
IAES International Journal of Artificial Intelligence (IJ-AI)

Vol. 12, No. 4, December 2023, pp. 1836~1844

ISSN: 2252-8938, DOI: 10.11591/ijai.v12.i4.pp1836-1844  1836

Journal homepage: http://ijai.iaescore.com

Improve malware classifiers performance using cost-sensitive

learning for imbalanced dataset

Ikram Ben Abdel Ouahab, Lotfi Elaachak, Mohammed Bouhorma
Computer Science, Systems and Telecommunication Laboratory (LIST), Faculty of Sciences and Techniques,

University Abdelmalek Essaadi, Tangier, Morocco

Article Info ABSTRACT

Article history:

Received Sep 5, 2022

Revised Jan 21, 2023

Accepted Mar 10, 2023

 In recent times, malware visualization has become very popular for malware

classification in cybersecurity. Existing malware features can easily identify

known malware that have been already detected, but they cannot identify new

and infrequent malwares accurately. Moreover, deep learning algorithms

show their power in term of malware classification topic. However, we found

the use of imbalanced data; the Malimg database which contains 25 malware

families don’t have same or near number of images per class. To address these

issues, this paper proposes an effective malware classifier, based on cost-

sensitive deep learning. When performing classification on imbalanced data,

some classes get less accuracy than others. Cost-sensitive is meant to solve

this issue, however in our case of 25 classes, classical cost-sensitive weights

wasn’t effective is giving equal attention to all classes. The proposed approach

improves the performance of malware classification, and we demonstrate this

improvement using two Convolutional Neural Network models using

functional and subclassing programming techniques, based on loss, accuracy,

recall and precision.

Keywords:

Convolutional neural network

Cost-sensitive

Cybersecurity

Deep learning

Malware classification

This is an open access article under the CC BY-SA license.

Corresponding Author:

Ikram Ben Abdel Ouahab

Computer science, systems and telecommunication laboratory (LIST), Faculty of Sciences and Techniques

University Abdelmalek Essaadi

Tangier, Morocco

Email: ibenabdelouahab@uae.ac.ma

1. INTRODUCTION

Malware is malicious code designed to install covertly on a target system. The malicious intention

could be: destroying data, installing additional malicious programs, exfiltrating data, or encrypting data to get

a ransom [1]. Malware compromise the confidentiality, integrity, and availability of the user’s data. The

landscape of malware is constantly evolving. In the past, malware was typically created to be fast and easily

detectable, often carrying out destructive actions shortly after infecting a system [2], [3]. Older types of

malware had specific procedures for dealing with different types of infections. However, today's malware is

designed to be stealthy and difficult to detect. It spreads slowly over time, gathering information over a longer

period before exfiltrating it. Modern-day malware tends to utilize a single set of procedures, as most attacks

are blended and incorporate multiple methods [4], [5].

In cybersecurity, the use of artificial intelligence (AI) is being necessary [6]–[8]. Many works are

focusing on solving the imbalanced data issue in literature [9], [10]. Since, most algorithms are designed to

work well with balanced databases. Recently, most researcher work with malware visualization technique. This

method deals indirectly with the malicious code. The main idea is to visualize a malicious binary executable

as a grayscale or colored image. These images are presented as arrays in the range of (0, 255). This technique

was initiated the very first time by Nataraj in 2011 [11], where they deliver the Malimg database which contains

https://creativecommons.org/licenses/by-sa/4.0/
mailto:ibenabdelouahab@uae.ac.ma

Int J Artif Intell ISSN: 2252-8938 

Improve malware classifiers performance using cost-sensitive learning … (Ikram Ben Abdel Ouahab)

1837

directly 9,369 malware images in 25 classes. Researchers use many methodologies [12], [13], where the

common thing is the very first step of malware visualization (dealing with images). A malware detection

method was proposed by Di Wu [14], which utilized cascading extreme gradient boosting (XGBoost) and cost-

sensitive techniques to handle unbalanced data. The method used extracted application programming interface

calls (API) from portable executable (PE) files as features, and adopted a three-tier cascading XGBoost

approach for data balancing and model training. Di Wu used a database that contained two classes for malicious

and benign API calls, achieving a high accuracy of 99% with this method. In a separate study, Roland Burks

[15] incorporated generative models to generate synthetic training data for malware detection. Two models

were utilized - the generative adversarial network (GAN) and variational autoencoder (VAE)-with the goal of

improving the performance of the residual network (ResNet-18) classifier. The addition of synthetic malware

samples to the training data resulted in a 2% accuracy improvement for ResNet-18 using VAE, and a 6%

accuracy improvement using GAN.

