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 This paper aims to develop efficient speech-expressive models using the 

adaptively tuning neuro-fuzzy inference system (ANFIS). The developed 

models differentiate a high-arousal happiness state from a low-arousal sadness 

state from the benchmark Berlin (EMODB) database. The proposed low-cost 

flexible developed algorithms are self-tunable and can address several vivid 

real-world issues such as home tutoring, banking, and finance sectors, 

criminal investigations, psychological studies, call centers, cognitive and 

biomedical sciences. The work develops the proposed structures by 

formulating several novel feature vectors comprising both time and frequency 

information. The features considered are pitch (F0), the standard deviation of 

pitch (SDF0), autocorrelation coefficient (AC), log-energy (E), jitter, 

shimmer, harmonic to noise ratio (HNR), spectral centroid (SC), spectral roll-

off (SR), spectral flux (SF), and zero-crossing rate (ZCR). to alleviate the 

issues of the curse of dimensionality associated with the frame-level 

extraction, the features are extracted at the utterance level. Several 

performance parameters have been computed to validate the individual time 

and frequency models. Further, the ANFIS models are tested for their efficacy 

in a combinational platform. The chosen features are complementary and the 

augmented vectors have indeed shown improved performance with more 

available information as revealed by our results. 

Keywords: 

Adaptive neuro-fuzzy inference 

Feature extraction 

Human expressive states 

Modeling 

Root mean square error 

This is an open access article under the CC BY-SA license. 

 

Corresponding Author: 

Hemanta Kumar Palo 

Department of Electronics and Communication Engineering 

Institute of Technical Education and Research Siksha O Anusandhan (Deemed to be University) 

Bhubaneswar, Odisha, India 

Email: hemantapalo@soa.ac.in 

 

 

1. INTRODUCTION 

Human expressive states are highly unpredictable, vague, overlapping, and ill-defined. Human being 

via facial expressions, gestures, and through voice modalities often manifests these states. Trivial things, such 

as watching a movie, listening to songs, meeting an old-time friend, a pleasant scent, and seeing a funeral pyre 

can change our expressive states. The study remains a complex domain of research, particularly when these 

states are expressed via phone [1]. It requires effective signal-processing tools to adequately represent them 

that can benefit several fields such as artificial intelligence, cognitive sciences, psychological studies, criminal 

investigation and humanoid robotics. The tools and techniques must be capable of extracting discriminant and 

relevant voice parameters appropriately representing human expressive states for efficient modeling [2]. 

Among several techniques, the community often relies on the prominent features extracted either at 

the frame level or at the utterance level. The frame-level analysis facilitates studying the signal in a stationary 

https://creativecommons.org/licenses/by-sa/4.0/
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platform, however, results in high-dimensional data comprising redundant information, thus increasing the 

training time and memory space [3], [4]. The utterance level extraction of the speech features can alleviate 

these issues with improved accuracy [5]. Modeling algorithms often play a crucial role and remain an 

indispensable module to develop an effective recognition system. Earlier Learning algorithms applied in this 

field belong to neural networks, structural techniques, clustering approaches, Hidden Markov model, Gaussian 

mixture model and support vector machines (SVM). with excellent outcomes [6]–[13]. The spectrograms of 

speech emotions along with the squeeze and excitation residual neural network (ResNet) and a trainable 

discriminative ghost vector of locally aggregated descriptors (GhostVLAD) clustering layer extended 

convolution neural network (CNN) have been applied to extract a low-dimensional utterance-level feature 

vector [5]. Simulation on crowd sourced emotional multimodal actors datase (CREMA-D), Ryerson audio-

visual database of emotional speech, and song (RAVDESS) using the developed model has provided a global 

accuracy of 83.35% and 64.92% respectively. The combination of empirical mode decomposition and the 

Teager-Kaiser Energy Operator time-frequency and cepstral features has provided improved expressive state 

models than stand-alone feature vectors. The authors have reported an accuracy of 91.16% and 86.22% 

respectively using the recurrent neural network (RNN) and SVM in modelling the chosen speech expressive 

states [6]. The hybridization of the prosodic, cepstral, spectrum, and wavelet features has enhanced the 

modelling capability of SVM in recognizing Arabic expressive states [7]. These pieces of literature reveal that 

the hybridization of features and their effective selection often lead to enhanced models due to more available 

information, however not without limitations [1]–[4], [6]–[13]. However, the judicious selection of relevant 

features bearing complementary information challenges the community, hence motivating the authors. 

