
IAES International Journal of Artificial Intelligence (IJ-AI) 

Vol. 12, No. 2, June 2023, pp. 714~730 

ISSN: 2252-8938, DOI: 10.11591/ijai.v12.i2.pp714-730      714 

 

Journal homepage: http://ijai.iaescore.com 

A high frame-rate of cell-based histogram-oriented gradients 

human detector architecture implemented in field 

programmable gate arrays 
 

 

Syifaul Fuada1, Trio Adiono2, Hans Kasan3 
1Hardware Laboratory, Program Studi Sistem Telekomunikasi, Regional Campus of Purwakarta, Universitas Pendidikan Indonesia, 

Purwakarta, Indonesia 
2IC Design Laboratory, Department of Electrical Engineering, School of Electrical Engineering and Informatics,  

Institut Teknologi Bandung, Bandung, Indonesia 
3Computer system and Network Laboratory, School of Electrical Engineering and Informatics, Korea Advanced Institute of Science and 

Technology, Daejeon, Republic of Korea 

 

 

Article Info  ABSTRACT  

Article history: 

Received Sep 6, 2021 

Revised Aug 30, 2022 

Accepted Sep 29, 2022 

 

 In respect of the accuracy, one of the well-known techniques for human 

detection is the histogram-oriented gradients (HOG) method. Unfortunately, 

the HOG feature calculation is highly complex and computationally 

intensive. Thus, in this research, we aim to achieve a resource-efficient and 

low-power HOG hardware architecture while maintaining its high frame-rate 

performance for real-time processing. A hardware architecture for human 

detection in 2D images using simplified HOG algorithm was introduced in 

this paper. To increase the frame-rate, we simplify the HOG computation 

while maintaining the detection quality. In the hardware architecture, we 

design a cell-based processing method instead of a window-based method. 

Moreover, 64 parallel and pipeline architectures were used to increase the 

processing speed. Our pipeline architecture can significantly reduce memory 

bandwidth and avoid any external memory utilization. an altera field 

programmable gate arrays (FPGA) E2-115 was employed to evaluate the 

design. The evaluation results show that our design achieves performance up 

to 86.51 frame rate per second (Fps) with a relatively low operating 

frequency (27 MHz). It consumes 48,360 logic elements (LEs) and 4,363 

registers. The performance test results reveal that the proposed solution 

exhibits a trade-off between Fps, clock frequency, the use of registers, and 

Fps-to-clock ratio. 

Keywords: 

Field programmable gate arrays 

HOG algorithm 

Human detection 

Parallel architecture 

Pipeline architecture 

This is an open access article under the CC BY-SA license. 

 

Corresponding Author: 

Trio Adiono 

Department of Electrical Engineering, School of Electrical Engineering and Informatics, Institut Teknologi 

Bandung 

Gd. Ahmad Bakrie Lt. III, ITB Campus Bandung, Jl. Ganesa No.10, Lb. Siliwangi, Kecamatan Coblong, 

Kota Bandung (40132), Jawa Barat, Indonesia 

Email: tadiono@stei.itb.ac.id 

 

 

1. INTRODUCTION  

Image processing has been widely utilized to detect humans [1], [2]. However, detecting humans in 

an image is challenging due to their various and wide range of appearance variables [3]. To recognize the 

existence of humans accurately, extensive computations are required. The system should be highly accurate 

while still able to maintain low-energy and low resource consumption on real-time processing. In respect of 

the accuracy, one of the well-known techniques for human detection is the histogram-oriented gradients 

https://creativecommons.org/licenses/by-sa/4.0/


Int J Artif Intell  ISSN: 2252-8938  

 

A high frame-rate of cell-based histogram-oriented gradients human detector architecture … (Syifaul Fuada) 

715 

(HOG) method; this method is initially proposed by [3] in 2005. In the publication as mentioned earlier, the 

HOG technique was proven to outperform other existing human detection techniques significantly. Since 

then, many researchers have modified the HOG technique to increase the detector performance. Moreover, 

since HOG has a promising accuracy, the idea to combine the method along with other classification 

algorithms to distinguish humans under challenging conditions such as illumination, rotation, and even 

deformation is promising [4]. Besides human detection application, HOG has been widely applied in various 

cases [5]–[7], such as pedestrian detection, classical dance classification [8], vehicle detection [9], traffic sign 

detection, crowd density estimation, general object detection, object tracking, feature matching, feature 

descriptors [10], anomaly detection, digit recognition, and so on. 

HOG based human detection has been explored in many aspects. For example, a cascade-of-rejector 

approach, which is usually utilized for face recognition, was combined with HOG features by [11] to get 

better accuracy. Jia and Zhang [12] combined the HOG method with Viola’s face detection framework to 

perform real-time human detection processing. Zhang et al. [13] reported a computational cost reduction 

using a multi-resolution framework. Wang et al. [14] combined the HOG method with local binary pattern 

(LBP) as the feature sets in the human detection system. Schwartz et al. [15] utilized a partial least square 

analysis to provide a richer descriptor. It was similar to edge-based features that utilizes additional color and 

texture information. There was also research that attempted to combine HOG with human’s body ratio 

estimation technique to distinguish human from nonhuman category [16]. However, most of these works (on 

the HOG topics) explored and experimented with improving the accuracy performance using combinations of 

HOG features and other potential techniques. These accuracy improvements tend to have higher 

computational costs and complexity than the original HOG algorithm as the result of the technique 

combinations. Reducing the computation resources is necessary since hardware implementation of HOG is 

very possible [17]. 

Hardware implementation offers better speed performance and power efficiency to keep up with 

real-time processing requirements [7]. Hence it is expected to provide better performance than the software 

implementation. Many works, as in [18]–[24] utilized a field programmable gate array (FPGA) to implement 

HOG in hardware as it is able to accommodate parallel architectures and suitable for real-time image 

processing [18], [25]. Moreover, it can maintain the design configurable and shorten the design time-to-

market [26]. Unfortunately, the HOG feature calculation is complicated [4]. Although hardware 

implementation offers a high-speed computation, it could lavishly consume resource and power if not 

appropriately designed. On the other hand, resource-efficient and low-power systems are currently in high 

demand. Trends of electronics and applications are going toward green technology, in which case, resource, 

and energy consumption are important aspects of being considered (i.e., as low as possible). For this reason, 

in this paper, we designed a simplified HOG algorithm, digital hardware architecture and its FPGA 

implementation. The proposed design is dedicated to low-power and resource-efficient characteristics. 

Section 1 of this paper explains the research background and a glance on the HOG technique. In 

section 2, the simplified algorithm is presented along with the equations that have been remodeled to avoid large 

division operations. Later, we describe our hardware architecture that realizes the simplified algorithm presented 

in section 3; it is then followed by the FPGA implementation and its functionality and verification results. 

Performance evaluation is also presented in section 3, and it is enriched with benchmark comparisons with other 

techniques. Finally, we draw a concluding remark to highlight the research and its significant contribution. 

 

 

2. MODIFIED HOG ALGORITM 

To reduce the computation complexity, we simplify the computation of HOG-based human 

detection algorithm to make it suitable for hardware implementations. Despite the computational reductions, 

detection quality can still be maintained. The original HOG algorithm has high computational complexity 

due to its division operations and intensive looping operations in its window-based processing. Thus, it is 

more suitable to be implemented using the software due to its complex processes. It has to be simplified and 

modified to suppress its cost and power consumption to be ideal for application-specific integrated circuit 

(ASIC) implementation, which is commonly referred to as its redundancy and concurrency may be exploited 

for parallel and pipeline processing (as addressed by [27]). The designed hardware architecture specifications 

are presented in Table 1. 