In this paper, we perform malware classification into 25 malware families. To deal with imbalanced

data we proposed a new approach to calculate weights as part of the cost-sensitive learning application. Then,

we evaluated the proposed approach using two different convolutional neural networks (CNN) models that we

developed from scratch using functional and subclassing Keras API. We compare the proposed weights

approach with classical approach such as weights calculated using sklearn and random weights value. The

overall goal of this work is to increase the performance of the classifier while working with imbalanced data.

Finally, we reach our goal and our proposed weights approach performs better than the other techniques and

better than without using any cost-sensitive learning approach. This manuscript is structures: First, an

introduction to malware classification challenges, and how researchers deal with imbalanced data. Second, the

proposal description. Third, we defined methods and materials used in the whole approach, then,

experimentations and obtained results. Finally, we discuss these results, compare them with others in literature

and conclude with future perspectives.

2. PROPOSAL

This article’s contribution is to propose a weights approach for cost sensitive to deal with imbalanced

data in general and malware image data in particular as shown in Figure 1. We demonstrate that the classical

used weight is not effective in the case of too many classes, as we have 25 classes. Then, we evaluated our

approach using two CNN models; with functional and subclassing APIs. All the experiments have a common

goal to detect and classify malware variants effectively into their corresponding families. Then, we could see

clearly the improvement between classical weights and the proposed weights for 25 classes as a use case, in

term of classification metrics. So, our main contribution includes,

− Proposing a customized weight for Cost sensitive to deal with Malimg imbalanced database.

− Evaluate the cost sensitive approach, using two CNN models and compare with classical approach.

Figure 1. Workflow of the proposed solution

  ISSN: 2252-8938

Int J Artif Intell, Vol. 12, No. 4, December 2023: 1836-1844

1838

3. METHODS

3.1. Image representation of a malware

Malware visualization is an area focused on detecting, classifying, and presenting malware features

in the form of visual cues that can be used to convey more data about a specific malware type. Visualization

techniques can use to display static data, monitor network traffic, or manage networks. In [16], the visualization

technique is used to discover and visualize malware behavior. Recently, researchers focus on the development

of orthogonal methods motivated by signal and image processing to deal with malware variants. They took

advantage of the fact that most malware variants have a similar structure, since new malware are simply a

variant of existing one’s in most cases. So, a malware is treated as digital signals and apply Signal and Image

Processing techniques. These techniques are proved to be effective in malware classification and detection in

many researches [17]. The traditional way to view and edit malware binaries is by using Hex editors, which

show us the byte by byte of the binary file in a hexadecimal format. In [11], authors proposed a new method to

view binary files as grayscale image or signal. A malware binary is read as a vector of 8bits unsigned integers

as shown in Figure 2. These integers are then organizers to be presented as 2D array. So that, it can be viewed

as grayscale image in the range of [0-255]. After converting a malware binary to grayscale image, the image

itself keep a significant structure as described in an older work [18]. The binary fragments of a malware show

special image textures, and that allow as to classify malware images effectively since years.

Figure 2. Malware visualization process

3.2. Database: Malimg

Malimg stands for malware images. It’s a wide used database [19], in malware classification contexts.

Most works cover malware images classification using machine learning and deep learning models. In our

case, we have already large data (Total of 9,369 and 25 families); however, the problem is that these data are

not balanced as shown in Figure 3. Some classes having a lot of samples; more than 1,200, while others having

less than 100 sample. This difference creates an imbalanced dataset. One of the rules in machine learning and

deep learning is to balance out the data set or at least get it close to balance. The main reason for this is to give

equal priority to each class in laymen terms.

Figure 3. Malimg data distribution

3.3. Cost-sensitive learning approach

Methods for addressing class imbalance can be divided into three main categories. Data level

preprocessing: that operate on the training dataset and change its class distribution using resampling

techniques. These methods aim to alter datasets in order to make standard machine learning algorithms work.