Several issues that are inherently associated with hybrid models are the requirement of a large pool of 

samples, response time, selection of hyper-parameters, kernel function, the number of hidden layers, nodes, 

feature dimension, addressing the non-linear relationship among extracted parameters, regularization, 

generalization and issues of overfitting [12]. Henceforth, the application of fuzzy-based approaches along with 

global statistics seems a novel ideal to explore in real-world fuzzy environments. These models remain flexible, 

providing several feasible solutions besides performing in dynamic, unpredicted, and vague environments. 

Unlike other neural networks, the neuro-fuzzy inference systems when adaptively tuned lead to an outcome-

based adaptive neuro-fuzzy inference system (ANFIS) structure that does not require frame length 

normalization. The application of state transition probability in ANFIS facilitates the representation of temporal 

dynamics associated with the baseline parameters. The structure rapidly learns from the experimental data with 

precision and certainty. The use of approximation while generalizing the network and lower errors than the 

conventional NNs during memorization makes it versatile [14]–[16]. User transparency, adaptability to 

nonlinear signals, faster training without expert knowledge, and representability of numerical and linguistic 

information make the algorithm superior [17], thus providing the desired platform for this work. 

In this paper, the authors attempt to model a few chosen speech expressive states using effective 

features in section 2 and the ANFIS in section 3. The model can arguably limit the aforementioned issues by 

representing the expressive state using both numerical and linguistic knowledge. It makes the model more 

transparent and user-friendly due to low memorization errors. Finally, the adaptation capability, faster learning, 

and nonlinear ability, of the developed model add value to the recognition mechanism. Section 4 validates and 

discusses the developed models using the derived feature vectors considering three proposed instances whereas 

section 5 concludes the work with a few possible future directions. 

 

 

2. THE PROPOSED APPROACH 

The Berlin emotional speech database (EMODB) dataset chosen in this work comprises seven 

expressive states such as anger, happiness, boredom, anxiety, sadness, disgust, and neutral sampled at a rate of 

48 kHz and are down-sampled to 16 kHz for convenience. It has been a widely accessed database used to 

analyze speech emotion (SE) states, which makes the comparing platform uniform [18]–[22]. From this 

database, this work compares the three expressive models based on the level of arousal. These states are 

happiness (high-arousal), sadness (low-arousal), and neutral. Forty-five utterances of each state are used to 

extract the chosen feature vectors and for further processing. Initially, the ANFIS structure is developed so that 

it can learn from the extracted input feature vector and compute the consequent parameters by estimating the 

premise parameters using subtractive clustering. The hybrid learning algorithm is used to train the ANFIS 

structure based on the premise parameters for 10 iterations. Finally, the developed structure is tested to validate  

its performance. The proposed ANFIS combination Model, shown in Figure 1 concatenates both the time and 

frequency-domain utterance-level statistical feature vectors to develop the desired ANFIS model for each 

expressive state.  
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Figure 1. The proposed ANFIS modelling 

 

 

The utterance-level statistics extracted from the frame-level features of a signal are the mean,  

range, standard deviation, skewness, and kurtosis. The proposed frequency-domain ANFIS model is shown in 

Figure 2. It considers five feature vectors spectral rolloff (SR), spectral flux (SF), spectral centroid (SC), 

fundamental frequency (F0), and standard deviation of F0 (SF0). Each speech sample corresponding to the 

chosen expressive state is pre-emphasized, normalized, and mean subtracted to spectrally flatten and reduce 

the finite precision effects [23]–[25]. The proposed time-domain model is shown in Figure 3. It considers six 

feature vectors such as the normalized log-energy, zero crossing rate (ZCR), jitter, Shimmer, auto-correlation 

coefficients (AC), and harmonic noise ratio (HNR). The necessary rule base is formed during the ANFIS 

training and testing to fetch the desired output. The objective is to develop an expressive model that can easily 

adapt to the multi-environment scenario. 