Based on the basic idea of HOG algorithm, the input image is divided into cells (C), blocks (B), and 

windows (W) [3], as illustrated in Figure 1. The normalized gradients for these properties, are eventually 

collected over a Window-based detection for person or non-person classification. The cells consist of 8×8 

pixels. Therefore, there are 80×60 cells within a frame. We index the cell in raster scan from 1 to 4,800 (C1 

to C4,800). Every 2×2 cells are grouped into a block. There are 50% overlapping Cell data between each Block 

and its neighbor blocks, both in the horizontal and vertical direction. Therefore, we will have 79×59 Blocks 

within a frame, indexed as 1 to 4,661 (B1 to B4,661). The window consists of 8x16 cells or equivalent to 



                ISSN: 2252-8938 

Int J Artif Intell, Vol. 12, No. 2, June 2023: 714-730 

716 

64×128 pixels. These numbers of cell size, block size, window size and block overlap give the least miss rate 

compared to other sizes and overlaps [3]. The window will be moved by one cell column or one cell row 

after each evaluation. The pixels in the window will be classified by the support vector machine (SVM) for 

human detection. There are in total 3,285 windows to be analyzed in a 640×480 pixels image. To be fit for 

hardware implementation, we modify the HOG algorithm by proposing cell-based processing, cell 

derivatives with neighboring edge anti-aliasing, magnitude calculation using linear approach, fixed-weighted 

binning, block normalization using newton-raphson algorithm, block-wise SVM classification and fixed-

point representation methods. The detail of each technique will be described in the following section. 

 

 

Table 1. System specification 
Parameter Value 

Image size 640×480 pixels 

Window (W) size 64×128 pixels 

Block (B) sizes and Cell (C) size 2×2 cells and 8×8 pixels 

Bin size 9 (0o–180o) 

HOG feature size 3,780 

#Window and #Block row and #Block column 3,285 and 15 and 7 
Gradient binning Linear approach to avoid Euclidean distance (L2-norm) 

Histogram normalization Manhattan distance (L1-norm) to avoid Euclidean distance (L2-norm) 

Block overlap 50% 
System clock 27 MHz 

 

 

 
 

Figure 1. Illustration of HOG image structure, (discalimer: the figure is not drawn to real scale) 

 

 

2.1.  Cell-based processing 

Instead of using Window-based, we used Cell-based processing for computing the derivative value 

in the x-direction (dx) and in y-direction (dy). Figure 2(a) and Figure 2(b) illustrate the how the window-

based and cell-based processing in raster scan is executed, respectively. Using cell-based processing, we can 

extremely reduce derivative computation redundancy by skipping overlapped cell data computations in 

window-based processing. 

As shown in Figure 2(a), cell-based processing eliminates large overlapped cell area, which results 

in low computational complexity as well as low memory bandwidth requirements [28]. However, the 

derivative value (dx and dy) results are still identical to the original Window-based HOG algorithm. This 

method can be applied because we can reuse the computed cell derivative (dx and dy) data for different 

Windows instead of recalculating the derivative of all the cells inside a window each time a new window is 

evaluated. This proposed method is different from [22], where the computation of the overlapped data is done 

using complex pipeline stage. In this method, we store the calculated cell data in temporary random-access 

memory (RAM). Each time the system analyzes a new window, it will fetch the respective cell calculation 

results from the RAM, hence avoiding unnecessary recalculation. 

 



Int J Artif Intell  ISSN: 2252-8938  

 

A high frame-rate of cell-based histogram-oriented gradients human detector architecture … (Syifaul Fuada) 

717 

 
(a) 

 
(b) 

 

Figure 2. Comparison between two approaches on HOG: (a) Window-based raster scanning and  

(b) Cell-based raster scanning 

 

 

2.2.  Cell derivates with edge neighboring anti-aliasing 

In the HOG algorithm, the derivative values (dx and dy) are computed for every pixel using 

convolution kernel as (1). Since we utilize cell-based calculation, there will be many edges within a window 

[29]. The edges may produce invalid dx and dy values of pixels located in corner areas as the pixels only 

possess one adjacent pixel instead of two. In order to combat this problem, we assign the dx and dy values of 

pixels in the edge areas to similar values to its neighbor pixels, as shown in Figure 3. We apply this method 

to pixels located in both horizontal and vertical edges. As illustrated in Figure 3, grey-colored squares 

represent pixels with distinct derivatives. meanwhile, blue- and yellow-colored squares represent pixels with 

identical derivatives as the result of duplicating the derivative values of adjacent pixels. 

 

ℎ𝑥 = [−1 0 1 ], ℎ𝑦 = [
−1
0
1

] (1) 

 

 

 
 

Figure 3. The dx and dy values of cell (8×8 pixels) in the edges are similar to the derivative values of their 

neighbor pixels (color version of this images can be distinguished in the online article version) 

 

 

2.3.  Magnitude calculation using linear approach 

The original HOG method used euclidean distance (L2-norm) of each derivative value (dx and dy) to 

get the magnitude of each pixel. However, the equation of L2-norm consists of a square-root calculation [30], 

[31], which is very complex to be implemented in the hardware [32]. Therefore, this complicated 

computation needs to be avoided by other approaches for estimation purposes. In this work, we use a linear 

method (2) to calculate the magnitude, instead of L2-norm. Figure 4 reveals the comparison between L2-

norm (X: 30, Y: 40) and linear methods (X: 30, Y: 42.43). 

 

𝑀(𝑥, 𝑦) = {

𝑑𝑦

3
+ 𝑑𝑥          if 𝑑𝑥 ≥ 𝑑𝑦

𝑑𝑥

3
+ 𝑑𝑦          if 𝑑𝑥 < 𝑑𝑦

 (2) 



                ISSN: 2252-8938 

Int J Artif Intell, Vol. 12, No. 2, June 2023: 714-730 

718 

 
 

Figure 4. The comparison of magnitude results between L2-norm (red-colored track) and the linear  

(blue-colored track). Color version of this images can be distinguished in the online article version 

 

 

As formulated in (2), the magnitude is denoted as M (x, y). Our linear method can significantly 

reduce computational complexity as it merely uses addition and division-by-constant operations. The division 

by three can be implemented by simple shifting and adding function as described in (3).  

 
𝑎

3
= (𝑎 ≫ 2) + (𝑎 ≫ 4) + (𝑎 ≫ 6) (3) 

 

Based on Figure 4, it can be seen that this simplification is able to deliver a satisfactory estimation 

of the actual L2-norm. Three different approximations –for calculating magnitude, angle and distance– will 

be used to avoid square root and divisions in the processing of the HOG. In this work, we do not examine the 

effects of such simplifications as it only to show the proposed linear method compared to L2-norm on a 

graph, as shown in Figure 4. The overall accuracy for the proposed system will be introduced in the future 

work as we will provide the error rate for a specific set of benchmarks. 

