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 Portfolio selection is among the most challenging processes that have recently 

increased the interest of professionals in the area. The goal of mean-variance 

portfolio selection is to maximize expected return with minimizing risk. The 

Markowitz model was employed to solve the linear portfolio selection 

problem (PSP). However, due to numerous constraints and complexities, the 

problem is so critical that traditional models are insufficient to provide 

efficient solutions. Teaching learning-based optimization (TLBO) is a 

powerful population-based nature-inspired approach to solve optimization 

problems. This article presents a portfolio selection model using the TLBO 

approach to maximize the portfolio's Sharpe ratio. The Sharpe ratio combines 

both expected return and risk. This algorithm models the natural teaching 

process of the classroom with two main phases, viz., teaching and learning. 

Performance analysis has been undertaken to investigate the suitability of 

TLBO based solution approach by comparing it with genetic algorithm (GA) 

and particle swarm optimization (PSO) on the real datasets, Deutscher 

Aktienindex (DAX) 100, Hang Seng 31, standard & poor’s (S&P) 100, 

financial times stock exchange (FTSE) 100, and Nikkei 225. The empirical 

results verify the superiority of the TLBO over GA and PSO. 
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1. INTRODUCTION 

The activities needed to establish and manage a securities portfolio belong to portfolio management. 

It also employs analytical tools and theoretical models of optimal resource distribution. In general, portfolio 

management is known as a critical procedure that intends to make investments more profitable. Stock analysis, 

portfolio analysis, selection, evaluation, and portfolio revision are covered under it; portfolio selection is 

forming a portfolio that generates the best return for a given degree of risk. A portfolio having maximum return 

and minimum risk is called an optimum or efficient portfolio. The process of determining the optimum portfolio 

among various security combinations is called portfolio selection. Portfolio selection is the process of getting 

the proper equilibrium of the expected return and risk of the selected stock combination in the stock market. 

Various combinations of securities will provide different results. Desired objectives must be considered to 

make an optimum portfolio. The basic concept of portfolio management is diversification; the essence of 

diversification is "do not put all the eggs in one basket," which means never invest all your money in the same 

class of securities. Systematic diversification necessitates various parameters for various stocks, including their 

expected return, variance, and covariance between selected stocks' returns. Risk and return will be optimized 

as a result of diversification. Portfolio selection has different constraints such as boundary, budgetary, 

cardinality, liquidity, transaction lot, and transaction cost [1], [2]. 

https://creativecommons.org/licenses/by-sa/4.0/
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In portfolio management, identifying the optimal mix of stocks available for fund deployment is an 

essential job for finance portfolio managers. Markowitz [2] proposed a model for portfolio selection in 1952; 

he said that if two portfolios have an equal expected return, investors should select the one with less risk 

between the two, and if two portfolios have the same risk, then he should go for one with more return. Investor 

rationality is the assumption of modern portfolio theory. A new model was proposed by Sharpe [3] that can 

evaluate a significant number of stocks cheaply; this approach is named the “Single index model.” Grootveld 

and Halarbach [4] studied the differences and similarities between using mean-return and downside risk 

measures as return and risk parameters in portfolio selection and compared them with the mean-variance model. 

Solving such a problem is extremely difficult; many evolutionary approaches were presented to 

resolve the portfolio selection problem (PSP). Li [5] studied the optimal portfolio by genetic algorithm (GA). 

Shahid et al. [6] presented a PSP optimizing the Sharpe ratio by applying the stochastic fractal search (SFS) 

method motivated by the natural growth process based on the principle of the fractal theory; they have also 

applied the SFS method to solve the constrained risk-budgeted portfolio optimization model [7].  

