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 In emergency rooms and intensive care units, catheters and tubes are used to 

keep critically ill patients alive. Appropriate catheter or tube insertion is 

crucial to avoiding serious complications. Such issues can be rectified if they 

are identified early. Chest X-rays are commonly used to assess catheter 

placement. Convolutional neural networks (CNN) have recently been found 

to enhance multi-label classification tasks on chest X-rays images. 

Furthermore, attention modules have shown the effect of enhancing spatial 

encoding on network feature maps. This research analyzed the experiments of 

each CNN model with different attention blocks. Resnet200D with batch 

normalization and spatial-channel squeeze and excitation block (BN+scSE) is 

the best architecture for multiple-label image classification on a chest X-rays 

dataset from National Institutes of Health Clinical Center (NIH) with multiple 

catheters and tubes. Then came EfficientNetB5 with BN+scSE and 

Inception_v3 with spatial squeeze and channel excitation block, respectively.  
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1. INTRODUCTION 

Nowadays, catheters or tubes are used to keep critically ill patients alive in emergency departments 

and intensive care units [1]. Tubes have many advantages. For example, an endotracheal tube (ETT) is used to 

provide oxygen to the lungs in the case of respiratory issues or lung illnesses. The nasogastric tube (NGT) is 

useful for individuals who are unable to eat or who consume less than 60% of their daily calorie requirements [2]. 

Misplacements of tubes can occur in three common tubes. First, in the case of ETT misplacement, the 

correct ETT position is between 5 and 7 cm above the carina. The Carina position is used for estimating the 

position of the ETT. The result of ETT misplacement is that accidental intubation of a bronchus is more 

common on the right main bronchus and the left main bronchus. Second, a chest X-rays is used to determine 

the position of the NGT. Correct the tip of the NGT position so that it is visible at least 10 cm. beyond the 

esophagus junction. NGT misplacement that might be passed into the airways. Tube misplacement has many 

issues, such as looped tube misplacement in the right main bronchus. Finally, a chest X-rays determines the 

central venous catheter's tip position. Correct central venous catheter (CVC) position is the position of the tip 

of the CVC within the superior vena cava at or just above the level of the carina. CVC misplacement could 

lead to many complications, such as pneumothorax or pneumomediastinum [3]. Evidently, the proportions of 

mispositioned cases encountered have been found to be 5%-28% of ETT, about 15% of NGT, and 2%-7% of 

CVC, respectively. If catheters are placed incorrectly, severe complications might arise. Commonly, chest  

X-rays are used to estimate the positioning of various medical equipment and to assess any associated issues 
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following placement or misplacement [1]. However, each day, radiologists may obtain many patients to 

radiograph and interpret them, and there may be delays. An assessment of tube position is complicated. 

Computer-aided techniques have the potential to help radiologists prioritize radiographs with possibly 

mispositioned catheters for interpretation and to automatically include information suggesting catheter 

placement in radiology reports, therefore increasing radiologists' performance [1]. 

In the literature, the classification of chest X-rays images of catheters and tubes has been researched 

for a long time. The classification methods for tubes have been proposed using various methods, including 

rule-based [4], and decision trees [5]. Other classification methods based on deep learning (DL) such as, 

Alexnet [6], GoogLeNet [6], UNET [7], ResNet [8], and EfficientNet [9]. However, these methods are still not 

optimal in multiple classification tasks, these methods are still inefficient because image classification involves 

multiple tubes from the current intubation depending upon the patient. 

Recent studies on attention mechanisms show that this allows neural networks to change the 

informative input features, allowing them to maximize network ability and improve model performance. As a 

result, it has been widely used in neural networks for various machine learning problems in recent years, 

including, image classification [10]–[12], image segmentation [13], [14], image recognition [15], [16], and 

natural language processing (NLP) [17], [18]. Attention mechanisms have shown the advantages of enhancing 

spatial or channel encoding, e.g., squeeze-and-excitation block (SE) [10], bottleneck attention module  

(BAM) [19], convolutional block attention module (CBAM) [20], spatial squeeze and channel excitation block 

(cSE) [13], [14], channel squeeze and spatial excitation block (sSE) [13], [14], and spatial and channel squeeze 

and excitation block (scSE) [13], [14]. 

In this work, we conduct a study that focuses on the multi-label classification task. We have 11 targets 

in chest X-rays images, and they can be divided into 4 groups: ETT, NGT, CVC, and Swan. This paper is 

organized as follows. Section 2 presents the research method. Section 3 describes the experimental results and 

conclusion will be discussed in section 4, respectively. 