 

2.4.  Fixed weighted binning 

For Histogram function, pixel angle can be calculated using complex arctangent and division 

operations. However, computing pixel angle with arctangent function and division will result in a very 

complex computation and of course, it is not suitable for hardware implementation. Furthermore, since pixel 

angles are computed for all pixels, there will be a lot of data to be analyzed. This computation demands very 

large computation cycles and latency. To cope with the requirements, we use a simplified method by setting a 

fixed region of bin for every 10o (i.e., tangent 10o, 30o, 50o, 70o, 90o, 110o, 130o, 150o, and 170o). Suppose 

tangent 10o = 0.1763269807, then it will similarly equal to 2-3 + 2-5 + 2-6, which is 0.171875. Thus, we will 

have 9 bins with its approximated tangent values, as shown in Table 2.  

 

 

Table 2. Tangent value approximations 
Tangent Approximated value 

tan (10o) 2-3 + 2-5 + 2-6 
tan (30o) 2-1 + 2-4 + 2-6 

tan (…) … 

tan (170o) - 2-3 - 2-5 - 2-6 

 

 

The pixel angle of pixel A (x, y), is computed from derivative dx and dy values using the following 

pseudocode: 

Algorithm 1 Pixel angle pseudocode 
i =1; 

𝜃𝑖 = 10; 



Int J Artif Intell  ISSN: 2252-8938  

 

A high frame-rate of cell-based histogram-oriented gradients human detector architecture … (Syifaul Fuada) 

719 

𝜃(𝑖+1) = 20; 

𝒘𝒉𝒊𝒍𝒆 (𝑑𝑥 .  𝑡𝑎𝑛 (𝜃𝑖) <  𝑑𝑦 ≤ 𝑑𝑥 .  𝑡𝑎𝑛 (𝜃(𝑖+1)) { 

𝐴(𝑥, 𝑦) =  𝜃(𝑖+1); 

𝒆𝒙𝒊𝒕(); } 
𝒆𝒍𝒔𝒆 { 
𝜃𝑖 =  𝜃(𝑖+1); 

𝜃(𝑖+1) =  𝜃(𝑖+1) + 10; } 

 

The tangent multiplication can be approximated with bit shifting and addition operations in the 

hardware implementation. By considering computed pixel value A (x, y), we can calculate the Histogram 

using the rules as described in Table 3. If the pixel angle A (x, y) lies on the bin center, then the magnitude 

value M (x, y) value is entirely stored into the respective bin. For example, if A (4,4) = 20o and M (4,4) = 1.5, 

then bin#1 = 1.5. On the other hands, if the pixel angle A (x, y) lies on the bin boundary, then the magnitude 

value M (x, y) is split equally into both neighboring bins. For example, if A (5,5) = 30o and M (5,5) = 4, then 

bin#1 = 2 and bin#2 = 2. This scheme has also been used by [33]–[35]. 

 

 

Table 3. Bin value rules 
Angle Bin center? Target Bin Weight 

0o No #1 and #9 M (x, y)/2 
10o Yes #1 M (x, y) 

20o No #1 and #2 M (x, y)/2 

… … … … 
    

 

 

2.5.  Block normalization using newton-raphson method 

There are several normalization methods that can be employed to normalize the Histogram, such as 

L2-norm and Manhattan distance (L1-norm) [36]–[38]. In this case, L1-norm is more suitable for hardware 

implementation as it does not use square root operations unlike L2-norm, even though further simplification 

approaches are still required. Vector normalization is obtained using (4), where L1-sum is Manhattan distance 

summer. 

 

𝑣𝑛𝑜𝑟𝑚 =
𝑣

|𝑣| 𝐿1−𝑠𝑢𝑚
 (4) 

 

Since vnorm = v×d, the distance d is stated as (5), 

 

𝑑 =
𝑣

|𝑣| 𝐿1−𝑠𝑢𝑚
 (5) 

 

To calculate d, newton-raphson approximation is used as in (8). It is derived from (6) and (7) that are formula 

for x0 and x1 on a newton-raphson digital blocks. 

 

𝑥0 = (3 ≪ 𝑛) − (2 × 𝑠𝑢𝑚) (6) 
 

𝑥1 = 𝑥0 [(2 ≪ 2𝑛) − (𝑠𝑢𝑚 × 𝑥0)] (7) 

 
[𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛] 𝑑 ≪ 12 = 𝑥1 ≫ (4𝑛 − 12) (8) 

 

Where n is defined as n = MSB (sum). For instance, if sum = 13, then n = bit 4. The result will be delivered in 

decimal fraction numbers.  

 

2.5.1. Blockwise SVM classification 

The idea of this method is to multiply the SVM coefficient blockwise, instead of per-window. 

However, it is important to note that block#1 corresponds only to window#1, but block#2 corresponds to both 

window#1 and window#2. Thus, block#2 will be used for SVM classifications of block#1 and block#2. This 

also applies to other blocks that correspond to multiple windows. Section 3 (results and discussion) will 

further explain the hardware design, which takes advantage of pipelined architecture to handle these 

complicated calculations. The SVM coefficients are trained with the simplified algorithm. We used the 

libsvm library to train our SVM with massachusetts institute of technology (MIT) pedestrian dataset. Then, 

we examined the linear SVM and retrained the false positives. The number of images used for classifier 

training is amount of 924 and 13,680 for positive and negative images trained, respectively. 



                ISSN: 2252-8938 

Int J Artif Intell, Vol. 12, No. 2, June 2023: 714-730 

720 

2.5.2. Fixed-point representation 

Fixed-point is used to represent the fractional data. The data-width of all the modules is depicted in 

Table 4; it contains input pixel, derivatives, magnitude, and so on. The bit-width is determined by searching 

for the shortest bit-width in each module that will not cause any bit-overflow or interfere with the calculation 

results. 

 

 

Table 4. Functional module bit-width optimization 
Module Sign Bit-Width Data Type 

Input pixel Unsigned 8 Integer 
Derivates Signed 9 Integer 

Magnitude Unsigned 9 Integer 

Histogram bin Unsigned 15 Integer 
Normalized Unsigned 12 Fraction, ≪ 12 

SVM coefficient Signed 14 Fraction, ≪ 12 

Window score Signed 32 Integer 

Detection Unsigned 1 Integer 

 

 

3. RESULTS AND DISCUSSION 

3.1.  Hardware architecture implementation 

Our system block diagram is shown in Figure 5. The input of the system is 640×480 images. The 

output is a grayscale image on an external display. The output image will be marked in parts of the image 

that are believed to be human figures. The system is comprised of a control unit, derivative, gradient binning 

using linear approach, cell grouping, Histogram normalization using L1-norm, and sliding window and SVM 

classification modules. 

 

 

 
 

Figure 5. Block diagram of the proposed system with 29 M9K frame buffer RAM 

 

 

In order to increase the processing speed and enable the system to work in a real-time, we applied 

pipeline architecture to our system, as reported in Table 5. The M9K is memory block of altera FPGA DE2-115. 

The pipeline architecture also enables us to reduce the memory bandwidth as it does not require all cell and 

block values to be stored, but only some blocks that correspond to the windows being processed at that time. 

Consequently, we are able to use embedded RAM (internal RAM) as the processing storage instead of external 

RAM, which translates to a significant reduction of pins utilization and power consumption. Table 6 reveals the 

benefits introduced by a pipeline mode in the proposed hardware, which obtained from syntesis process. The 

pipeline architecture enables us to reduce the clock cycle latency dramatically. The overall process without 

pipelining is 13,112; it is obtained from the summation of three digital blocks (i.e., cell grouping, block 

normalization, and SVM classification proceses). However, as a note, pipeline does not allow any latency 

improvements for the SVM classification, the block normalization and the cell grouping modules. 