Wang et al. [8] solved the credit portfolio optimization problem with a multiobjective GA model. Adebiyi and 

Ayo [9] solved the extended mean-variance problem by an efficient metaheuristic method of generalized 

differential evolution 3 (GDE 3); this problem has four constraints and the results of this study showed 

improvement when compared with GA, PSO, simulated annealing (SA), and tabu search (TS). Hagströmer and 

Binner [10] solved the full-scale optimization (FSO) asset selection problem by a heuristic technique 

differential evolution; outcomes showed that if investors are sensitive to risk, the proposed approach bettered 

portfolio returns compared to mean-variance (MV) method. 

Kamili and Riffi [11] proposed an optimization method named cat swarm optimization for PSP; this 

method is based on the cat family's behavior featured by observation mode and hunting mode. Kaucic [12] 

integrated risk parity with cardinality constrained portfolio selection model, and a multiobjective PSO 

algorithm solves this issue. Zhang [13] optimized the risk of the financial market with a PSO algorithm.  

Cura [14] presented a heuristic model for portfolio selection employing an artificial bee colony approach 

considering the weekly prices of indexes of different countries and found that the presented approach is superior 

to its peers. Zhao et al. [15] solved the multiobjective cardinality-constrained PSP by PSO. 

The various nature-inspired algorithms can select an optimum portfolio, Moradi et al. [16] presented 

a multiobjective water cycle strategy to resolve the mean-variance PSP, and the proposed algorithm was found 

more effective than other algorithms. Strumberger et al. [17] presented a moth search approach for portfolio 

optimization. Shahid et al. [18] proposed an invasive weed optimization strategy for the risk-budgeted portfolio 

optimization problem by maximizing the Sharpe ratio. Mazumdar et al. [19] proposed grey wolf optimizer 

(GWO) for portfolio formation and risk optimization using Meta heuristic evolutionary optimization. 

Akbay et al. [20] solved the cardinality-constrained PSP with a parallel variable neighborhood search 

approach. Shahid et al. [21] presented a new portfolio selection model by employing gradient-based 

optimization (GBO) to optimize the Sharpe ratio of the constructed portfolio. Shahid et al. [22] employed the 

GBO approach to resolve the PSP; this study's empirical investigation findings support the superiority of the 

suggested approach. 

Some hybrid algorithms are also proposed by combining more than one algorithm to select optimum 

portfolios. Zaheer et al. [23] developed a metaheuristic technique with a PSO algorithm named hybrid particle 

swarm optimization (PSO) to optimize the portfolio, which has to mean return and variance of return as 

selection criteria. Konstantinou et al. [24] presented a hybrid optimization algorithm combining GA and sonar-

inspired optimization approach, and the performance of this algorithm is studied with its contemporary 

approaches. 

In this study, the authors presented a portfolio selection model by maximizing the Sharpe ratio, 

employing a new approach called the teaching-learning based optimization (TLBO) algorithm [25]. TLBO is 

a novel nature-inspired technique motivated by the teaching and learning process of a classroom. The 

contributions of the work are given, 

− To employ the proposed TLBO approach in portfolio selection for optimizing the portfolio's Sharpe ratio. 

Portfolio’s expected return and risk are combined by the Sharpe ratio. Therefore, this is taken as the 

objective parameter to optimize the return and risk jointly. 

− A comparative study has been conducted with the state-of-the-art approaches, namely, GA and PSO, from 

the literature. 

− An empirical investigation has been done on the real benchmark datasets i.e., DAX 100, FTSE 100, Hang 

Seng 31, S&P 100, and Nikkei 225. 

The remaining manuscript is discussed: In section 2, we presented in detail the mathematical 

representation of the PSP and TLBO Algorithm to maximize the Sharpe ratio. Section 3 presents the analysis 

outcomes with a comparative performance analysis. Finally, section 4 concludes the study. 
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2. SOLUTION MODEL 

In this segment, the mathematical representation of the PSP is presented with TLBO based solution 

model. Equations for return, portfolio risk, and Sharpe ratio are explained in section 2.1. Further, TLBO 

algorithm as a solution model has also been discussed in detail in section 2.2. 