 

 

 
 

Figure 2. The proposed frequency-domain ANFIS model 
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Figure 3. The proposed time-domain ANFIS model 

 

 

3. THE ANFIS ALGORITHM 

The ANFIS integrates the adaptive neural network (ANN) and fuzzy inference system (FIS) 

algorithms to determine the model parameters using fuzzy if-then rules and appropriate membership functions 

(MF) [26], [27]. There are five layers in this structure comprising adaptive nodes in layer-1 (fuzzy layer) and 

layer-4 (de-fuzzy layer) whereas layers-2 (product), 3 (normalized), and 5 (total output) have fixed nodes each 

staging a particular function. The rule can be formed corresponding to each extracted feature 𝑥 as if 𝑥 (𝑢1) is 

𝐺𝑖, 𝑥 (𝑢2) is 𝐻𝑖, and 𝑥 (𝑢𝑙) is 𝐼𝑖, then 𝑅𝑢𝑙𝑒𝑠𝑖 = 𝑝𝑖  𝑥 (𝑢1) + 𝑞𝑖  𝑥 (𝑢2) + ⋯ + 𝑟𝑖  𝑥 (𝑢𝑙) + 𝑎𝑖, where 𝑥 (𝑢1), 𝑥 

(𝑢2), …, 𝑥 (𝑢𝑙) is the input features. The terms 𝐺𝑖, 𝐻𝑖, … represent the fuzzy sets, and the terms 𝑝𝑖, 𝑞𝑖, … are 

the design parameters estimated while training the structure. 

The output of layer-1 considering 𝑥, 𝑦 as inputs, and 𝑧 as output is given by 𝑂1,𝑖 = 𝜇𝐺𝑖
(. ), where 

𝜇𝐺𝑖
(. ) is the MF representing the inputs 𝑥 or 𝑦 corresponding to 𝐺𝑖. The MF assigns linguistic labels such as 

low or high or medium to specify the feature values of an input vector to quantify 𝐺𝑖. The popular bell-shaped 

MF having values between zero and one is chosen here and is represented for input 𝑥 as 

 

𝜇𝐺𝑖
(𝑥) =

1

1+|(𝑢−𝑟𝑖) 𝑝1⁄ |2𝑞𝑖
 (1) 

 

By varying the premise parameters 𝑝, 𝑞, and 𝑟, it is possible to accommodate several MFs representing 

the fuzzy set. The layer-2 having fixed circle nodes multiplies the extracted input features of vectors 𝑥, 𝑦, …. 

The layer-3 fixed circle nodes estimate the 𝑖𝑡ℎ rule’s firing strength using the firing strength of all the rules and 

provide an output 𝑂3,𝑖 with normalized firing strength. The weights of adaptive layer-4 square nodes are 

estimated as linear functions with Sugeno inference coefficients 𝑚𝑖 , 𝑛𝑖, and 𝑠𝑖 . The output of layer 2, 𝑂2,𝑖 and 

the output of layer 3, 𝑂3,𝑖 with 𝑣𝑖 as the firing strength of the rule are given in (2) and (3) respectively whereas 

the layer-4 provides the consequent parameters and its weighted output is described by (4). Similarly, the single 

circle layer-5 node provides the overall or the estimated Sugeno FIS model output and is given by (5). In this, 

the hybridized ANN and FIS compute the consequent parameters in the forward pass by propagating the 

information up to the fourth layer and optimizing the parameters using a least square regression algorithm. 

However, a gradient descent algorithm optimizes the parameters of the premises. 