Control unit module is used to generate read and write addresses for embedded RAM used in each 

module. This module plays an important role in our pipeline architecture since the RAM access scheduling 

should be accurate at all times. Embedded RAMs used and its memory size is Table 6. 

The derivative module calculates the cell-based derivative (dx and dy) of the image; this block 

contains pixel derivatives as shown in Figure 6 and anti-aliasing filter as shown in Figure 3. The anti-aliasing 

filter applied to the pixels in the image edges is to overcome the zero-padding convolution problem. We 



Int J Artif Intell  ISSN: 2252-8938  

 

A high frame-rate of cell-based histogram-oriented gradients human detector architecture … (Syifaul Fuada) 

721 

designed highly parallel architecture, as shown in Figure 7. Our architecture can simultaneously calculate the 

derivatives and gradient bins for 64 pixels by calculating them simultaneously. This will significantly reduce 

clock latency. 

 

 

Table 5. Reduced cycle count by pipeline architecture 
Blocks Without 

pipelining 

With pipelining 

Cell grouping 4,800 4,800 

Histogram normalization 4,719 4,719 

SVM Classification 3,593 3,593 
Overall process 13,112 4,888 

 

Table 6. Embedded RAMs 
Embedded RAM Size Data-Width 

Frame buffer (input 
image) 

(29 M9K block) 8 Bit 

Cell grouping (4 M9K block) 8 Bit 

Sliding window (108 M9K block) 8 Bit 
Store detection result (1 M9K block) 1 Bit 

 

 

 

 
 

Figure 6. Pixel derivates 

 

 

 
 

Figure 7. Cell-based parallel architecture 

 

 

Gradient binning module consists of a rotator, magnitude calculator and binning unit as Figure 8. 

The rotator unit is comprised of four digital blocks (i.e., inverse, bit extender, comparator and multiplexer 

units), as shown in Figure 9. The inverse unit is used to negate a number based on two’s (2’s) complement 

notation. Bit extender is used to represent a number with larger bits without altering its value. The dx and dy 

representation uses 12 bits instead of 9 bits to avoid overflow as the magnitude calculator and binning unit 

involve shifting and adding the values of dx and dy. Comparators and multiplexers are used to determine the 

quadrant of dx and dy. The magnitude calculator conducts approximation in (3) using four digital blocks (i.e., 

multiplexer, right shifter, comparator, and adder), as shown in Figure 10. Finally, all the magnitudes are 

grouped and summed to the respective bins based on the rule specified in (5). The output of this module is a 

cell histogram data consists of 9 bins × 15 bits that are concatenated into a single line as Figure 11. 

 



                ISSN: 2252-8938 

Int J Artif Intell, Vol. 12, No. 2, June 2023: 714-730 

722 

 
 

Figure 8. Gradient binning diagram 

 

 

 
 

Figure 9. Rotator architecture 

 

 

 
 

Figure 10. Magnitude calculator architecture 

 

 

This module is used to group cells into a block and performed block normalization processing. To 

group it with the raster scan sequence, we use line delay, as shown in Figure 12. It is implemented using 

RAM to delay 80 cells of data, which is the row size of the input image, as shown in Figure 1. Each Cell 

consists of 9 bins × 15 bits of data. Using this configuration, we can group four Cells of data that comprise a 

single Block. For example, when cell #82 data is fed to the module, block#1 which consists of cell #1, #2, 

#81, and #82, will be constructed. The block data will then be normalized using combinational circuits.  

To minimize memory resource usage, we decided to only use line delay RAM with the size of 80 

Cells to store all 4800 Cells that will be generated to blocks. The first 80 Cells will be stored initially in the 



Int J Artif Intell  ISSN: 2252-8938  

 

A high frame-rate of cell-based histogram-oriented gradients human detector architecture … (Syifaul Fuada) 

723 

RAM. However, when cell#81 is fed into the module, the module reads cell#1 from RAM and overwrite 

cell#81 to cell#1 in the RAM. Block#1 will be entirely constructed when cell#82 is dispensed to the module. 

There are 82 clock latencies to start the block processing: 1 clock cycle for the register at the line delay input, 

1 clock cycle for the register at the output, and 80 clock cycles to fill the line delay RAM initially. After 

providing the module with the first 82 Cells data, it will consume 3 clock cycles to generate a block. The 

complete block diagram is depicted in Figure 13. 

 

 

 
 

Figure 11. Histogram binning architecture 

 

 

 
 

Figure 12. Cell grouping architecture 

 

 

As stated before, our architecture avoids the usage of any division operation since it is too complex for 

hardware implementation. Each block should be normalized using L1-norm to simplify the calculation. The 

module contains L1-sum to find the Manhattan distance of 9 bin vectors × 4 Cells (36 bin vectors in total). 

Newton-Raphson algorithm is then used to approximate d as in (5). This module uses two multipliers, two 

subtractors, and bit shifters. Finally, the computed vectors are multiplied by d, and then concatenated into a 

single line data as in Figure 14. This module consumes 1 clock cycle. The results are then stored in the RAM. 

The sliding window works in pace with block-wise SVM classification. We designed a highly 

paralleled and pipelined architecture to be able to calculate 7 windows simultaneously. The SVM 

classification is done column-wise, because several columns are used to calculate more than one windows. 

For example, column #1, which consists of block #1, #81, #161, and #1121, is used to calculate window #1. 

But column #2, which consists of block #2, #82, #162, and #1122, is used to calculate both window #1 and 

#2, and so on. After 7 columns of the respective window consisting of 105 blocks has been calculated, the 

score will be subtracted by an SVM bias. The comparator will then decide whether there is any person or not 



                ISSN: 2252-8938 

Int J Artif Intell, Vol. 12, No. 2, June 2023: 714-730 

724 

using the value of the sign bit. The system will continue to analyze a new window after a window has been 

calculated until the whole image has been inspected. The hardware architecture is Figure 15. 

 

 

 
 

Figure 13. Architecture of Cell grouping hardware design 

 

 

 
 

Figure 14. Histogram normalization architecture 

 

 

 
 

Figure 15. Window sliding and SVM classification 



Int J Artif Intell  ISSN: 2252-8938  

 

A high frame-rate of cell-based histogram-oriented gradients human detector architecture … (Syifaul Fuada) 

725 

The final module of this design is the display module. In relation with the video graphics array 

(VGA) controller, this module works by generating read address from frame buffer RAM (input image) and 

detection RAM (HOG results). As a note, there are no special requirements for the display module because 

its function is only to drawing a detection box over the object to be detected. It uses 640×480 pixels with 25 

MHz VGA clock. Both RAMs are fed by the same clock to read the values. By counting the pixels with front 

and back porch, the VGA counts to 800×600. Therefore, it needs 800×600 per 25,000,000 second to 

complete one frame, which is around 52 Fps. In summary, the design must operate at minimum 52 Fps in 

order to fit the VGA configuration. The display module also generates markings on windows that are 

considered to contain human figures. 

