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ABSTRACT

Arecanut is one of Southeast Asia’s most significant commercial crops. This
work aims at helping arecanut farmers get an estimate of the yield of their or-
chards. This paper presents deep-learning-based methods for segmenting are-
canut bunch from the images and yield estimation. Segmentation is a funda-
mental task in any vision-based system for crop growth monitoring and is done
using U-Net squared model. The yield of the crop is estimated using Yolov4.
Experiments were done to measure the performance and compared with bench-
mark segmentation and yield estimation with other commodities, as there were
no benchmarks for the arecanut. U-Net squared model has achieved a training
accuracy of 88% and validation accuracy of 85%. Yolo shows excellent perfor-
mance of 94.7% accuracy for segmented images, which is very good compared
to similar crops.
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1. INTRODUCTION
Agriculture is humanity’s primary source of income and a critical element of each country’s economy.

As a traditional occupation, agriculture is the backbone of the Indian economy. A strong farming industry of-
fers national food safety, an origin of revenue and job opportunities. Precision agriculture could help with this.
Precision agriculture can ease many rising environmental, economic, market and societal problems [1]. Pre-
cision agriculture technologies are predicted to positively influence agricultural output concerning two issues:
lucrative for farmers and eco-friendly environmental advantages for the general population. Precision agricul-
ture aims to maximize profit, reduce cost and reduce environmental harm by tailoring agricultural techniques
to the location’s needs. As a result, agricultural and engineering companies are creating cutting-edge machine
vision technology to aid farmers in precision farming. Attention-based farming is a crop supervision method
aiming to find the required type and quantity of inputs to the actual crop yield for tiny areas in a farm field.
Precision agriculture’s financial and eco-friendly benefits may be found in the decreased use of aqua, fertilizers
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and defoliant, and farming tools. Precision agriculture detects site-specific variations in the fields and adapts
techniques as necessary.

The standard masticatory nut, often known as arecanut, comes from the arecanut palm. The arecanut is
one of Southeast Asia’s most significant commercial crops. Arecanut farming is primarily limited to Karnataka,
Kerala and Assam in India. Karnataka is the most populous state in terms of both area and output [2]. The areca
palm is a tall-stemmed erect palm that grows to different heights depending on the climate. Palms that reach
30 meters or more heights are relatively unusual, making it challenging to distinguish ripe from sick arecanuts
while harvesting. Arecanut crop bunch segmentation seeks to determine whether a specific areca plant has
diseased nuts, regularly relieving farmers of a load of ascending the towering trees. Arecanut is a profitable
crop in southern India. The market sets the levy of arecanut based on the maturity level. Identifying the
maturity stage of arecanut before harvesting is essential for increasing profitability. Farmers require knowledge
to determine ripeness level; else, their crops would provide less profit. Automated segmentation of arecanut
bunch in a given input image can be utilized to find maturity level, health and finally for yield estimation. Very
few attempts have been made for the segmentation, disease detection, harvesting and grading of arecanut. This
research intends to present an accurate arecanut bunch segmentation and yield-counting technique, which is
very efficient for the given input image.

The rest of the paper is detailed as follows. Section 2 presents the work done on the related crop
segmentation and yield count. Section 3 describes the method for arecanut bunch segmentation and its perfor-
mance analysis. Section 4 describes the technique for yield count and its performance analysis. A summary of
the work is presented in the last section.

2. RELATED WORK
Segmentation is a significant step in a machine vision system used for the analysis or interpretation

of an image. Its achievement primarily impacts the conduct of the whole vision system. Image segmentation
is a perceptual grouping of pixels based on similarity and proximity [3]. Automated segmentation is essential
as manual segmentation is complicated, consumes time, and is subjective and error-prone. Most existing seg-
mentation techniques focus on a two-class classification approach, i.e. object and background. Background
elimination is the primary step and must be done most suitably to avoid misclassification. Segmentation is
complex because the color of the crop, shadows, and inter-reflection varies as the illumination changes in the
outdoor field. Segmenting childish crops is much more problematic as it is green and resembles the background
foliage. Slight variations in different parts of a single crop bunch increase the complexity of crop segmentation.
Despite the above limitations, color-based segmentation also has its superiority. Color is the most potent visual
cue to discriminate an object from the background. Also, color is primarily unchanging to transition in size,
orientation and occlusion [4]. Color-based methods are mostly classified into two categories: pixel-based and
region-based methods. Excess green minus excess red index (ExGR) color model, a pixel-based approach,
demonstrated better results compared to other color models for the green vegetation segmentation [5].