Cost-sensitive learning: here we keep the training dataset unchanged and assign different penalties to the

misclassification of samples. Therefore, this will cause the machine learning algorithm to pay more attention

2
9

7
0

2
0

0

1
6

2

1
7

7

1
5

9
1

1
4

6

1
0

6

1
2

7

1
1

6

1
9

8

1
4

2

1
5

8

2
1

4

3
8

4

4
3

1

1
3

6

8
0 1
5

9

1
2

3

1
8

4

1
3

2 4
0

8

9
7 1
2

8

8
0

0

N
°

o
f

sa
m

p
le

s

Malware families

Int J Artif Intell ISSN: 2252-8938 

Improve malware classifiers performance using cost-sensitive learning … (Ikram Ben Abdel Ouahab)

1839

to samples from the minority class. Ensemble learning: combines multiple techniques from one or both

categories (data level preprocessing and/or cost-sensitive learning). Hence, this methos is broadly referred to

as ensemble learning and it can be viewed as a wrapper to other methods [20]–[23].

In general, the goal of a machine learning algorithm is to minimize the cost function of loss function

(1). In cost-sensitive learning, we modify this cost function to take into account that the cost of a false positive

and a false negative may not be the same. We have below the standard cost function for the logistic regression

classifier also known as binary cross entropy loss. In logistic regression, we call the positive class 1 and the

negative class 0. These values are just for convenience, and doesn’t really matter what numerical values we

give to each class since we’re using two different numbers.

cost =
1

n
 ∑ −yi log(ŷi) − (1 − yi) log(1 − ŷi)

n
i=1 (1)

Where:

𝑛 is the size of training samples

𝑦𝑖 is the actual labels

𝑦̂𝑖 is the predicted probability

−𝑦𝑖𝑙𝑜𝑔 (𝑦̂𝑖) present the cost for 𝑦𝑖 = 1 (minority)

(1 − 𝑦𝑖) 𝑙𝑜𝑔 (1 − 𝑦̂𝑖) present the cost for 𝑦𝑖 = 0 (majority)

For the modified cost function (2), we define two class rates w1 and w0 to incorporate the significance

of each class in the cost function. In general, wj is defined as the total number of samples over the number of

classes times the number of samples in each class j.

costmodified =
1

n
 ∑ −𝐰𝟏yi log(ŷi) − 𝐰𝟎(1 − yi) log(1 − ŷi)

n
i=1 (2)

Where,

𝑤𝑗 =
𝑛

𝑐𝑙𝑎𝑠𝑠𝑒𝑠×𝑛𝑗

𝑛 is the total number of samples

𝑐𝑙𝑎𝑠𝑠𝑒𝑠 is the number of classes in the dataset

𝑛𝑗 is the number of samples in class 𝑗

We take as example a binary classification. To see the difference between the original cost and the

modified cost, let’s first look at the case of balanced dataset. In this case, we have 𝑛1 = 𝑛0 =
𝑛

2
. If we plug in

these two values into the previous equation then,

𝑤1 =
𝑛

2×
𝑛

2

= 1

𝑤0 =
𝑛

2×
𝑛

2

= 1
} → 𝒘𝟏 = 𝒘𝟎 (3)

here, w1 and w0 are identical, which means that we are putting the same weight for making mistakes in terms

of false positive and false negative. However, if these two classes are imbalanced, that’s mean the minority

class has for example 10% of total number of samples. And the majority class has 90%. Then we can plug in

these values again into the equation for the weight parameter: 𝑛1 =
𝑛

10
 (𝑚𝑖𝑛𝑜𝑟𝑖𝑡𝑦), and, 𝑛0 =

9𝑛

10
 (𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦).

So,

𝑤1 =
𝑛

2×
𝑛

10

= 5

𝑤0 =
𝑛

2×
9𝑛

10

=
10

18
< 1

} → 𝒘𝟎 < 𝒘𝟏 (4)

We got here that the weight of minority class is greater than the weight of majority class. Based on

the cost function that we have before, that’s mean we are paying more attention to the minority class. Moving

to weights calculation. First, we use the sklearn function in order to compute weights. This function is an

implementation of the previous formulas, so there is no need to redo it. As presented in Table 1, these weights

are tiny in the range of 10-6. After, that we use random values of 1 and 2 for all the 25 classes. These two

weights methods are not effective in our case. That lead us thinking of a new way to compute weights.