 

3.1.1. Performance implementation 

To evaluate our architecture in terms of effectiveness parameter, we implemented our design in 

FPGA. We used altera DE2-115 board (Cyclone IV EP4CE115 FPGA chip). The board is connected to an 

external VGA display to show the resulting image. We tested several 640×480 pixels color images to verify 

the system functionality. For static detection, we chose the images with relatively small-sized pedestrian 

images with 128×64 pixels instead of full image 640×480 pixels. The image in Figure 16(a) contains the 

best pedestrian detection. The pedestrians are quite similar to our positive training dataset. In Figure 16(b), 

the image has various lighting conditions. However, since HOG uses the gradient feature, our detector can 

still detect the pedestrians and does not interpret the shadows as humans. On the other hand, in Figure 16(c), 

the HOG detector may not be able to detect various poses reliably as their gradients will vary. To increase the 

detector performance, images containing various poses should be used as our training dataset. 

 

 

   
 

(a) 

 

(b) 

 

(c) 

 

Figure 16. Detection results on pedestrians: (a) under uniform lighting; (b) under various lighting condition 

and (c) with various poses 

 

 

Figure 17(a) shows the FPGA displaying the detection result to a monitor. The marks drawn on 

humans indicate successful detections. Our architecture is coded in Verilog hardware description language 

(HDL). We use a top-down approach to design the system architecture and a bottom-up approach to code the 

hardware modules. Each sub-module is designed and tested before being integrated. Figure 17(b) shows the 

flow summary of the design analysis and synthesis result. The design consumes 48,360 logic elements (LEs), 

4,363 registers, and 84 of 9-bit embedded multipliers. It merely consumes 0.141 Mbits of memory. Our 

architecture requires 4,888 clock cycles to complete one frame detection of image. It also needs 640× 480 = 

307,200 clock cycles to receive the image data and store them into the frame buffer. Therefore, the overall 

system needs 312,088 clock cycles (cacluated from 307,200 + 4,888) to process one frame of image data. It is 

important to note that the frame buffer embedded RAM is a huge speed bottleneck as it is only able to deliver 

one pixel every clock cycle. 

The TimeQuest Timing Analyzer shows that the maximum operating frequency allowed for the 

design is 28.62 MHz. By setting the system clock frequency to 27 MHz, we obtained 86.51 Fps (obtained 

from 27,000,000/312,088). Since the VGA has 52 Fps refresh rate, our design will be suitable to be used with 

VGA due to the frame output will always be available every time the VGA refreshes. However, the Fps may 

be improved significantly by reducing the latency of the frame buffer because most of memory resources are 

consumed by the input buffer. The actual processing unit (without frame buffer) is able to deliver 5,523.732 

Fps (obtained from 27,000,000/4,888). This indicates that the frame buffer latency has severely 

overshadowed the actual capability of the processing unit. It may possible to reduce resources in particular 

modules and keep the algorithm consistency at the smaller throughput. 



                ISSN: 2252-8938 

Int J Artif Intell, Vol. 12, No. 2, June 2023: 714-730 

726 

 
(a) 

 
(b) 

 

Figure 17. Performance implementation of the proposed system: (a) experimental setup using Altera DE2-

115 FPGA and an external monitor and (b) screenshot of synthesis summaries 

 

 

As shown in Figure 15, it is regarded as a first-in-first-out (FIFO) function, a static random-access 

memory (SRAM) t0 can be used to replace it. Therefore, gate count and power can be saved. The FIFO 

always toggles to consume power, but SRAM only activated one cell to access data. Moreover, ping-pong 

mode can enable a SRAM to perform “read” and “write” concurrently. The detection success of the proposed 

algorithm will be compared with the software implementation of the original HOG algorithm in the near 

future work. This becomes an open challenge that should be exploited. 

 

3.1.2. Performance comparison 

Table 7 and Table 8 evaluate the performance result with other competitors. The strongest points 

compare to the others are frame per second (Fps) and Fps-to-clock ratio. All the competitors exploit standard 

FPGA boards. Compared to the earlier works, our implementation performs significantly well in terms of the 

ratio of delivered Fps and operating clock frequency. This is made possible with our pipeline architectures 

and custom-designed hardware modules, instead of using general-purpose processors. Processors may be 

smaller in size, but dedicated modules are more efficient compared to processors. Moreover, all cells and 

blocks will not be kept in the RAM concurrently. Unused data will be overwritten to minimize memory 

usage. Additionally, the low operating clock frequency translates to less power consumption.  

Working at a low frequency surely allows power consumption to be reduced. For instance, in  

Table 7 [23] has a much higher image resolution (1920×1080), higher operational clock (270 MHz), and a 

lower frame rate (64 Fps). Instead, the proposed work has a lower image resolution (640× 480), ten times 

lower operational clock (27 MHz), and a high frame rate (86.51 Fps). This becomes the architecture design 

trade-off. In [39] has the highest Fps (162 MHz) but the operating clock is the highest (150 MHz) resulting in 

lower Fps-to-clock ratio. Instead, the proposed work the highest Fps-to-clock ratio (3.2041), lower frame 

rate, lower operating clock (27 MHz), more efficient in memory usage (141,872 bits), and the lowest 

registers (4,363). With the same image resolution usage (640×480), in [40] has the lowest embedded 

multipliers (40 DSP block) as well as the operating frequency (25 MHz), which is not to close with our 



Int J Artif Intell  ISSN: 2252-8938  

 

A high frame-rate of cell-based histogram-oriented gradients human detector architecture … (Syifaul Fuada) 

727 

proposed architecture. But our architecture has a higher Fps and Fps-to-clock ratio, also resource-efficient. In 

summary, it is safe to say that our architecture is considered the best trade off comprared to previous works, 

in terms of operating clock frequency (MHz), Fps (Hz), Fps-to-clock ratio, and the use of Registers.  

 

 

Table 7. Performances comparison against other works used Xilinx Virtex FPGA 
Parameters [20] [21] [23] [41] This work 

FPGA board Virtex-5 Virtex-5 Virtex-5 Virtex-6 Cyclone IV 
LUTs** 28,495 17,383 5,188 (↑) 113,359 (↓) 48,360 

Registers 5980 2,181 (↑) 5,176 75,071(↓) 4,363 

Embedded multipliers / DSP block*** 2 (↑) N/A* 49 72 84 (↓) 
Memory usage (bits) 2,196,000 1,327,000 1,188,000 4,284,000 (↓) 141,872 (↑) 

Operating clock frequency (MHz) 167 44 270 (↓) 25 (↑) 27 

Frame per second (Hz) 38 (↓) 62 64 60 86.51 (↑) 
Fps-to-clock ratio 0,2275 (↓) 1.4091 0.237 2,4 3.2041 (↑) 

Image resolution 320×240 (↓) 1920×1080 (↑) 640×480 640×480 

* N/A: not available. 

(↑): The highest value in the comparison table among the equivalent parameters compared 

(↓): The lowest value in the comparison table among the equivalent parameters compared 
** LUTs in FPGA logic building blocks may not serve as an accurate parameter for design size comparison. LUTs in Cyclone devices 

have 4 inputs, while Xilinx Virtex-5 has 6 inputs. Moreover, logic building blocks differ among devices, as in Altera’s logic element 

(LE) and Xilinx’s logic cell (LC), each with their respective hardware design. These factors may cause different synthesis results in 
Altera and Xilinx FPGAs. 

*** Embedded multiplier refers to 9×9 multipliers in altera cyclone III and IV. DSP block refers to DSP48E slice in Xilinx Virtex-5, 

which is equipped with a 25×18 multipliers. 