 

2.1.  Portfolio selection problem (PSP) 

Portfolio selection is the process of selecting an optimum portfolio. The optimum portfolio is one that 

has an optimized value of the objective parameter (maximum return and minimum risk) at any given level. The 

ith portfolio (𝑃) is designed with N stocks, 𝑆 = { 𝑆1,  𝑆2,  … 𝑆𝑁} with weight set,  𝑊 = { 𝑊1, 𝑊2, … 𝑊𝑁}. 

Respective expected returns of stocks are ℛ = { 𝑅1,  𝑅2, … ,  𝑅𝑁}. The mathematical formulation of expected 

returns and risk can be written as, 

 

𝑅𝑒𝑡𝑢𝑟𝑛𝑃 =  ∑ .𝑁
𝑖=1 𝑊𝑖𝑅𝑖 (1) 

 

𝑅𝑖𝑠𝑘𝑃  =    ∑ .𝑁
𝑖=1 ∑ .𝑁

𝑗=1 𝑊𝑖𝑊𝑗 𝐶𝑉𝑖𝑗 (2) 

 

Now, the objective is to maximize the expected return (𝑅𝑒𝑡𝑢𝑟𝑛𝑃 ) and to minimize the portfolio risk 

(𝑅𝑖𝑠𝑘𝑃). So, the Sharpe ratio (SR) is computed and optimized, which is the ratio of risk-free return to risk of 

the portfolio constructed. By optimizing the Sharpe ratio, both the return and risk are getting optimized. Sharpe 

ratio can be written, 

 

𝑆𝑅 =
𝑅𝑒𝑡𝑢𝑟𝑛𝑃 − 𝑅𝑓

𝑅𝑖𝑠𝑘𝑃 
 (3) 

 

Subject to constraints, 

 
∑ 𝑊𝑖 =  1𝑛

𝑖=1  (4) 

 

0 ≤   𝑊𝑖  ≤  1 (5) 

 

Where Wi is the proportion of funds invested in stock Si, Ri refers to individual stock return. Wj 

represents the proportion of funds invested in Sj, and CVij denotes the covariance between the pair of ith and jth 

stock. Rf refers to risk-free return, considered zero due to an equity-based system. A repair procedure is applied 

to deal with these constraints. The constraints in the problem as described in (4) and (5) are linear, with a 

convex viable region. When the lower or upper boundaries are breached, the respective weights are substituted 

with the value of the lower or upper bounds. A normalization strategy is utilized to manage the budget 

constraints (a sum equal to 1), in which the weight of each stock is divided by the sum of the portfolio's 

aggregate weight. 

 

2.2.  TLBO algorithm 

TLBO [25] is an approach that concentrates on the teacher's influence on the output of students in a 

classroom. The teacher works hard to educate all of the students in the class. The students then communicate 

to change and improve their newly acquired information. When we need to solve an issue, we usually use a 

random optimization method with some parameters that may be fine-tuned to assist us in finding the optimal 

global value as quickly as possible with the least effort and time. Other algorithms require specific algorithm 

factors such as inertia weight and specific coefficient, but the TLBO approach does not demand any algorithm-

specific factors. 

Assume two separate teachers in two different courses are teaching the same subject with the same 

contents to the same competence level students. In this case, we will use a class (Population P) with a specific 

number of students and subjects (decision variables of an optimization method) from which they will learn. 

The value we need to optimize is the outcome of a student in an exam (Fitness). A good teacher improves the 

average of the student's results. Learners also benefit from their interactions with one another, which increases 

their performance. 