  ISSN: 2252-8938

Int J Artif Intell, Vol. 12, No. 4, December 2023: 1836-1844

1840

Table 1. Compute classical weights
Compute weights with sklearn: Calculate weights from compute_sample_weights [24] function of sklearn.

Sklearn_weights = [1.919583075689459e-07, 1.919583075689459e-07, 4.089868507531758e-06, 1.919583075689459e-07,
5.578086324574372e-06, 1.919583075689459e-07, 4.314199846567821e-07, 1.919583075689459e-07, 1.8309806929611888e-06,

5.11477323058941e-06, 1.8309806929611888e-06, 1.9391917413870327e-06, 1.9391917413870327e-06, 1.919583075689459e-07,

4.314199846567821e-07, 1.919583075689459e-07, 1.919583075689459e-07, 1.919583075689459e-07, 6.1790973660723525e-06,
1.919583075689459e-07, 1.919583075689459e-07, 9.455790754281687e-07, 4.585617728202409e-06, 7.716454450658827e-06,

4.314199846567821e-07]

Random_weights = [1.0, 2.0,1.0, 2.0,1.0, 2.0,1.0, 2.0,1.0, 2.0,1.0, 2.0,1.0, 2.0,1.0, 2.0,1.0, 2.0,1.0, 2.0,1.0, 2.0,1.0, 2.0, 1.0]

Above all, we proposed a new approach to calculate weights for multiclass databases. The raison the

previous weights were too small is that we divide by 25 classes based on the weight’s formula. So, we decided

to redistribute classes in order to increase these weights to be more relevant. In our approach, we first arranged

classes ascending, then we divide database into 5 classes: class A, class B, class C, class D and class E. In other

words, class A contains the majority classes and the class E contains the minority 5 classes. After that, we

calculate summary of samples is our new classes, and the percentage of each class over the whole database.

Then, we calculated the new weights. But this time we have only 5 classes, so the formula of weight will be.

In general, we have the simplified formula of weight for class i (5). As planned, our weights respect the ordering

of classing. Based on the new weights given in Table 2, we can say that the model will give more attention

with high weight (class E), and it will give less attention to classes with low weights (class A).

𝐰𝐢 =
𝟏

𝐜𝐥𝐚𝐬𝐬𝐞𝐬 × 𝐍𝐢
 (5)

Where,

𝑐𝑙𝑎𝑠𝑠𝑒𝑠 is the number of classes

𝑁𝑖 is the percentage of class i over database

Table 2. The proposed weights approach
Label Family N° New classes sum % weights

16 Skintrim.N 80 class E 522 5.5715658
𝑤𝐸 =

1

5 × (
5,5715658

100
)

= 3.58965517
22 Wintrim.BX 97
6 Autorun.K 106

8 Agent.FYI 116

18 Lolyda.AA3 123
7 Adialer.C 127 class D 665 7.09787597

𝑤𝐷 =
1

5 × (
7.09787597

100
)

= 2.81774436
23 Swizzor.gen!E 128

20 Swizzor.gen!I 132
15 Malex.gen!J 136

10 Obfuscator.AD 142

5 C2LOP.P 146 class C 802 8.56014516
𝑤𝐶 =

1

5 × (
8,56014516

100
)

= 2.33640898
11 Rbot!gen 158

17 Lolyda.AT 159

2 Dontovo.A 162
3 Dialplatform.B 177

19 Lolyda.AA2 184 class B 1,180 12.5947273
𝑤𝑏 =

1

5 × (
12,5947273

100
)

= 1.5879661
9 Alueron.gen!J 198

1 C2LOP.gen!g 200

12 Lolyda.AA1 214
13 Fakerean 384

21 VB.AT 408 class A 6,200 66.1756858
𝑤𝑎 =

1

5 × (
66,1756858

100
)

= 0.30222581
14 Instantaccess 431
24 Yuner.A 800

4 Allaple.L 1591

0 Allaple.A 2970

3.4. Convolutional neural network

TensorFlow provides 3 methods for building deep learning models: Sequential API, functional API,

and model subclassing. Model subclassing is a high-level API style using pure oriented object programming

concept used rarely. This method gives it user the change to customize everything. In contrary of sequential

and functional APIs, the model subclassing provides a full control over every nuance of the network and the

training process. The first CNN model is composed of different layers types including: Con2D, MaxPooling2D,