 

 

Table 8. Performances comparison against other works used ALTERA Cyclone FPGA 
Parameters [39] [42] [43] [40] [44] [45] This work 

FPGA board Cyclone IV Cyclone IV Cyclone IV Cyclone III Cyclone III Cyclone V Cyclone IV 
LUTs** 16,060 83,497 (↓) 34,403 17,419 14,895 11,156 (↑) 48,360 

Registers 7,220 17,383 (↓) 23,247 11,306 9800 13,191 4,363 (↑) 

Embedded 
multipliers / DSP 

block*** 

69 90 (↓) 68 N/A* 40 (↑) N/A* 84 

Memory usage (bits) 334,000 2,800,000 (↓) 348,000 1,046,647 280,000 2,137 (↑) 141,872 
Operating clock 

frequency (MHz) 
150 (↓) 50 40 70 25 (↑) 76 27 

Frame per second 
(Hz) 

162 (↑) 129 72 20 48 8 (↓) 86.51 

Fps-to-clock ratio 1,08 2,58 1.8 0.2857 1.92 0.1053 (↓) 3.2041 (↑) 

Image resolution 800×600 1280×1024 (↑) 800×600 640×480 (↓) 

(↑): The highest value in the comparison table among the equivalent parameters compared 

(↓): The lowest value in the comparison table among the equivalent parameters compared 

 

 

4. CONCLUSION AND FUTURE WORKS 

This paper presents a hardware architecture design to implement a simplified HOG algorithm. We 

have designed a cell-based raster scanning computation instead of window-based to reduce computation 

redundancy. The magnitude calculation using a linear approach provides us with a reasonable approximation 

of magnitude without using exponentiation and square root operations; due to L2-norm approach is too 

difficult to be implemented in hardware implementation. By using fixed-weighted binning for histogram 

classification, we can avoid using arctangent and division operations. Furthermore, by using the newton-

raphson algorithm, we can execute block normalization without using any division operations. Finally, the 

overall parallel and pipeline architecture gives accurate detection with less memory usage and maximum Fps-

to-clock frequency ratio. This work used MIT pedestrian dataset for training. The primary feature of this 

work is to simplify HOG for an efficient hardware implementation. This simplification certainly makes some 

degradation on the performance of original HOG. It is important to examine in detail the performance of 

original HOG comprated to this work (simplified HOG) further. We will also address several interesting 

issues, e.g., the impact of computational reduction in term of detection accuracy, measure the throughput 

achieved of the GPU implementations, and a more objective figure-of-metric (FOM). This will be considered 

to prove that the proposed hardware architecture is more efficient than the other competitors. Later, the effect 

of accuracy improvement to computational costs and system complexity will be evaluated further. In the 

recent years, various other challenging datasets have been introduced by many researchers. Therefore, we 

will use various dataset provided globally and dataset produced my ourselves to train and evaluate our 

proposed system comprehensively. 



                ISSN: 2252-8938 

Int J Artif Intell, Vol. 12, No. 2, June 2023: 714-730 

728 

AKNOWLEDGMENTS 

The publication fee for this work was sponsored by Integrated Circuit Design Laboratory Pusat 

Unggulan IPTEK Perguruan Tinggi (PUI-PT) Mikroelektronika ITB and Program Peningkatan Global 

Competitiveness Perguruan Tinggi Indonesia Universitas Pendidikan Indonesia 2021 Batch II with No SK 

1370/UN40/PT.01.02/2021. 

 

 

REFERENCES 
[1] T. A. Adiono, K. Shidqi, C. Deo, B. Yuwono, and S. Fuada, “HOG-adaboost implementation for human detection employing 

FPGA ALTERA DE2-115,” International Journal of Advanced Computer Science and Applications, vol. 9, no. 10, pp. 353–358, 

2018, doi: 10.14569/IJACSA.2018.091042. 

[2] C. Zaharia, F. Sandu, and A. Balan, “Usage of asymetric small binning to compute histogram of oriented gradients for edge 
computing image sensors,” in 2020 19th RoEduNet Conference: Networking in Education and Research (RoEduNet), Dec. 2020, 

pp. 1–6. doi: 10.1109/RoEduNet51892.2020.9324883. 

[3] N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,” in 2005 IEEE Computer Society Conference on 
Computer Vision and Pattern Recognition (CVPR’05), 2005, vol. 1, pp. 886–893. doi: 10.1109/CVPR.2005.177. 

[4] R. Kadota, H. Sugano, M. Hiromoto, H. Ochi, R. Miyamoto, and Y. Nakamura, “Hardware architecture for HOG feature 

extraction,” in 2009 Fifth International Conference on Intelligent Information Hiding and Multimedia Signal Processing, Sep. 
2009, pp. 1330–1333. doi: 10.1109/IIH-MSP.2009.216. 

[5] S. Ghaffari, P. Soleimani, K. F. Li, and D. W. Capson, “Analysis and comparison of FPGA-based histogram of oriented gradients 

implementations,” IEEE Access, vol. 8, pp. 79920–79934, 2020, doi: 10.1109/ACCESS.2020.2989267. 
[6] S. Ghaffari, P. Soleimani, K. F. Li, and D. Capson, “FPGA-based implementation of HOG algorithm: techniques and challenges,” 

in 2019 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing (PACRIM), Aug. 2019, pp. 1–7. 
doi: 10.1109/PACRIM47961.2019.8985056. 

[7] A. Saidi, S. Ben Othman, M. Dhouibi, and S. Ben Saoud, “FPGA-based implementation of classification techniques: A survey,” 

Integration, vol. 81, pp. 280–299, Nov. 2021, doi: 10.1016/j.vlsi.2021.08.004. 
[8] K. V. V. Kumar and P. V. V. Kishore, “Indian classical dance mudra classification using HOG features and SVM classifier,” 

International Journal of Electrical and Computer Engineering (IJECE), vol. 7, no. 5, p. 2537, Oct. 2017, doi: 

10.11591/ijece.v7i5.pp2537-2546. 
[9] M. Anandhalli, V. P. Baligar, P. Baligar, P. Deepsir, and M. Iti, “Vehicle detection and tracking for traffic management,” IAES 

International Journal of Artificial Intelligence (IJ-AI), vol. 10, no. 1, p. 66, Mar. 2021, doi: 10.11591/ijai.v10.i1.pp66-73. 

[10] C. Wattanapanich, H. Wei, and W. Petchkit, “Investigation of robust gait recognition for different appearances and camera view 
angles,” International Journal of Electrical and Computer Engineering (IJECE), vol. 11, no. 5, p. 3977, Oct. 2021, doi: 

10.11591/ijece.v11i5.pp3977-3987. 

[11] Qiang Zhu, Mei-Chen Yeh, Kwang-Ting Cheng, and S. Avidan, “Fast human detection using a cascade of histograms of oriented 
gradients,” in 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition - Volume 2 (CVPR’06), vol. 

2, pp. 1491–1498. doi: 10.1109/CVPR.2006.119. 

[12] H.-X. Jia and Y.-J. Zhang, “Fast human detection by boosting histograms of oriented gradients,” in Fourth International 
Conference on Image and Graphics (ICIG 2007), Aug. 2007, pp. 683–688. doi: 10.1109/ICIG.2007.53. 