A quantitative approach is developed and executed for solving PSP using the teaching-learning 

process, and this results in a new optimization model named TLBO. The best learner is deemed a teacher since 

he or she is seen as the most known individual in society. The teacher appears to be trying to disperse 

knowledge among students, which raises the overall competence of the class and aids learners in receiving 

good grades. Consequently, the teacher increases the class's average according to his abilities, and the 

population's mean value determines the quality of students. 
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TLBO is a population-based approach that progresses to the global answer through candidates of 

solutions. In TLBO, the population refers to a learners’ class; in optimization, the population has distinct 

decision variables; in TLBO, the subjects presented to learners are decision variables; and the learners' outcome 

is regarded as "fitness," as in other population-based optimization approaches. The best solution identified so 

far is deemed a teacher [25]. The teacher phase and learner phase are two parts of the TLBO approach; the first 

part entails learning from a teacher, while the second part entails learning from one another respectively. The 

steps are, 

 

Step 1: Defining the problem and starting its variables 

Initially, the optimization problem started with the following variables; the population size (𝑃𝑛), 

number of generations (𝐺𝑒𝑛𝑚𝑎𝑥), the number of decision variables (N), and their constraints. The problem is 

to maximize Sharpe ratio (SR). Now teaching- learning based optimization algorithm is used to maximize SR 

which is the objective function as explained in (3) for the decision variable (Weights) such that L ≤ Wi ≤ U 

subject to constraints described by (4) to (5). 

 

Step 2:  Selecting a population  

Make a random population considering the size of the population and the number of decision 

variables. The population (Class) size in TLBO refers to the number of students (Learners); in portfolio 

selection, stock combination or portfolios work as learners, whereas the proportion of stocks (Wi) refers to the 

subjects that students are taught. This population is demonstrated; 𝐶𝑙𝑎𝑠𝑠 = { 𝐿1, 𝐿2, 𝐿3, … , 𝐿𝑃𝑛
}, and each 

learner (Lj) has N number of subjects (stocks). In the designed portfolio, each stock has an allotted weight to a 

particular stock (Wi) which is the proportion of the total investment or fund. We have to be optimized the result 

(Sharpe ratio) of the learners (Portfolios). 

 

Step 3: Teacher phase  

In the teacher phase, since a teacher is the most expert in class. He provides information to the whole 

class and attempts to improve the competence level of the class up to his level. For each learner, the mean 

calculation for the kth subject or weight (𝑀𝑘)  is, 

𝑀𝑘= Sum of weights (W𝑘) / Number of weights (N) 

At first, the Sharpe ratio (SRj) of each learner in the class (𝐿𝑗: 𝑗 = 1, 2, . . 𝑃𝑛) has been computed. The 

topper among all learners in the specific class is taken as a teacher (𝑇𝑔) for the gth generation according to the 

(6). Then, the difference mean for each subject is calculated by the (7),  

 

𝑇𝑔 = 𝐿𝑗
max(𝑆𝑅𝑗:𝑗=1,2,..𝑃𝑛)

 (6) 

 

𝐷𝑀𝑘 = 𝑟𝑘  (𝑇𝑔  −  𝑇𝐹 ∗ 𝑀𝑘) (7) 

 

Where Mk is the mean of the respective weights allotted to respective stocks in each portfolio, rk is an 

arbitrary value in the range (0-1), and TF is the teaching factor that determines the mean value to be modified. 

TF will be 1 or 2 calculated as per (8). The value of the current solution is updated by adding the difference 

mean by using (9).  

 

𝑇𝐹 =  𝑟𝑜𝑢𝑛𝑑 (1 +  𝑟𝑎𝑛𝑑 (0, 1)) (8) 

 

 𝐿𝑛𝑒𝑤   =   𝐿𝑜𝑙𝑑  +  𝐷𝑀𝑘 (9) 

 

Where Lnew is a new weight, Lold is the old weight, DMk is the difference mean of the particular 

subjects, and it is calculated as per (7). Now, apply the repairing procedure discussed in section 2.1 to satisfy 

the constraints given in (4) and (5). Accept Lnew if it provides a better value of the Sharpe ratio.  

 

Step 4: Learner phase 

It is a process where learners enhance their knowledge through the interaction between themselves. 