 

 

2. METHOD 

In this section, we will explain this research model for tube image classification, beginning with the 

implementation and moving on to the attention mechanism and the head layers. Section 2.1 presents the 

descriptions of the materials in our work. The details about the attention mechanism are presented in  

section 2.2. The explanation of well-known modules is presented in section 2.3. 

 

2.1.  Implementation 

All the experiments were trained and tested on Processor Intel (R) Core (TM) i7-2600 CPU @  

3.40 GHz, 3,401 MHz, 4 Core(s), 8 Logical Processor(s), RAM 12.0 GB, with GPU NVidia GeForce RTX3060 

12 GB. We utilized the RANCZR-CLiP dataset from the national institutes of health clinical center (NIH), 

which is available on Kaggle and comprises adult chest X-rays images. The RANCZR-CLiP dataset comprises 

30,083 manually labeled images: 24,062 images for the training set, 6,021 images for the validation set, and 

3,255 images for the test set [21]. All image data obtained in this experiment are stored in 3×448×448 pixels 

as shown in Figure 1. The number of each tube type shows in Figure 2. To evaluate our experiments on multiple 

tubes image classification task, we choose the three types of the most popular convolutional neural networks 

(CNN) as backbones to conduct this experiment, including Inception_v3 [22], Resnet200D [23], and 

EfficientNetB5 [24]. Figure 3 shows the placing of attention module in the model of multiple-label image 

classification.  

 

 

   
 

Figure 1. Examples of chest X-rays images with catheters and tubes [21] 
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Figure 2. Number of each tube type in the dataset 
 

 

 
 

Figure 3. Multiple label image classification model MLP: (Linear -> Rectified linear units (ReLU) -> 

Dropout -> Linear) 
 

 

2.2.  Attention mechanism 

In this section, we will briefly introduce the concept of attention mechanism through the squeeze and 

excitation block (SE block). SE block was proposed by Hu et al. [10], which was an approach for enhancing 

the channel relationship. The authors designed the new network to increase a network's representational ability 

by explicitly modeling the interdependencies between its convolutional features' channels. This block could 

offer a feature recalibration technique that allows the network to learn to use global information to selectively 

emphasize informative features and suppress less helpful features. A computational structure of the SE block 

is presented in Figure 1. For any transformation 𝑇𝑡𝑟 = 𝐹 →  𝑂, an input feature 𝐹 ∈ 𝑅𝐶′ × 𝐻′ × 𝑊′ and an output 

feature map 𝑂 ∈ 𝑅𝐶 × 𝐻 × 𝑊. 𝐻 and 𝑊 represent the spatial height and width, 𝐶 ′ and 𝐶 are the input and output 

channels, respectively. Firstly, the input feature 𝐹 are passed through a squeeze block. Let 𝐾 = [𝑘1, 𝑘2, … , 𝑘𝑐] 
is set of a 2D spatial kernel and × represents a convolutional operator. The 𝑇𝑡𝑟 provides the output feature map 

as 𝑂 = [𝑜1, 𝑜, … , 𝑜𝑐], which is calculated using (1). 
 

𝑜𝑐 =  𝑘𝑐 ∗ 𝐹 =  ∑ 𝑘𝑐
𝑛 ∗ 𝑓𝑛𝐶′

𝑛=1 , 𝑛 = 1, … . , 𝑛 (1) 
 

After that, the transformation output 𝑂 is passed to squeeze global spatial information by using global 

average pooling. This step can provide the necessary contextual information. Here, the 𝑐 − 𝑡ℎ element of vector 

𝑆 is channel-wise statistics, 𝑖, 𝑗 denotes spatial location. It is calculated using (2). 
 

𝑠𝑐 =  
1

𝐻 × 𝑊 
∑ ∑ 𝑜𝑐 (𝑖, 𝑗)𝑊

𝑗=1
𝐻
𝑖=1 , 𝑐 = 1, … . , 𝑐  (2) 
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Secondary, the squeeze block is followed by an excitation block that tries to completely capture 

channel-wise dependencies to make use of the information accumulated during the squeeze process. To achieve 

this goal, these must learn a non-mutually exclusive connection. This second step utilizes the sigmoid 

activation, which concerns the enable several channels to be highlighted rather than one-hot activation. To 

reduce the complexity, two fully connected (FC) layers are used to reduce a dimension 𝐷1 and adopted ReLU 

and FC layer 𝐷2  to increase the dimension. Where 𝑟 denotes the reduction ratio (here: 𝑟 = 16), 𝐷1 ∈ ℝ
𝐶
𝑟

 ×𝐶
, 

and 𝐷2 ∈ ℝ𝐶 × 
𝐶
𝑟

 
, δ represens the ReLU function, σ is Sigmoid function. The final output 𝑂̃ of SE block is 

recalled using the multiply by 𝐹, which is calculated using (4). 
 