ZeroPadding2D, dropout, flatten and dense. The construction is given in Figure 4. We train and evaluate the

Int J Artif Intell ISSN: 2252-8938 

Improve malware classifiers performance using cost-sensitive learning … (Ikram Ben Abdel Ouahab)

1841

model without cost sensitive. Here we use Keras TensorFlow functional API. The model architecture is simple

with known layers as shown in Figure 4. The second model architecture is given in figure below. First, we

build the CNNBlock. Second, we create the ResBlock base on the previous block. Third, we perform the global

malware detection model which contain the previous blocks in addition to other wide known layers as

MaxPooling, flatten, and dense. We train, and evaluate the model without cost sensitive and using default then

the proposed weights. Here, we have more flexibility and options to customized in term of coding as shown in

Figure 5.

Figure 4. CNN model 1 architecture (functional)

Figure 5. Malware detection model using CNN subclassing

3.4. Tools

Powerful hardware is essential for image processing, and in our laboratory, we use the NVIDIA

Quadro T1000 with Max-Q graphics processing unit (GPU) workstation due to its high compute capability of

7.5, which allows us to process images quickly compared to other devices. For deep learning using TensorFlow,

we found that installing compute unified device architecture (CUDA) and CUDA deep neural network

(cuDNN) on the GPU environment was necessary. We also installed additional required Python packages.

While attempting to use a simple Conda command for installation, we encountered numerous errors, leading

us to recommend a manual installation and configuration to save time and ensure successful installation. A

manual installation guide for TensorFlow can be found in reference [25].

4. RESULTS AND DISCUSSION

As a result of using cost sensitive, we demonstrate that effectively cost sensitive technique allows us

to improve the performance of malware classifier. We compare four evaluation metrics using 2 deep learning

models, a functional CNN model and a subclassing CNN model. Then, for both models we used different cost-

sensitive methods: our proposed weights, random weights, sklearn function-based weights, and without cost-

sensitive. Each time, we computed classical evaluation metrics: loss, accuracy, precision and recall. Hence, the

best performances go to the subclassing CNN model with cost sensitive using our proposed weights approach.

  ISSN: 2252-8938

Int J Artif Intell, Vol. 12, No. 4, December 2023: 1836-1844

1842

The loss is 1%, the accuracy is 98.46%, the precision is 98.5%, and the recall is 98.42%. These values retain

to be the best over several experimentation tests. In addition, cost sensitive using out proposed weights

approach gives also best results comparing to the other methods for the function CNN model. So, we proved

the efficacy of this approach in the case of many classes, 25 classes in our case. However, classical weights

calculated from sklearn function are the worst with the first model, and average with the second model. Results

are presented in Figure 6 and Table 3.

Table 3. Results of cost-sensitive implementation
Functional CNN

 Without cost

sensitive

Our proposed weights

approach

Cost sensitive using random

weights

Cost sensitive using computed

weights (sklearn)

Loss 0.1229 0.0885 0.0964 1.5832
Accuracy 0.9790 0.9798 0.9717 0.6355

Precision 0.9814 0.9806 0.9734 0.7022

Recall 0.9764 0.9790 0.9717 0.6231
Subclassing CNN

Loss 0.0114 0.0101 0.0107 0.0079

Accuracy 0.9747 0.9846 0.9769 0.9794
Precision 0.9751 0.9850 0.9769 0.9799

Recall 0.9747 0.9842 0.9769 0.9794

Figure 6. Loss, accuracy, precision, and recall curves using various techniques

So, customized weights are effective with Malimg imbalanced database. In general, we can apply the

same approach to deal with any imbalanced data. The point here is to not use default weights especially, when

we are working with multiclass database, we can rebuild classes to calculate weights. The proposed weights

approach here gives a details calculation for 25 classes. In other context the same idea could be applied. In

literature, most of works using cost-sensitive in different domains and application shows the improvement

while using this technique to deal with imbalanced data [26], [27]. For instance, in [14] the use of cost-sensitive

was implemented for binary classification, and the obtained result reach 99%. Then, for Malimg imbalanced

database, researchers in [15] used GAN which also give acceptable results (90%). In our paper, we proposed

the cost-sensitive weights approach to deal with Malimg imbalance data and the given result is 98%. The most

important thing while doing this is that all classes have same attention and weights, so, even if a class has few

samples, we gave it a good weight and the classifier was able to recognize this class more effectively than

before. The final performance of the overall model without cost-sensitive or any other technique that deal with

imbalance data, could be very high, but when we give in details, we found that the model lack to recognize

effectively or with high accuracy some classes (mainly those with less data) [28], [29].