Learners interact with themselves in formal and informal communication. If two learners interact, then we have 

to compare their fitness values. Knowledge transfer will take place from one who has more knowledge to one 

who has less knowledge. A learner (stock) with more fitness value (better Sharpe ratio) is considered more 

knowledgeable. For 𝑖 = 𝑃𝑛 randomly select two learners (Portfolios), LX and LY, with WX and WY weights 

(Subjects), respectively, in portfolios where WX ≠ WY. The learner phase includes the following steps: 
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for each generation 

if SR (LX) > SR (LY), then 

New LX = Old LX + 𝑟𝑘 (LX  – LY)   

else 

  New LX = Old LX + 𝑟𝑘 (LY  – LX)                                              

end if  

end for    

 

where LX and LY ∈ Class, and 𝑟𝑘 is the random number used in difference mean calculation. Again, apply the 

repairing procedure to satisfy the constraints. Then, calculate the fitness value for all randomly selected 

interactions between portfolios (learners). Compare the fitness value (Sharpe ratio) of the learner phase with 

those of the teacher phase and keep only the best fitness value (Sharpe ratio) and their corresponding weights. 

TLBO algorithm’s learner phase and one generation are now complete [25]. 

 

Step 5: Terminating criteria 

If the TLBO process is followed to the maximum number of generations, then stop; if not, start with 

the teacher phase of this approach again. This approach's procedure and mathematical calculation must be done 

again. This will be followed upto the maximum number of iterations. 

 

Algorithm: TLBO 
Input: Initialize N or P (number of learners) and W (number of decision variables or 

subjects offered) 

Output: The teacher Tg 

Algorithm:TLBO ( ) 

Start 

1. Initialize learner’s population, generation (g), 𝐺𝑒𝑛𝑚𝑎𝑥 

2. Repair learners                                   // Satisfy the portfolio cobstraints  

3. Evaluate the fitness value                   // as per (3)                    

4. Find M𝑘 of all weights (subjects) 

5. Find 𝑇𝑔 among all portfolios                                                        

6. while (g ≤ Genmax)                         

7.     for all learners                              ***Teacher phase ****    

8.           Find 𝑇𝐹                                   // Teaching factor as per (8); 
9.           Update all learners                 // according to (9) 

10.     end for     

11.     Repair all learners                         // Satisfy all Portfolio constraints                                                                    

12.     Evaluate fitness value                   // for the new learners;                                  

13.        Accept better learner                                                              

14.        for all learners                           **Learner phase** 

15.            Selection of learners randomly 

16.            Update learners                      // as per Learner phase 

17.        end for 

18.       Repair learners                            // Satisfy the Portfolio Constraints 

19.       Accept new, better learner 

20.       Update  𝑇𝑔 and Mean M𝑘    

21.       g = g+1 

22. end while                                                                

23. End 

 

 

3. RESULTS AND DISCUSSION 

Simulation outcomes of the PSP using the TLBO, PSO, and GA approaches are discussed here. 

TLBO-based solution model is implemented in MATLAB R2016 on an Intel(R) i7-8700 CPU @ 3.20GHz,  

64 GB RAM. For analysis, weekly returns from March 1992 to September 1997 have been taken of different 

benchmark datasets from DATASTREAM, which is shown in Table 1. The variables for the TLBO, PSO, and 

GA for performance analysis are given in Table 2, where Pn represents population size, Genmax refers to 

maximum number of generations, TF is the teaching factor, in PSO W is inertia weight, wdamp is the inertia 

weight damping ratio, C1 and is personal learning coefficient, C2 is global learning coefficient. 

In the analysis, 20 runs were performed to find the optimum values by the presented algorithm, as 

given in Table 2. Afterward, the maximum, minimum, mean, and standard deviation values were calculated 

for all the methods, viz. TLBO, PSO, and GA. The maximum (Max), minimum (Min), mean values (Avg.), 

and standard deviation (Stdeva.) of the Sharpe ratio (SR) of obtained values by various approaches are 

presented in Table 3. The best values of all approaches are highlighted in Table 3. It is clear from Table 3; that 

TLBO outperformed GA and PSO for the average and maximum value of the SR for all benchmark data sets. 