A good many yield estimation techniques require image segmentation/detection, which includes mango
crop yield estimation using (red, green, blue (RGB) and Y is luma (brightness) (YCbCr), Cb is B-Y, and Cr
is R-Y) color space and texture information based on pixel adjacency [6], detection of red apples using hue
saturation value (HSV) and green apples using hue saturation intensity (HSI) profile [7], threshold-based seg-
mentation of reddish grapes using the Otsu threshold applied to the H layer of HSV color space gave better
results compared to the histogram and linear color model, Bayesian classifier and Mahalanobis distance meth-
ods [8]. Pixel-based methods are easy and efficient but incorporate noise. Researchers focus on region-based
strategies mainly based on edge detection and shape fitting, which includes apple segmentation [9], cotton de-
tection [10], maize tassel segmentation [11], apple identification using thresholding, edge detection, circular
Hough transforms, clustering and K-nearest neighbours classification of color and texture features [12]. Citrus
detection using HSV space follows thresholding and watershed segmentation [13]. Rice grains are segmented
by converting RGB image into lab color space followed by clustering and graph-cut segmentation [14].

An interactive arecanut bunch segmentation using maximum similarity-based region merging (MSRM)
gave better results than thresholding, clustering, and watershed [15]. Arecanut bunch segmentation using ac-
tive contours [16], YCgCr color model [17], different color models [18], and deep learning techniques [19]
are the few attempts for the crop areca. The human visual system often combines more than one visual cues
to enhance perceptual performance. Segmentation is better when we combine more than one feature [20].
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Mango segmentation combining color and texture features can be found in [21]. Often, things have a particular
shape. Segmentation based on shape and size is often desired. Support vector machine-radial basis function
(SVM-RBF) classifier and density-based spatial clustering of applications with noise (DBSCAN) based grape
bunch detection using histograms of oriented gradients (HOG) and local binary pattern (LBP) shape and texture
descriptors [22], active contours and scale-invariant feature transform (SIFT) based segmentation of tomatoes
using shape and position information [23] are attempted in this direction. Region information is combined with
gradient information to approximate the elliptic shape of the tomato boundary.

Machine learning (ML) based segmentation approaches include segmenting matured grape bunches
by finding edges, then determining circles and then classifying them as background and grapes using support
vector machines [24]. Segmentation using those hand-engineered features is less powerful. Investigators fo-
cused on deep learning-based approaches. Though better results were obtained for apple segmentation using
multi-scale multi-layered perceptrons (MLP) and convolutional neural network (CNN) and yield estimation
using watershed and circular Hough transform [25], they are susceptible to occlusion and illumination. Multi-
class (fruit, leaves and branches) almond fruit segmentation using feature learning with a conditional random
field (CRF) [26] automatically generates the set of rules from the data rather than make use of pre-defined
feature descriptors. That unsupervised feature learning approach automatically captures the most appropriate
features from the data. Mango counting applies MagnoNet, a deep CNN-based model, with a contour-based
connected object detection model, which gives better results. It is invariant to illumination changes, scaling,
contrast and occlusion [27].

3. SEGMENTATION
The section describes the framework of U2-Net for segmentation of arecanut bunch from the input

image eliminating the unwanted background information. The architecture of U2-Net shown in Figure 1 can be
conceptually viewed as an encoder accompanied by a decoder framework. Multiple U-Net-like arrangements
are stacked together to construct flow models and compiled as (U-n Net), n represents a number of U-Net
units. The challenge is the increased costs of memory and computation by n times. In this framework, each
encoder-decoder U-Net stage includes a ReSidual U-block (RSU), a down and up sampling encoder-decoder.
The purpose of this block is to use residuals, a multi-scale features in place of original features. According to
researchers, this will introduce the desired effect of keeping the fine-grained details which enforce the network
to derive features at multiple scales from a residual block. For example, En 1 is one RSU block. As illustrated
in Figure 1, U2-Net consists of three main parts: five stages of the encoder, decoder, a salience fusion unit and
the last stage consists of the encoder and a fusion unit.