𝑍 =  𝜎(𝐷2 𝛿(𝐷1 𝑆)) (3) 
 

𝑂̃ =  𝑧𝑐  . 𝑓𝑐 (4) 
 

2.3.  Head layers 

This work will focus on techniques of enhancing the performance of CNN in the context of multiple-

label image classification. In the following subsections, we will briefly explain well-known and widely used 

modules, i.e., SA [25], pre-activation-spatial attention (PAc-SA) [26], cSE [10], sSE [13], batch normalization 

(BN)+sSE, scSE [13], [14], and BN+ scSE blocks. In our experiment, all these approaches will be used as 

benchmarks against our method. 
 

2.3.1. Spatial attention block 

A spatial-wise attention block ignores the channel information and equally preserves the feature of 

different channels. 𝑐3 × 3,1 refers to a 3×3 convolution with the one channel number of the hidden feature map, 

𝑐3 × 3,𝑚 refers to a 3×3 convolution with the m channel number of hidden feature map and m is integer number 

of output channel number needed, BN denotes the batch normalization operation [25]. In our work, we used 𝑚 

those values [64, 32, 8] respectively. The spatial weights map is adaptively generated by this module to properly 

represent the spatial connection. Spatial attention can be computed as in (5). 
 

𝑂̃𝑆𝐴 = 𝐹 ×  σ((BN(𝑐3 × 3,1δ(BN(𝑐3 × 3,𝑚(𝐹))))))  (5) 

 

2.3.2. Pre-activation-spatial attention block 

To reduce the parameter number of network and increase the performance of multiple-label image 

classification, we introduce to used spatial attention and pre-activation residual network, namely a  

pre-activation-spatial attention (PAc-SA) block. The PAc-SA block has three BN activations, two ReLU 

activations, one 3×3 convolution with eight channel number of the hidden feature map, one 3×3 convolution 

with one channel number of the hidden feature map, and one Sigmoid activation. It places BN and ReLU as 

pre-activation units before convolution operation. The recalibrated values are multiplied by the feature map's 

different weights to get the output in (6). 
 

𝑂̃𝑃𝐴𝑐−𝑆𝐴 = 𝐹 ×  σ((BN(𝑐3 × 3,1δ (BN(𝑐3 × 3,8δ(BN(𝐹)))))))  (6) 

 

2.3.3. Spatial squeeze and channel excitation block 

Roy et al. [14] considered the input feature map 𝑓𝑛, cSE block is used to squeeze the spatial 

information of 𝑓𝑛 that is passed by (1) followed by global average pooling in (2). To excite the channel 

information of the squeezed vector 𝑆, these can be expressed in (3). The final step shows that the importance 

of 𝑂̃𝑐𝑆𝐸  which is calculated using (7). 

 

𝑂̃𝑐𝑆𝐸 = [σ(𝑠1)𝑓1, … . , σ(𝑠1)𝑓𝑐] (7) 
 

2.3.4. Channel squeeze and spatial excitation block 

Roy et al. [13] introduced sSE, which compress the information from all channels by convolution 

𝑐1 × 1 , the feature maps of 𝐹 are squeezed along the channel and are excited the spatial data. Let  

𝐹 = [𝑓1,1, 𝑓1,2, … , 𝑓𝑖,𝑗 … , 𝑓𝐻,𝑊] represent the slice on the spatial dimension, where spatial location (𝑖, 𝑗). In this 

experiment, we adopted the original sSE as shown in (8) and applied BN after the sigmoid function as shown 

in (9) for this experiment. 