Int J Artif Intell ISSN: 2252-8938 

Improve malware classifiers performance using cost-sensitive learning … (Ikram Ben Abdel Ouahab)

1843

5. CONCLUSION

Summing up, in this work, we investigate cost-sensitive learning for advancing the classification of

imbalanced data. A new cost-sensitive weights computation was proposed and evaluated using 2 CNN models

along with evaluation metrics. The main goal is to improve the performance of malware classification into their

corresponding families. So, we proposed a new approach for cost sensitive using customized weights approach

to deal with unbalanced database. We order the classes by the number of samples, then we make subclasses

where each new class englobe 5 of the malware classes. Then we compute weights, here the new weights will

be given to all malware families belonging to the new subclass. The idea is to give more attention to classes

having few samples. After that, we compare the proposed weights to the classical computed weights. When

applying the proposed weights, the model performance improved clearly using both CNN models one by one.

As a conclusion, we recommend to use customized weights in the case of many classes e.g. 25 classes, in order

to improve the performance overall, and especially the performance withing minority classes. The best results

in this paper is related to the customized approach of cost sensitive with CNN subclassing model where we

have improved the accuracy with +0.1% (and so with other metrics). As future work, we aim to develop a

framework based one our methods to defend again malwares using malware images and deep learning. Also,

we are looking forward to use GAN as data augmentation technique and compare it to actual findings.

Moreover, we found that the very right way to do CNN models is using subclassing API. It gives the developer

lots of possibilities to customize literally everything. We are looking forward to dive in deeper in this context

and propose a customized layers and functions.

ACKNOWLEDGMENTS

This work was supported by the “Centre National pour la Recherche Scientifique et Technique”,

CNRST, Morocco.

REFERENCES
[1] P. W. Singer and A. Friedman, “Cybersecurity: What everyone needs to know,” Oxford University Press, no. September, pp. 1–7,

2018, [Online]. Available: https://www.researchgate.net/profile/Sushma-Rao-4/publication/354907006_Cybersecurity_

What_Everyone_needs_to_know_Cybersecurity_What_Everyone_needs_to_know/links/6153a90b14d6fd7c0fb7a705/Cybersecur

ity-What-Everyone-needs-to-know-Cybersecurity-What-Everyon.

[2] M. Macas, C. Wu, and W. Fuertes, “A survey on deep learning for cybersecurity: Progress, challenges, and opportunities,” Computer
Networks, vol. 212, 2022, doi: 10.1016/j.comnet.2022.109032.

[3] A. Gaurav, B. B. Gupta, and P. K. Panigrahi, “A comprehensive survey on machine learning approaches for malware detection in

IoT-based enterprise information system,” Enterprise Information Systems, vol. 17, no. 3, 2023,
doi: 10.1080/17517575.2021.2023764.

[4] F. L. Barsha and H. Shahriar, “Mitigation of malware using artificial intelligence techniques,” Security Engineering for Embedded

and Cyber-Physical Systems, pp. 221–234, 2022, doi: 10.1201/9781003278207-13.
[5] M. Ahsan, K. E. Nygard, R. Gomes, M. M. Chowdhury, N. Rifat, and J. F. Connolly, “Cybersecurity threats and their mitigation

approaches using machine learning- A review,” Journal of Cybersecurity and Privacy, vol. 2, no. 3, pp. 527–555, 2022,

doi: 10.3390/jcp2030027.
[6] S. E. Donaldson, S. G. Siegel, C. K. Williams, and A. Aslam, “Enterprise cybersecurity study guide,” Enterprise Cybersecurity

Study Guide, 2018, doi: 10.1007/978-1-4842-3258-3.

[7] S. Mahdavifar and A. A. Ghorbani, “Application of deep learning to cybersecurity: A survey,” Neurocomputing, vol. 347,
pp. 149–176, 2019, doi: 10.1016/j.neucom.2019.02.056.