 

𝑂2,𝑖 = 𝜇𝐺𝑖
(𝑥) × 𝜇𝐻𝑖

(𝑦) × … = 𝑣𝑖, 𝑖 = 1,2, 3, … (2) 

 

𝑂3,𝑖 = 𝑣̅𝑖 =
𝑣𝑖

𝑣1+𝑣2+⋯
, 𝑗 = 1,2, … (3) 
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𝑂4,𝑖 = 𝑣̅𝑖𝑓𝑖 = 𝑣̅𝑖(𝑚𝑖𝑤1 + 𝑛𝑖𝑤2 + ⋯ + 𝑠𝑖) (4) 

 

𝑂5,𝑖 = ∑ 𝑣̅𝑖𝑓𝑖𝑖 =
∑ 𝑣𝑖𝑓𝑖𝑖

∑ 𝑣𝑖𝑖
 (5) 

 

 

4. THE RESULTS AND DISCUSSION 

The simulation results using the extracted time and frequency domain features with the ANFIS 

structure is provided in this section to validate the proposed work. The work initially develops the time and 

frequency domain ANFIS structures. Further, the root mean square error (RMSE) while developing the ANFIS 

models for different states of emotions is graphically shown for comparison. Finally, the ANFIS model using 

both the time and frequency domain features has been developed and the error has been computed to validate 

the efficacy of the combined model. 

Figure 4 provides the frequency domain ANFIS structure comprising five inputs such as SR, SF, SC, 

fundamental frequency (F0), the standard deviation of F0 (SF0), and one of the desired states as the output. 

The training rows constitute the desired input-output pair of an individual expressive state while developing 

the desired model of that statement using a set of chosen feature vectors. A similar time-domain ANFIS 

structure has been developed using six inputs such as log-energy, zero crossing rate (ZCR), jitter, Shimmer, 

auto-correlation coefficients, and harmonic noise ratio in Figure 5. The frequency and time-domain rules can 

be viewed from the ANFIS rule viewer for the chosen states. The Frequency-domain rule viewer in,  

 

 

 
 

Figure 4. The frequency domain ANFIS structure 

 

 

 
 

Figure 5. The time domain ANFIS structure 
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Figure 6 comprises the input and output rules for the state of happiness. The rule viewers can be 

developed similarly for the sadness and neutral states using the five frequency-domain inputs and six time-

domain inputs. The rule viewer helps to investigate the crisp value of each state based on the inputs. Similarly, 

the time-domain rule viewer with six inputs is developed the intelligent model synthesizes all the crisp input 

terms describing the chosen expressive state while approximating the decision-making process. The model 

utilizes the pre-defined membership functions instead of the quantitative terms of the features to map the input 

feature vectors to the chosen output shape for such a purpose. 

Figure 7 graphically analyses the training RMSE corresponding to the Happiness states using 

frequency-domain feature vectors. The RMSE is estimated using ten epochs and is the difference between the 

training output, and the FIS output. At each training epoch, the minimization of the error takes place to develop 

the desired ANFIS model. The training however stops when the network converges or uses a stopping criterion. 

At each epoch, the error between the measured and modeled values is estimated and minimized until the 

network converges. The RMSE compared to that of the low-arousal sadness and the neutral state using 

frequency-domain feature vectors can be observed similarly. It is found to be 0.64837, 0.67807, and 0.68863 

corresponding to happiness, sadness, and neutral states respectively. It shows the suitability of ANFIS in 

modeling the high-arousal Happiness state as compared to the low-arousal Sadness state.  
 

 

 
 

Figure 6. The frequency-domain rule viewer 
 

 

 
 

Figure 7. The ANFIS error (RMSE) for happiness using frequency-domain feature vector 
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Figure 8 graphically analyses the training RMSE corresponding to the Happiness states using time-

domain feature vectors. The RMSE compared to that of the low-arousal sadness and the neutral state using can 

be observed similarly. It is found to be 1.02, 1.1522, and 1.5327 corresponding to happiness, sadness, and 

neutral states respectively. Figure 9 graphically analyses the training RMSE corresponding to the Happiness 

states using the combined time-frequency feature vectors. The RMSE is found to be 0.3868, 0.58327, and 

0.7896 corresponding to happiness, sadness, and neutral states respectively. The frequency domain features 

are more informative, hence providing better modeling with lower RMSE than time-domain models. 