Encoders En 4, En 3, En 2 and En 1 uses residual blocks RSU-4, RSU-5, RSU-6 and RSU-7 respec-
tively. Digits 7, 6, 5 and 4 represent the height (L) of RSU blocks and are customized by the spatial resolution
of the input feature maps. Large L has been used to represent more information about feature maps with large
resolutions. The feature maps resolution in En 6 and En 5 are fairly low; further down-sampling of those fea-
ture maps results in a loss of contextual information. Hence, a dilated version RSU-4F (”‘F”’ represents dilated
version) is used in both En 6 and En 5. Therefore, all the intervening feature maps of RSU-4F posses the
resolution of input feature maps. For En 6, decoder stages possess information related to symmetrical encoder
stages. In De 5, the dilated version RSU-4F has been used and is indistinguishable from the one used in En 6
and En 5. The input for each decoder is the sequence of up-sampled feature maps of its preceding stage with
its symmetrical encoder phase. The saliency probability map is generated using the final fusion module of
the saliency map. Indistinguishable to Holistically-Nested Edge Detection [28], U2-Net begins generating six
side output saliency probability maps S(6)

side, S(5)
side, S(4)

side, S(3)
side, S(2)

side and S
(1)
side from En 6, De 5, De 4, De 3,

De 2 and De 1 using 3×3 convolution layer, a sigmoid function and then up-samples the saliency maps above-
mentioned to the size of the input image. Further, fuse all the saliency maps using a concatenation operation
accompanied by a 1×1 convolution and a sigmoid function to produce the finishing saliency probability map
Sfuse. To summarize, U2-Net is built on RSU blocks with no pre-trained backbones. It permits deep networks
with opulent multi-scale features with comparatively low computing and memory costs.

3.1. Training
Deep learning-based techniques need vast data sets and proper labelling, thereby longer training and

less testing time than other machine learning-based methods. It is not feasible to collect enormous amounts
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of data for training. The training data size can be increased using a technique called data augmentation by
applying transformations to the database images. ImageDataGenerator class of the Keras library has been
used for data augmentation. The labelling task is difficult and requires experts to annotate input images. The
maximum current annotation tools are based on polygonal approximation of the object boundaries. The object
boundary in each input image is encoded as a mask, a set of polygon points. Annotations were completed using
the Labelme tool, and each annotation was stored as a JSON file. JSON was converted to binary images using
labelme2voc-white representing the arecanut area and background represented by the black. A sample input
image, labelling and masking are shown in Figure 2.

Figure 1. Architecture of U2-Net

Figure 2. Labelling and masking of sample input images

The model has been trained and examined using the data set [17] that consists of 388 ripe and 629
unripe images. All images are of 4160×3120 resolution and stored in jpeg format. The model has been trained
with 310 images and validated with 78 images with a total of 388 ripe data sets (80:20 split) and evaluated
the accomplishment on both ripe and unripe image sets. Input and the corresponding mask images have been
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used to train the model. The model has been trained with resized images of 720×720 resolution, randomly
flipping vertically and trimming to 400×400. The network and all the convolutional layers have been trained
from scratch. The loss weights w

(m)
side and wfuse are all adjusted to 1. The network has been trained using

Adam optimizer, and all the hyperparameters are adjusted to default initial values (weight decay=0, learning
rate lr=1e-3, eps=1e-8 betas= (0.9, 0.999)). The model has been trained for about 20 hours with a batch size
of 12, and the loss converges after 5k iterations. Images are resized to 720×720 during testing and fed to the
network to generate saliency maps. The predicted 400×400 saliency maps are resized to the original input
image of 720×720. Bi-linear interpolation has been used for the resizing process. The model learning curve
concerning dice, jaccard and loss for training and validation is shown in Figure 3(a), and the accuracy plot is
shown in Figure 3(b). A summary of the training performance is depicted in Table 1. The model has achieved
training and validation accuracy of 88% and 85%, respectively.