[8] L. F. Sikos, “AI in cybersecurity,” Springer, 2018, doi: 10.1007/978-3-319-98842-9.

[9] J. H. Lee and K. H. Park, “GAN-based imbalanced data intrusion detection system,” Personal and Ubiquitous Computing, vol. 25,
no. 1, pp. 121–128, 2021, doi: 10.1007/s00779-019-01332-y.

[10] Y. Fu, Y. Du, Z. Cao, Q. Li, and W. Xiang, “A deep learning model for network intrusion detection with imbalanced data,”

Electronics (Switzerland), vol. 11, no. 6, 2022, doi: 10.3390/electronics11060898.
[11] L. Nataraj, S. Karthikeyan, G. Jacob, and B. S. Manjunath, “Malware images: Visualization and automatic classification,” ACM

International Conference Proceeding Series, 2011, doi: 10.1145/2016904.2016908.

[12] I. Obaidat, M. Sridhar, K. M. Pham, and P. H. Phung, “Jadeite: A novel image-behavior-based approach for Java malware detection
using deep learning,” Computers and Security, vol. 113, 2022, doi: 10.1016/j.cose.2021.102547.

[13] T. Sree Lakshmi, M. Govindarajan, and A. Sreenivasulu, “Malware visual resemblance analysis with minimum losses using Siamese

neural networks,” Theoretical Computer Science, vol. 943, pp. 219–229, 2023, doi: 10.1016/j.tcs.2022.07.018.
[14] D. Wu, P. Guo, and P. Wang, “Malware detection based on cascading XGboost and cost sensitive,” Proceedings - 2020 International

Conference on Computer Communication and Network Security, CCNS 2020, pp. 201–205, 2020,

doi: 10.1109/CCNS50731.2020.00051.
[15] R. Burks, K. A. Islam, Y. Lu, and J. Li, “Data augmentation with generative models for improved malware detection: A comparative

study,” 2019 IEEE 10th Annual Ubiquitous Computing, Electronics and Mobile Communication Conference, UEMCON 2019,

pp. 0660–0665, 2019, doi: 10.1109/UEMCON47517.2019.8993085.
[16] K. Han, J. H. Lim, and E. G. Im, “Malware analysis method using visualization of binary files,” Proceedings of the 2013 Research

in Adaptive and Convergent Systems, RACS 2013, pp. 317–321, 2013, doi: 10.1145/2513228.2513294.

[17] I. B. A. Ouahab, M. Bouhorma, L. El Aachak, and A. A. Boudhir, “Towards a new cyberdefense generation: Proposition of an
intelligent cybersecurity framework for malware attacks,” Recent Advances in Computer Science and Communications, vol. 15,

no. 8, pp. 1026–1042, 2020, doi: 10.2174/2666255813999201117093512.
[18] G. Conti et al., “A visual study of primitive binary fragment types,” Black Hat USA, pp. 1–17, 2010.

  ISSN: 2252-8938

Int J Artif Intell, Vol. 12, No. 4, December 2023: 1836-1844

1844

[19] “Malimg (Original),” [Online]. Available: https://www.kaggle.com/dataset/bd61bcb9c0540c6a7453a5547f136402d5c59e

8ad7021c25efbc5f167d26c597.
[20] T. Vanderschueren, T. Verdonck, B. Baesens, and W. Verbeke, “Predict-then-optimize or predict-and-optimize? An empirical

evaluation of cost-sensitive learning strategies,” Information Sciences, vol. 594, pp. 400–415, 2022, doi: 10.1016/j.ins.2022.02.021.

[21] G. Petrides, D. Moldovan, L. Coenen, T. Guns, and W. Verbeke, “Cost-sensitive learning for profit-driven credit scoring,” Journal
of the Operational Research Society, vol. 73, no. 2, pp. 338–350, 2022, doi: 10.1080/01605682.2020.1843975.

[22] Y. Ding, M. Jia, J. Zhuang, and P. Ding, “Deep imbalanced regression using cost-sensitive learning and deep feature transfer for

bearing remaining useful life estimation,” Applied Soft Computing, vol. 127, 2022, doi: 10.1016/j.asoc.2022.109271.
[23] W. Liu, H. Fan, M. Xia, and M. Xia, “A focal-aware cost-sensitive boosted tree for imbalanced credit scoring,” Expert Systems with

Applications, vol. 208, 2022, doi: 10.1016/j.eswa.2022.118158.