Nevertheless, the combinational model has outperformed the individual models due to more emotionally 

relevant available information as observed in Figure 7 through Figure 9. Figure 10 provides the testing RMSE 

for the Sadness state using frequency-domain feature vectors. It resolves the issues of overfitting by optimizing 

the MFs. The testing error also cross-validates the generated ANFIS models by testing their generalization 

ability at each epoch. It shows how effectively the ANFIS models behave to the extracted testing feature 

vectors.  

 

 

 
 

Figure 8. The ANFIS error (RMSE) for happiness using time-domain feature vector 

 

 

 
 

Figure 9. The ANFIS error (RMSE) for happiness using time-frequency-domain feature vector 

 

 

A comparison of ANFIS performances with frequency and time-domain feature vectors is shown in 

Table 1. It shows that the checking and testing error is always higher than the training error, however, the 
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difference is meager, and the chosen expressive states can be materialized without overfitting. The time and 

frequency-domain ANFIS models are validated using several performance parameters including the RMSE at 

the start, at convergence, training, testing, and checking. The models of each expressive state have been trailed 

using four, eight, ten, fifteen, and twenty epochs to minimize the RMSE. With an increase in the number of 

epochs, the time to train, check and test the network has increased exponentially. The training error is reduced 

due to extensive learning; however, the testing error has increased as a trade-off due to overfitting with poor 

network generalization. On the contrary, with a small number of epochs, underfitting occurs due to inadequate 

learning. The network has provided the optimum performance with ten epochs, hence chosen here. Among the 

default FIS hybrid and back-propagation learning algorithms, the hybridization of the back-propagation and 

least square has witnessed the lowest RMSE in all the chosen cases, hence is considered. It has been observed 

that the ANFIS models of different expressive states using time-domain feature vectors have experienced 

higher RMSE in all the cases as compared to the frequency-domain feature vectors due to less relevant 

information as revealed in Table 1.  

 

 

 
 

Figure 10. The testing RMSE for the sadness state using frequency-domain feature vectors 

 

 

Table 1. Comparison of ANFIS performance parameters using frequency and time-domain feature vectors 
Performance Parameters Happiness Sadness Neutral 

 Frequency Time Frequency Time Frequency Time 

E1 0.64837 1.0253 0.67807 0.78967 0.68663 1.5327 

E2 0.68441 1.2464 0.99422 0.1.4351 0.74127 1.6922 

E3 0.74964 2.4167 0.99233 2.0197 0.73034 3.2346 
E4 0.678071 1.27306 0.686631 1.15217 0.648371 8.62407 

E5 0.686626 2.3666 0.686626 2.53514 0.648367 2.86288 

R 10 17 14 21 13 25 

N 176 247 128 303 164 359 

L1 84 119 60 147 78 175 
L2 140 204 100 252 130 300 

L=L1+L2 224 323 160 399 208 475 

I2 2 4 3 6 3 7 

Clustering algorithms Default Subtractive clustering parameters 

− Range of Influence: 0.5 

− Reject ratio: 0.15 

− Squash factor: 1.25 

Accept ratio: 0.5 

M 3 (High, Low, and Medium) 

I1 10 
E1: Average FIS training output error, E2: Average FIS checking output error, E3: Average FIS testing output error, E4: ANFIS error 

at start, E5: ANFIS error at the convergence, R: Number of rules, N: Number of nodes, L1: Number of linear parameters, L2: Number 

of nonlinear parameters, M: Number of inputs MFs, I1: Number of epochs considered, I2: Number of epochs for convergence 
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5. CONCLUSION 

This piece of work attempts to investigate happiness, sadness, and neutral expressive states using an 

efficient soft computing approach. In this process, the ANFIS algorithm has been explored to model the chosen 

expressive states based on a few of the efficient time and frequency-domain utterance level features. Further, 

the ANFIS models are validated in a time and frequency combinational platform for better efficacy. Several 

performance parameters have been computed to test and check the developed models for their efficient 

portrayal of expressive states. It can be inferred that the feature combination indeed provides improved models 

due to the availability of more complementary information. It has witnessed the lowest training, testing, and 

checking RMSE as compared to either the frequency or time-domain feature vectors. Investigation and 

validation of other efficient feature extraction algorithms in combinational and reduction platforms may 

provide new insights into this field.  
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