[13] W. Zhang, G. Zelinsky, and D. Samaras, “Real-time accurate object detection using multiple resolutions,” in 2007 IEEE 11th 

International Conference on Computer Vision, 2007, pp. 1–8. doi: 10.1109/ICCV.2007.4409057. 
[14] X. Wang, T. X. Han, and S. Yan, “An HOG-LBP human detector with partial occlusion handling,” in 2009 IEEE 12th 

International Conference on Computer Vision, Sep. 2009, pp. 32–39. doi: 10.1109/ICCV.2009.5459207. 

[15] W. R. Schwartz, A. Kembhavi, D. Harwood, and L. S. Davis, “Human detection using partial least squares analysis,” in 2009 
IEEE 12th International Conference on Computer Vision, Sep. 2009, pp. 24–31. doi: 10.1109/ICCV.2009.5459205. 

[16] Kelvin Lee, Che Yon Choo, Hui Qing See, Zhuan Jiang Tan, and Yunli Lee, “Human detection using Histogram of oriented 

gradients and human body ratio estimation,” in 2010 3rd International Conference on Computer Science and Information 
Technology, Jul. 2010, pp. 18–22. doi: 10.1109/ICCSIT.2010.5564984. 

[17] S. S. Selvi, B. D, A. Qadir, and P. K. R, “FPGA implementation of a face recognition system,” in 2021 IEEE International 

Conference on Electronics, Computing and Communication Technologies (CONECCT), Jul. 2021, pp. 1–5. doi: 
10.1109/CONECCT52877.2021.9622348. 

[18] T. P. Cao and G. Deng, “Real-time vision-based stop sign detection system on FPGA,” in 2008 Digital Image Computing: 

Techniques and Applications, 2008, pp. 465–471. doi: 10.1109/DICTA.2008.37. 
[19] Tam Phuong Cao, Guang Deng, and D. Mulligan, “Implementation of real-time pedestrian detection on FPGA,” in 2008 23rd 

International Conference Image and Vision Computing New Zealand, Nov. 2008, pp. 1–6. doi: 10.1109/IVCNZ.2008.4762094. 

[20] M. Hiromoto and R. Miyamoto, “Hardware architecture for high-accuracy real-time pedestrian detection with CoHOG features,” 
in 2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops, Sep. 2009, pp. 894–899. doi: 

10.1109/ICCVW.2009.5457609. 

[21] K. Negi, K. Dohi, Y. Shibata, and K. Oguri, “Deep pipelined one-chip FPGA implementation of a real-time image-based human 
detection algorithm,” in 2011 International Conference on Field-Programmable Technology, Dec. 2011, pp. 1–8. doi: 

10.1109/FPT.2011.6132679. 

[22] K. Mizuno, Y. Terachi, K. Takagi, S. Izumi, H. Kawaguchi, and M. Yoshimoto, “Architectural study of HOG Feature extraction 
processor for real-time object detection,” in 2012 IEEE Workshop on Signal Processing Systems, Oct. 2012, pp. 197–202. doi: 

10.1109/SiPS.2012.57. 

[23] M. Hahnle, F. Saxen, M. Hisung, U. Brunsmann, and K. Doll, “FPGA-based real-time pedestrian detection on high-resolution 
images,” in 2013 IEEE Conference on Computer Vision and Pattern Recognition Workshops, Jun. 2013, pp. 629–635. doi: 

10.1109/CVPRW.2013.95. 

[24] M.-S. Wang and Z.-R. Zhang, “FPGA implementation of HOG based multi-scale pedestrian detection,” in 2018 IEEE 
International Conference on Applied System Invention (ICASI), Apr. 2018, pp. 1099–1102. doi: 10.1109/ICASI.2018.8394472. 

[25] Takashi Saegusa, Tsutomu Maruyama, and Yoshiki Yamaguchi, “How fast is an FPGA in image processing?,” in 2008 

International Conference on Field Programmable Logic and Applications, 2008, pp. 77–82. doi: 10.1109/FPL.2008.4629911. 

 



Int J Artif Intell  ISSN: 2252-8938  

 

A high frame-rate of cell-based histogram-oriented gradients human detector architecture … (Syifaul Fuada) 

729 

[26] P. Soma, C. Sravanthi, P. Srilakshmi, and R. K. Jatoth, “Implementation of Single Image Histogram Equalization and Contrast 
Enhancement on Zynq FPGA,” in in Advances in Communications, Signal Processing, and VLSI, 2021, pp. 75–82. doi: 

10.1007/978-981-33-4058-9_7. 

[27] P. Dai, J. Tang, J. Yuan, and Y. Yu, “A hardware-efficient HOG-SVM algorithm and its FPGA implementation,” in 2021 2nd 
International Symposium on Computer Engineering and Intelligent Communications (ISCEIC), Aug. 2021, pp. 145–150. doi: 

10.1109/ISCEIC53685.2021.00037. 

[28] F. An, P. Xu, Z. Xiao, and C. Wang, “FPGA-based object detection processor with HOG feature and SVM classifier,” in 2019 
32nd IEEE International System-on-Chip Conference (SOCC), Sep. 2019, pp. 187–190. doi: 

10.1109/SOCC46988.2019.1570558044. 

[29] F. An, X. Zhang, A. Luo, L. Chen, and H. J. Mattausch, “A hardware architecture for cell-based feature-extraction and 
classification using dual-feature space,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 28, no. 10, pp. 

3086–3098, Oct. 2018, doi: 10.1109/TCSVT.2017.2726564. 

[30] Seonyoung Lee, Haengseon Son, Jong-Chan Choi, and Kyungwon Min, “High-performance HOG feature extractor circuit for 
driver assistance system,” in 2013 IEEE International Conference on Consumer Electronics (ICCE), Jan. 2013, pp. 338–339. doi: 

10.1109/ICCE.2013.6486918. 

[31] S. Lee, H. Son, J. C. Choi, and K. Min, “HOG feature extractor circuit for real-time human and vehicle detection,” in TENCON 
2012 IEEE Region 10 Conference, Nov. 2012, pp. 1–5. doi: 10.1109/TENCON.2012.6412287. 

[32] N. Sudha, “A pipelined array architecture for Euclidean distance transformation and its FPGA implementation,” Microprocessors 

and Microsystems, vol. 29, no. 8–9, pp. 405–410, Nov. 2005, doi: 10.1016/j.micpro.2004.10.003. 
[33] S. Bauer, S. Kohler, K. Doll, and U. Brunsmann, “FPGA-GPU architecture for kernel SVM pedestrian detection,” in 2010 IEEE 

Computer Society Conference on Computer Vision and Pattern Recognition - Workshops, Jun. 2010, pp. 61–68. doi: 

10.1109/CVPRW.2010.5543772. 
[34] M. Bilal, A. Khan, M. U. K. Khan, and C.-M. Kyung, “A low-complexity pedestrian detection framework for smart video 

surveillance systems,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 27, no. 10, pp. 2260–2273, Oct. 

2017, doi: 10.1109/TCSVT.2016.2581660. 
[35] A. Suleiman and V. Sze, “An energy-efficient hardware implementation of HOG-based object detection at 1080HD 60 fps with 

multi-scale support,” Journal of Signal Processing Systems, vol. 84, no. 3, pp. 325–337, Sep. 2016, doi: 10.1007/s11265-015-

1080-7. 
[36] M. D. Malkauthekar, “Analysis of euclidean distance and manhattan distance measure in face recognition,” in Third International 

Conference on Computational Intelligence and Information Technology (CIIT 2013), 2013, pp. 503–507. doi: 

10.1049/cp.2013.2636. 
[37] L. Greche, M. Jazouli, N. Es-Sbai, A. Majda, and A. Zarghili, “Comparison between Euclidean and Manhattan distance measure 

for facial expressions classification,” in 2017 International Conference on Wireless Technologies, Embedded and Intelligent 

Systems (WITS), Apr. 2017, pp. 1–4. doi: 10.1109/WITS.2017.7934618. 
[38] G. Khosla, N. Rajpal, and J. Singh, “Evaluation of euclidean and manhanttan metrics in content based image retrieval system,” in 

in 2015 2nd International Conference on Computing for Sustainable Global Development (INDIACom), 2015, pp. 12–18. 