[24] Scikit-learn.org, “Sklearn.Utils.Class_Weight.Compute_Sample_Weight,” [Online]. Available: https://scikit-
learn.org/stable/modules/generated/sklearn.utils.class_weight.compute_sample_weight.html?highlight=sample#sklearn.utils.class

_weight.compute_sample_weight.

[25] I. B. A. Ouahab, “This is a step by step guide to install latest version of TensorFlow on GPU,” [Online]. Available:
https://github.com/ikrambenabdelouahab/Manual_tf_GPU.

[26] F. Liu and Q. Qian, “Cost-sensitive variational autoencoding classifier for imbalanced data classification,” Algorithms, vol. 15,

no. 5, 2022, doi: 10.3390/a15050139.
[27] N. Gupta, V. Jindal, and P. Bedi, “CSE-IDS: Using cost-sensitive deep learning and ensemble algorithms to handle class imbalance

in network-based intrusion detection systems,” Computers and Security, vol. 112, 2022, doi: 10.1016/j.cose.2021.102499.

[28] G. Aguiar, B. Krawczyk, and A. Cano, “A survey on learning from imbalanced data streams: taxonomy, challenges, empirical study,
and reproducible experimental framework,” Apr. 2022, [Online]. Available: http://arxiv.org/abs/2204.03719.

[29] S. J. Basha, S. R. Madala, K. Vivek, E. S. Kumar, and T. Ammannamma, “A review on imbalanced data classification techniques,”

2022 International Conference on Advanced Computing Technologies and Applications, ICACTA 2022, 2022,
doi: 10.1109/ICACTA54488.2022.9753392.

BIOGRAPHIES OF AUTHORS

Ikram Ben Abdel Ouahab received her master degree in Computer Systems

and Networks from Faculty of Sciences and Techniques of Tangier, Morocco. She is

currently working toward her PhD degree in LIST Laboratory of FSTT, University

Abdelmalek Essaadi, Tangier, Morocco. Her main research interests include cybersecurity,

malware analysis, artificial intelligence, and IoT. She participated in many international

conferences, and have published more than 10 scientific papers in 3 years with LIST

Laboratory team. In August 2022, she graduates from CPITS (Certification Program in IT

Security) program provided by Trend Micro, an intensive 9 weeks training in cybersecurity

technologies and industry trends, including certification in industry leading solutions for

endpoint, cloud, and network security. She is a fresh AWS (Amazon Web Services) Solution

Architect certified. She can be contacted at email: ibenabdelouahab@uae.ac.ma.

Prof. Dr. Lotfi Elaachak is an Assistant Professor, Doctor at the Faculty of

Sciences and Technologies, University Abdelmalek Essaadi, Tangier. His recent research

and policy interests concentrate broadly in the area of serious game, augmented reality, e-

learning, machine learning/deep learning, and nlp for education. He can be contacted at

email: lelaachak@uae.ac.ma.

Prof. Dr. Mohammed Bouhorma is an experienced academic who has more

than 25 years of teaching and tutoring experience in the areas of Information Security,

Security Protocols, AI, Big Data and Digital Forensics at Abdelmalek Essaadi University.

He received his M.S. and Ph.D. degrees in Electronic and Telecommunications from INPT

in France, He has held a Visiting Professor position at many Universities (France, Spain,

Egypt and Saudi Arabia). His research interests include, Cybersecurity, IoT, Big Data

Analytics, AI, Smart Cities technology and serious games. He is an editorial board member

for over a dozen of international journal and has published more than 100 research papers in

journals and conferences. He can be contacted at email: mbouhorma@uae.ac.ma.

https://orcid.org/0000-0003-0955-6382
https://scholar.google.com/citations?user=NL3ZECQAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=57205403904
https://www.webofscience.com/wos/author/record/2051035
https://orcid.org/0000-0001-8437-5800
https://scholar.google.com/citations?user=c8Pr5P4AAAAJ
https://www.scopus.com/authid/detail.uri?authorId=56600759300
https://www.webofscience.com/wos/author/record/2380249
https://orcid.org/0000-0002-5687-5231
https://scholar.google.com/citations?user=rxohp3QAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=24723763300