TLBO has the best standard deviation of the SR in Hang Seng 31 and Nikkei 225. 
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Table 1. Datasets information 
Dataset Name Country 

DAX 100 
Hang Seng 31 

Germany 
Hong Kong 

FTSE 100 

S&P 100 

United Kingdom 

United State of America 
Nikkei 225 Japan 

 

 

Table 2. Control parameters of TLBO, PSO, and GA approaches 
Approach Variables Specifications 

Common variables Pn = 100, Genmax= 200 

TLBO 

PSO 

𝑇𝐹 = 1 

W = 0.61, wdamp= 0.65, C1= 1.50, C2= 1.50 

GA Crossover = 0.6, Mutation = 0.4 

 

 

Table 3. Sharpe ratio 
  GA PSO TLBO 

DAX 100 Avg. 0.357915749 0.363599432 0.363679577 

Min 0.3554731 0.363293116 0.362915216 
Max 0.359630455 0.363724892 0.36378147 

Stdeva. 0.001199086 0.000119509 0.000259935 

FTSE 89 Avg. 0.290621643 0.295422191 0.295441564 

Min 0.28838111 0.294592118 0.293517552 

Max 0.292239478 0.2955872 0.295629474 

Stdeva. 0.001199842 0.000243871 0.000480469 
Hang Seng 31 Avg. 0.210439331 0.210441926 0.210441927 

Min 0.210434394 0.210441924 0.210441927 

Max 0.210441434 0.210441927 0.210441927 

Stdeva. 1.62212E-06 6.72608E-10 3.00185E-13 

S&P 98 

 

Avg. 0.311567237 0.319263852 0.319364628 

Min 0.314813385 0.318316026 0.316400852 
Max 0.308486534 0.319534931 0.319658116 

Stdeva. 0.001571972 0.000344387 0.000724699 

Nikkei 225 Avg. 0.079219291 0.120587738 0.136109327 

Min 0.060937539 0.090464204 0.127281168 

Max 0.093606976 0.136277644 0.139262038 

Stdeva. 0.008831239 0.011508149 0.004119606 

 

 

The converging tendency of TLBO, PSO, and GA demonstrate the optimum value of the Sharpe ratio 

for various generations as presented in Figures 1(a)-(e) as shown in Appendix, for DAX 100, FTSE 100, Hang 

Seng 31, S&P 100, Nikkei 225 benchmark datasets, respectively. TLBO has superior convergence features, 

such as convergence efficiency and objective value, as presented for the datasets. The outcomes presented in 

Table 3 and Figures 1(a)-(e) show that the proposed TLBO method outperformed PSO and GA methods for 

the considered PSP. Thus, we can interpret that the presented method contributes significantly to optimum 

portfolio selection. 
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Figure 1. Convergence graph of TLBO, PSO, and GA on (a) DAX 100, (b) FTSE 89, (c) Hang Seng 31, 

(d) S&P 98, and (e) Nikkei 225 

 

 

4. CONCLUSION 

Portfolio selection has long been an important strategy for investors in capital markets. As a result, 

this study has proposed a solution for the PSP that uses a (TLBO) model that is quite effective in other 

disciplines. The goal of the approach is to obtain the highest Sharpe ratio of the portfolio. The proposed TLBO 

approach was developed to identify the best Sharpe ratio for the PSP. A repairing procedure technique is used 

to control constraints. Experimental analysis has been undertaken to evaluate TLBO based solution approach 

by comparing it with GA and PSO on real benchmark datasets. According to an experimental investigation, 

the TLBO solution outcomes are almost superior to the GA and PSO solution results. 
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