[39] J. Luo and C. Lin, “Pure FPGA implementation of an HOG based real-time pedestrian detection system,” Sensors, vol. 18, no. 4, 
p. 1174, Apr. 2018, doi: 10.3390/s18041174. 

[40] Y. YAZAWA et al., “FPGA hardware with target-reconfigurable object detector,” IEICE Transactions on Information and 

Systems, vol. E98.D, no. 9, pp. 1637–1645, 2015, doi: 10.1587/transinf.2014OPP0008. 
[41] M. Komorkiewicz, M. Kluczewski, and M. Gorgon, “Floating point HOG implementation for real-time multiple object 

detection,” in 22nd International Conference on Field Programmable Logic and Applications (FPL), Aug. 2012, pp. 711–714. 

doi: 10.1109/FPL.2012.6339159. 
[42] T. Adiono, K. S. Prakoso, C. Deo Putratama, B. Yuwono, and S. Fuada, “Practical implementation of a real-time human detection 

with HOG-adaboost in FPGA,” in TENCON 2018 - 2018 IEEE Region 10 Conference, Oct. 2018, pp. 0211–0214. doi: 

10.1109/TENCON.2018.8650453. 
[43] K. Mizuno, Y. Terachi, K. Takagi, S. Izumi, H. Kawaguchi, and M. Yoshimoto, “An FPGA implementation of a HOG-based 

object detection processor,” IPSJ Transactions on System LSI Design Methodology, vol. 6, pp. 42–51, 2013, doi: 
10.2197/ipsjtsldm.6.42. 

[44] A.-Y. Guo, M.-H. Xu, F. Ran, and A. Li, “FPGA implementation of a real-time pedestrian detection processor aided by E-HOG 

IP,” Journal of Computers, vol. 28, no. 2, pp. 87–103, 2017. 
[45] V. Ngo, A. Casadevall, M. Codina, D. Castells-Rufas, and J. Carrabina, “A pipeline hog feature extraction for real-time pedestrian 

detection on FPGA,” in 2017 IEEE East-West Design & Test Symposium (EWDTS), Sep. 2017, pp. 1–6. doi: 

10.1109/EWDTS.2017.8110057. 

 

 

BIOGRAPHIES OF AUTHORS 

 

 

Syifaul Fuada     is with the the Study Program of Telecommunications, 

Universitas Pendidikan Indonesia as a young lecturer. Mr. Fuada has several has several 

achievements, such as the most student outstanding award of Universitas Negeri Malang 

in 2013, a top of 10–student travel grant to the IEEE Asia Pacific Conference and 

Systems (APCCAS 2016) that was held in Jeju (South Korea), receiving one of 108 

Indonesia Innovations by BIC-LIPI awards (2016) for Smart Home Product, student 

winner nominee of NOLTA conference (2017), receiving Best Paper Award from IEEE 

IGBSG 2018 that was held in Yi-Lan, Taiwan, receiving Best Paper Award from IEEE 

ICTRuDev 2018 that was held in Bali, Indonesia, receiving the Best paper award from a 

Scopus-indexed journal, i.e., i-JOE in 2019, receiving Best Paper Award from IEEE 

IGBSG 2019 that was held in Yichang, China, receiving the 111 Indonesia Innovations 

by BIC awards (2019) for E-Nelayan and LI-FI products, receiving the 112 Indonesia 

Innovations by BIC awards (2020) for three innovations: Bidirectional DC/DC Converter 

for Electric ATV, Smart Home, and Contact/Contactless-based Payment Device, the 3rd 

https://orcid.org/0000-0002-5258-5149
https://scholar.google.co.id/citations?user=3KrQmawAAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=56087869900
https://www.webofscience.com/wos/author/record/1634450


                ISSN: 2252-8938 

Int J Artif Intell, Vol. 12, No. 2, June 2023: 714-730 

730 

place of UPI’s most productive researcher in the SCOPUS-based publication 2020 

(awarded on 2021), the 3rd place of UPI’s inventor awarded on 2021. His study interests 

include analog circuit design and instrumentation, engineering education, IoT, image 

processing, System-on-Chip, and Visible Light Communication. He can be contacted at 

email: syifaulfuada@upi.edu. 

  

 

Trio Adiono     received a B.Eng. in electrical engineering and an M.Eng. in 

microelectronics from Institut Teknologi Bandung (ITB), Indonesia, in 1994 and 1996, 

respectively. He obtained his Ph.D. in VLSI Design from Tokyo Institute of Technology 

in 2002, Japan. In 2005, he was a visiting scholar at MESA+, Twente University, 

Netherlands. He is a full-professor at Sekolah Teknik Elektro dan Informatika ITB. He 

was also Adjunct Assoc. Prof. NTUST-Taiwan. He has developed several microchips, 

such as Binary Template Matching Processor, WiMax Baseband Chipset, Smart Card, 

and IoT. He also has job experience working with Chip Design House in Fukuoka Japan, 

handling chip design for several multinational companies. He received the “Second Japan 

Intellectual Property (IP) Award” in 2000 from Nikkei BP. He received Award Karya 

Lencana Wira Karya from President of Republic Indonesia for his innovation in 4G chip 

developments. He also holds a Japanese Patent on “High Quality Video Compression 

System”. He was also chair of IEEE Solid State Circuits Society. His research interests 

include VLSI design, signal and image processing, VLC, smart cards, and electronics 

solution design and integration. He can be contacted at email: tadiono@stei.itb.ac.id. 

  

 

Hans Kasan     received his B.Eng. degree in Electrical Engineering from 

Bandung Institute of Technology (ITB), Indonesia in 2017. He joined Computer System 

and Network Lab (CSNL) in the Department of Electrical Engineering at Korea 

Advanced Institute of Science and Technology (KAIST) in September 2018 and now he 

is pursuing Ph.D. degree with the same department under supervision of Professor John 

Kim. He has several achievements, on of them is the first runnerup (Electronic Device 

Industry News award) of the 2017 LSI Design Contest in Okinawa. He has published 

papers about RFID-based warehouse management system and Montgomery multiplier IC 

design. His research interests are in RF, VLSI and custom digital IC designs. His current 

research topic is adaptive routing in interconnection networks. He can be contacted at 

email: hanskasan@live.com. 

 

https://orcid.org/0000-0003-4808-9254
https://scholar.google.co.id/citations?user=4nuwSEIAAAAJ&hl=en&oi=ao
https://www.scopus.com/authid/detail.uri?authorId=6506068255
https://www.webofscience.com/wos/author/record/1053177
https://orcid.org/0000-0002-8828-8058
https://scholar.google.co.id/citations?user=wDFNH3gAAAAJ&hl=en&oi=ao
https://www.scopus.com/authid/detail.uri?authorId=57201687773
https://www.webofscience.com/wos/author/record/3711905