(a) (b)

Figure 3. Model performance: (a) learning curve and (b) accuracy plot

Table 1. Segmentation performance calculated over validation set
Loss Accuracy Dice

0.2652 0.8506 0.8594

3.2. Performance analysis
Experimentation has been carried out to determine the segmentation performance using both the data

sets: ripe and unripe. Four standard measures, namely: precision (Pr), recall (Re), F1-score (F1), and IoU
given by (1) to (4), have been used to judge the accomplishment of the model. There are minimal attempts
made for arecanut segmentation [16]–[19], and the evaluation of achievement has been concluded for very few
images [15], [16]. Table 2 summarizes the test performance of the segmentation. The higher values indicate
more remarkable performance. The appropriateness of this method is evidenced by its high segmentation
performance against both ripe and unripe data sets that differ in terms of color. The sample segmentation
outputs achieved by U2-Net model for both ripe and unripe images is shown in Figure 4. The results obtained
are better than other methods. The model has been implemented using Pytorch 0.4.0. The entire training and
testing is done using an octa-core, 16 threads PC of an Intel(R) Core(TM) i5-10300H CPU with 2.50 GHz,
16GB RAM and an NVIDIA GeForce RTX 2060 GPU (6 GB memory).

Pr =
TrP

TrP + FlP
(1)

Re =
TrP

TrP + FlN
(2)

F1 = 2 • Pr •Re

Pr +Re
(3)
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IoU =
|A ∩B|
|A ∪B|

(4)

Where:
− TrP - true positive
− FlN - false negative
− FlP - false positive

Table 2. Segmentation performance calculated over validation set
Author Method IoU Pr Re F1
Dhanesha et al. [17] YCgCr 53.54%
Dhanesha et al. [18] YCgCr 72.77% 83.62%

HSV 66.58% 79.0%
U-Net Ripe 54.61% 61.53% 87.07% 68.26%

Anitha et al. [19] U-Net Unripe 58.07% 74.71% 77.15% 72.95%
MRCNN Ripe 61.01% 73.57% 81.84% 72.95%
MRCNN Unripe 65.98% 89.86% 73.14% 78.68%

This paper U2-Net Ripe 71.24% 93.07% 69.23% 83.21%
U2-Net Unripe 65.74% 89.42% 72.73% 79.32%

*MRCNN - mask region-based convolutional neural networks

Input Output Input Output
Ripe Unripe

Figure 4. Representative results of segmentation

4. YIELD COUNT OF ARECANUT
The objective is to build an object detection model that can count the number of areca nuts in a given

image. Object detection methods act as a fusion of image categorization and object finding. It generates one or
more bounding boxes and labels each bounding box. These methods can deal with multi-class categorization,
localization, and objects with many incidents. Different kinds of object detection include Retina-Net, single-
shot multiBox detector (SSD) and Fast RCNN. These methods can address the challenges, such as limitation of
data and object identification modelling, but need to be able to identify the objects in a single algorithm pass.
You only look once (YOLO) has gained popularity for its higher performance over other object identification
methods. Yolo [29]–[31] merges the classification phase and region proposal network (RPN) into one network,
resulting in a more compact object identification model with more excellent computational order, making them
suitable for instantaneous applications. Compared to earlier region proposal-based detectors [32] and [33]
detect objects in two stages, Yolo forecasts the bounding boxes and the corresponding class label in one run
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using a single feed-forward network. Yolov2 [30], the second kind of Yolo [29], was presented aiming at
the considerable enhancement of performance and speed. Faster R-CNN spurred the introduction of anchors
for detection in Yolov2. The anchors increase detection performance, reduce challenges, and simplify the
network training process. Batch normalization [34] was introduced to the convolution layers in the meantime,
pushing mean Average Precision (mAP) to 95.14% and skipping connection [35]. The recall and localization
performance of Yolov2 was enhanced when compared to Yolo. Yolov3 [31] builds on Yolo, and Yolov2 became
one of the modern techniques for object identification. Yolov3 uses multi-class classification and binary cross-
entropy to calculate the classification loss instead of mean square error. As shown in Figure 5, Yolov3 [36] uses
logistic regression to foresee objects in three distinct scales (similar to FPN24) and the result for each bounding
box. DarkNet-53 is used instead of DarkNet-19 as a new attribute extractor.