 

𝑂̃𝑠𝑆𝐸 = 𝐹 × σ(𝑐1 × 1(𝐹)) (8) 
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𝑂̃𝐵𝑁+𝑠𝑆𝐸 = 𝐹 × σ(𝐵𝑁(𝑐1 × 1(𝐹))) (9) 

 
2.3.5. Spatial and channel squeeze and excitation block 

Roy et al. [14] presented scSE, which declared cSE see in (7) and sSE see in (8) blocks in parallel and 

both outputs are added in (10). scSE could generate both channel re-scaling and spatial re-scaling. The feature 

maps are recalibrated to learn more meaningful feature maps, which are provided both in terms of spatial and 

channel relevance see in (10). For improving the performance of CNN model and attention block, we proposed 

BN that normalize the input feature maps and multiplied the output of cSE and sSE blocks. This could get both 

spatial and channel importance of each location on feature maps cSE and sSE elementwise see in (11). 

 

𝑂̃𝑠𝑐𝑆𝐸 = 𝑂̃𝑐𝑆𝐸 + 𝑂̃𝑠𝑆𝐸  (10) 

 

𝑂̃𝐵𝑁+𝑠𝑐𝑆𝐸 = 𝑂̃𝑐𝑆𝐸  × 𝑂̃𝐵𝑁𝑠𝑆𝐸  (11) 

 
 

3. RESULTS AND DISCUSSION 

This section will discuss the outcomes of each experiment. Inception_v3 [22], Resnet200D [23], and 

EfficientNetB5 [24] architecture models were tested on training and validation data. In addition, our 

experiment should provide a concise and pre-cise description of the experimental results, their interpretation, 

as well as the experimental conclusions that can be drawn in comparison with other modules, initial baseline 

SA [25], PAC-SA [26], cSE [10], sSE [13], BN+sSE, scSE [13], [14], and BN+ scSE blocks. The goal of this 

experiment is to determine the mean of accuracy score (mAs) and mean of average precision score (mAPs) of 

each architectural model during the image training process. This experiment will be run using 16 training 

epochs. Tables 1 to 3 presents the number of network parameters, mAs, and mAPs of each CNN architecture 

with different attention layers. 

As computes the accuracy of the model, the function returns 1, 0 if the subset accuracy is 1, if the 

entire set of predicted labels matches the true set of labels, otherwise it is 0. In this experiment, we trained 

CNN models in 5-fold validations 𝑣, where 𝑦′
𝑖
 denotes the predicted value of the 𝑖 -th sample, 𝑦𝑖  represents is 

the corresponding true value, and the fraction of correct predictions overs. The mean of 𝐴𝑠 can evaluate in (13). 

 

𝐴𝑠 =
1

𝑠
∑ 1(𝑦′

𝑖
= 𝑦𝑖)𝑠−1

𝑖=0𝑡ℎ𝑒  (12) 

 

𝑚𝐴𝑠 =
1

𝑣
∑ 𝐴𝑠𝑎=𝑣

𝑣=1 𝑎
 (13) 

 

In 𝐴𝑃𝑠 computation, the weighted mean of precision acquired at each threshold is used to summarize 

a precision-recall curve, with the increase in recall from the previous threshold used as the weight. 𝑅𝑛 and 𝑃𝑛 

denote the recall and precision at the 𝑛𝑡ℎ threshold. The mean of 𝐴𝑃𝑠 can calculate in (15). 

 

𝐴𝑃𝑠 = ∑ (𝑅𝑛 − 𝑅𝑛−1)𝑃𝑛𝑛  (14) 

 

𝑚𝐴𝑃𝑠 =
1

𝑣
∑ 𝐴𝑃𝑠𝑎=𝑣

𝑣=1 𝑎
 (15) 

 

Table 1 presents the results of the Inception_v3 with different attention blocks. cSE block got the best 

results from all the attention blocks, with 𝑚𝐴𝑠 94.68%, 𝑚𝐴𝑃𝑠 65.34%. Then, followed by the three high 

performances, including the scSE got 𝑚𝐴𝑠 94.70%, 𝑚𝐴𝑃𝑠 65.24%, the SA got 𝑚𝐴𝑠 94.73%, 𝑚𝐴𝑃𝑠 64.96%, 

and the BN+sSE got 𝑚𝐴𝑠 94.68%,𝑚𝐴𝑃𝑠 66.01%, respectively.  
 

