve higher and more reliable 

architecture models, such as the visual geometry group network (VGGnet), AlexNet, and so on. The number 

of datasets used in this study could also be increased to enhance the training and testing accuracies.  
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