Figure 5. Architecture of Yolov3

The DarkNet-53 is a chain of 53 convolutional layers with a dimension of 1×1 followed by filters of
size 3×3 with skip connections. Compared to ResNet-152, DarkNet-53 has low billion floating point operations
(BFLOP), yet it is two times faster with classification performance than that ResNet-152. Yolov3 improves
significantly on small object detection performance. Alexey et al. [37] recently introduced Yolov4, the next
version of Yolov3. With comparable performance, it runs twice as fast as EfficientDet. In Yolov4, the average
precision and frames per second were enhanced by 10% and 12%, respectively. The CSPDarkNet53 backbone,
spatial pyramid pooling (SPP) extra block [38], path aggregation network (PANet) neck [39], and Yolov3 head
make up the Yolov4 framework. With Mish [40], CSPDarkNet53 improves CNN’s learning capacity. The SPP
is used with the CSPDarkNet53 to considerably extend the receptive field, segregate the most relevant context
features and reduce network operating speed to nearly nothing. Instead of the FPN in Yolov3, PANet is used
in YOLOv4 to collect feature maps from various stages. Yolov4 allows for broader use of traditional GPUs
while enhancing the performance of the classifier and detector. This study uses the label what you see (LWYS)
procedure to recognize arecas in complicated environments using a modified Yolov3 model named Yolo-areca
model. The addition of dense architecture [41] into Yolov3 to assist the reuse of attributes for more generalized
areca identification and SPP application to lower the error and increase the accuracy are among the ideas put
forward to reduce the disadvantages of deep learning and to make detectors intelligent as humans.

4.1. Yolo-areca model
The Yolo-areca model replaced the blocks 8*256 and 8*512 in Yolov3 shown in Figure 5 with a dense

architecture for enhanced feature reuse and characterization. One convolutional layer and a 1*1 bottleneck layer
were put together for every thick layer to enable accurate detection of tiny areca in various settings. The con-
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catenated features of 26*26*768 and 13*13*384 in the FPN of the Yolo-areca model increase to 26*26*2816
and 13*13*1408 features. The Yolo-areca model was trained separately with segmented and unsegmented
images to find a more accurate and faster Yolo-areca real-time detection model. Leaky rectified linear unit
(ReLU) [42] with FDL*3 was used to activate the yield count of segmented images. All the layers of Yolov3
were pruned as follows: Yield count in unsegmented images is triggered using Mish [40] with FDL*1; Yield
count in segmented images is activated using Mish with FDL*3, and SPP [38]. Mish, which is interpreted as
f(x) = x.tanh(c(x)), where c(x) = ln(1 + ex), the softplus triggering function was found to beat ReLU.
Introducing this activation function significantly improves every deep neural network’s performance.

SPP [38] was launched following the last residual block to optimise the network topology. The feature
extraction capability is strengthened as the convolutional layers deepen and the receptive field of a neuron
increases. However, if the shape feature map of the arecas is obscured, the location details of the small areca
become erroneous or even forgotten in some cases [43]. Because of more arecas in the image, there will be
missed detections and lower accuracy. As a result, the SPP module can resolve the issue. The model was
trained and tested on architecture with the following configuration: Intel Xeon(R) 64-bit 2.3 GHz CPU, 16 GB
RAM, NVIDIA Tesla T4 GPU, CUDA v11.2, cuDNN v7.6.5. Images with a resolution of 416×416 pixels are
fed into the model. Training loss is reduced when the learning rate is adjusted [30]. The rate of learning was
adjusted to 0.001 for 4000 iterations with a maximum batch size of 6000 ripe and unripe areca. Batch and
subdivision were set to 32 and 16 correspondingly to lower memory usage. Momentum and decay rates were
set to 0.949 and 0.0005, respectively. Yolov4 has been trained using pre-trained weights.