 

Table 1. Number of network parameters, mean of accuracy score, and mean of average precision score of 

Inception_v3 with different attention blocks 
Model Attention module Parameters 𝑚𝐴𝑠 𝑚𝐴𝑃𝑠 

Inception_v3 [22] baseline 20,227,637  93.76 62.49 

cSE [10] 40,699,371  94.68 65.34 

SA [25] 43,413,939  94.73 64.96 

PAC-SA [26] 43,431,219  94.28 63.14 

sSE [13] 38,601,715  94.66 64.77 

BN+ sSE 40,707,563  94.68 66.01 

scSE [13], [14] 40,707,563  94.70 65.24 

BN+ scSE  40,707,571  93.22 61.48 
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Table 2 presents the results of the Resnet200D with different attention blocks. BN+ scSE block got 

the best results from all the attention blocks, with 𝑚𝐴𝑠 95.87%, 𝑚𝐴𝑃𝑠 72.15%. Then, followed by the three 

high performances, including the scSE got 𝑚𝐴𝑠 95.85%, 𝑚𝐴𝑃𝑠 71.31%, the BN+sSE got 𝑚𝐴𝑠 95.79%, 𝑚𝐴𝑃𝑠 

70.46%, and SA got 𝑚𝐴𝑠 95.79%, 𝑚𝐴𝑃𝑠 70.42%, respectively. 

Table 3 presents the results of the EfficientNetB5 with different attention blocks. BN+ scSE block got 

the best results from all the attention blocks, with 𝑚𝐴𝑠 95.24%, 𝑚𝐴𝑃𝑠 68.44%. Then, followed by the three 

high performances, including the scSE got 𝑚𝐴𝑠 95.24%, 𝑚𝐴𝑃𝑠 68.21%, the BN+sSE got 𝑚𝐴𝑠 95.21%, 𝑚𝐴𝑃𝑠 

68.07%, and PAC-SA got 𝑚𝐴𝑠 95.16%, 𝑚𝐴𝑃𝑠 68.02%, respectively. 
 

 
Table 2. Number of network parameters, mean of accuracy score, and mean of average precision score of 

Resnet200D with different attention blocks 
Model Attention module Parameters 𝑚𝐴𝑠 𝑚𝐴𝑃𝑠 

Resnet200D [23] baseline 66,862,955 94.31 63.30 

cSE [10] 81,557,867 95.81 69.86 
SA [25] 84,272,435 95.79 70.42 

PAC-SA [26] 84,289,715 95.77 70.32 

sSE [13] 79,460,211 95.72 69.57 

BN+ sSE 79,460,211 95.79 70.46 

scSE [13], [14] 81,566,059 95.85 71.31 
BN+ scSE 81,566,059 95.87 72.15 

 

 

Table 3. Number of network parameters, mean of accuracy score, and mean of average precision score of 

EfficientNetB5 with different attention blocks 
Model Attention module Parameters 𝑚𝐴𝑠 𝑚𝐴𝑃𝑠 

EfficientNetB5 [24] baseline 32,559,675  94.33 63.72 

cSE [10] 47,254,587  95.17 67.09 

SA [25] 49,969,155  94.51 65.29 

PAC-SA [26] 49,986,435  95.16 68.02 
sSE [13] 45,156,931  94.98 66.72 

BN+ sSE 45,156,931  95.21 68.07 

scSE [13], [14] 47,262,779 95.24 68.21 

BN+ scSE 47,262,787 95.24 68.44 

 

 

According to these findings, overall, Resnet200D with the addition of the Bn+scSE block outperforms 

all trained CNN architectural models by 𝑚𝐴𝑠 95.87% and 𝑚𝐴𝑃𝑠 72.15% see details in Table 2. The 

EfficientNetB5 architecture followed, with 𝑚𝐴𝑠 95.24% and 𝑚𝐴𝑃𝑠 68.44% see details in Table 3, and 

Inception_v3 with 𝑚𝐴𝑠 94.68%, 𝑚𝐴𝑃𝑠 65.34%. See details in Table 1, respectively. 
 

 

4. CONCLUSION 

This paper has evaluated the experiments of each CNN model with different attention blocks. In order 

by CNN model, Resnet200D with the improved scSE is the best architecture for multiple-label image 

classification on a chest X-rays dataset with multiple catheters and tubes from NIH. Then came EfficientNetB5 

with improved scSE and Inception_v3 with cSE. This experiment shows the higher performance of the CNN 

model with the attention block than the baseline CNN model, which could improve the terms of 𝑚𝐴𝑆, and 

𝑚𝐴𝑃𝑠. In addition, we have improved the attention module, i.e., the improved sSE and the improved scSE. 

They use BN to normalize the input feature maps of these attention blocks, which can reduce covariate shift 

and reduce the effects of exploding and vanishing gradients.  
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