4.2. Training
The model has been trained separately using 1017 segmented and 1017 unsegmented images; 80%

were used for training, and the remaining 20% were used for validation. All the images are resized to
1920×1080 resolution. The label for each class and the coordinates of all the bounding boxes of ground
truth images are required for training [29]–[31]. All ground truth bounding boxes were labelled using the
graphical image annotation tool. Labelling each areca in an image is done by a bounding box using the LWYS
approach shown in Figure 6. In particular, the bounding boxes for the heavily occluded arecas were drawn
by a presumed shape using human intelligence. Three people verified the labelled images to confirm we have
done annotations correctly. Four standard measures, namely: Precision (Pr), Recall (Re), F1-score (F1) and
IoU given by (1) to (4), have been used to judge the accomplishment of the model. Table 3 summarizes the
training performance. The higher values of the above measures indicate a more fantastic version of the model.
The model performs better for segmented images because most unwanted background information has been
eliminated during segmentation.

Figure 6. Sample annotated images

Table 3. Training performance
Method Precision Recall F1-Score IoU
Yolo-seg 93.0% 85.0% 89.0% 70.64%
Yolo-unseg 76.0% 96.0% 85.0% 58.10%

4.3. Results and comparision
The goal is to present an efficient and accurate technique for counting arecanuts in a bunch from an

image acquired in field conditions. The trained model has been tested, and the mean absolute percentage error
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(MAPE) on counting of areacnuts for 20 images has been determined to be 6.7% for unsegmented images and
5.3% for segmented images as shown in Table 4. Since there were no benchmarks for the comparison, methods
that applied yield estimation on other crops were used as a measure for analogy. The model performance
is better for segmented images because of the elimination of unwanted background information. The model
performance is better than apple crop-load estimation [12], which shows 21.1% and [44], which shows 15%
of MAPE. The Yolo-areca model achieves good results in comparison with other models. The appositeness
of the approach is evidenced by its high performance across the entire data set that differs in terms of color,
surrounding and resolution. The sample yield outputs of the model are shown in Figure 7. The model takes
an average of 32 ms to count arecas in an image. Incorporating DenseNet and SPP increases the accuracy and
lowers detection speed indicating the tradeoff between accuracy and speed.

Table 4. Error of identifying arecanuts
Unsegmented images

Image Actual Detected FP FN Error
1 45 48 4 4 6.6
2 62 61 2 2 1.6
3 42 46 4 2 9.5
4 40 37 2 0 7.5
5 64 61 1 6 4.7
6 55 47 1 3 14.5
7 46 49 3 6 6.5
8 55 57 2 4 3.6
9 35 35 0 2 0.0
10 49 46 3 4 6.1
11 29 33 4 1 13.8
12 47 46 0 4 2.1
13 60 56 1 7 6.6
14 34 37 3 8 8.8
15 23 22 1 0 4.3
16 40 40 0 2 0.0
17 56 50 5 4 10.7
18 57 46 3 12 19.3
19 55 53 5 3 3.6
20 43 45 3 4 4.6

MAPE 6.7

Segmented images
Image Actual Detected FP FN Error (%)

1 45 48 0 3 6.6
2 62 68 2 2 9.6
3 42 43 1 0 2.4
4 40 38 2 1 5.0
5 64 58 2 1 9.4
6 55 56 0 1 1.8
7 46 47 0 3 2.2
8 55 56 2 4 1.8
9 35 33 1 3 5.7

10 49 44 2 2 10.2
11 29 30 1 1 3.4
12 47 42 2 3 10.6
13 60 59 0 2 1.6
14 34 34 0 3 0
15 23 20 1 2 13.0
16 40 36 1 2 10.0
17 56 54 0 1 3.5
18 57 54 0 1 5.2
19 55 56 4 1 1.8
20 43 44 1 2 2.3

MAPE 5.3

Seg Unseg

Figure 7. Representative results of Yield count

5. SUMMARY
This paper presents deep learning-based techniques for segmentation of arecanut bunch and counting

of nuts in an arecanut bunch. U-Net squared model demonstrated greater segmentation performance across both
ripe and unripe data sets that differ in terms of illumination, surrounding, density, shape and color. The model
is trained with ripe arecanut and can generalize for unripe arecanut, which vary significantly in color. The
outcome shows that the model outperforms compared to the benchmark. Yolo-areca model based on modified
Yolov3 for counting nuts shows better accuracy of 94.7% when trained using segmented images compared to
other methods applied to other commodities.
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