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 White blood cells play a role in maintaining the immune system which 

consists of several types such as neutrophils, lymphocytes, monocytes, 

eosinophils and basophils. MobileNetV2 is one of the pretrained 

convolutional neural network (CNN) models that provides excellent 

advantages and performance in classifying images. In this research was 

conducted to find out how to apply optimization hyperparameters and the 

impact of image processing on white blood cell image classification using 

MobileNetV2, so that it is expected to find a combination of preprocessing 

and combination of hyperparameter values that can produce the highest 

accuracy value. To maximize the classification process, before classifying the 

image, several stages of image preprocessing are carried out, namely 

cropping, grayscale, resizing and augmentation. Hyperparameter tuning was 

carried out for an experiment to improve model performance. The three main 

parameters used in hyperparameter tuning are learning rate, batch size, and 

number of epochs. Performance optimization model performance will be 

measured using accuracy, sensitivity, specificity and using a confusion 

matrix. Based on the experimental results in this study, it shows that the best 

learning rate value is 0.00001, the best batch size value is 32, and the best 

epoch value is 250. 
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1. INTRODUCTION 

White blood cells play a role in maintaining human immunity. The types of white blood cells are 

neutrophils, lymphocytes, monocytes, and eosinophils. Currently, there have been many studies related to 

white blood cell image classification [1]. Each type of white blood cell image has a different shape and 

morphology from texture, shape and size. [2]. Yildirim and Çinar [3] classified white blood cell images into 4 

types, namely eosinophils, lymphocytes, monocytes, and neutrophils using Alexnet, Resnet50, Densenet201 

and GoogleNet. The results of the classification used AlexNet 79.27%, Resnet50 78.74%, DenseNet201 

77.88%, and GoogleNet 62.93% [3], [4] classified white blood cell images into 4 types (lymphocytes, 

monocytes, eosinophils, and neutrophils) using convolutional neural network (CNN), LeNet and AlexNet. The 

classification accuracy results obtained are CNN 75.36%, LeNet 65.21% and AlexNet 80.37% [4]. 

https://creativecommons.org/licenses/by-sa/4.0/
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Throngnumchai et al. [2] classified white blood cell images into 4 types, namely Monocytes, Neutrophils, 

Eosinophils, and Lymphocytes using MobileNetV2 with an accuracy of 93.18% [2]. Based on several previous 

studies, it was shown that the pretrained model of MobileNetV2 has good performance for classifying white 

blood cell images. 

MobileNetV2 can be considered as an appropriate technique to overcome the problem of image 

classification [5]. Dong et al. [5] compared the MobileNetV1, MobileNetV2, and CNN models. Compared to 

the three models used, MobileNetV2 has the highest accuracy value of 89.00%. Tobias et al. [6] concluded 

that the application of CNN, especially the pretrained model of MobileNetV2 with Linear Bottleneck, can 

achieve 90% accuracy [6]. 

MobileNetV2 has a number of hyperparameters that can produce different classification accuracy for 

each of the same tasks with different hyperparameters. Yuningsih and Mustikasari [7] classified anemia based 

on red blood cell morphology using the CNN. In this study, experiments were conducted on hyperparameters. 

The hyperparameters used for the training algorithm are epoch, mini-batch, learning rate. with an accuracy of 

0.9774 [7], [8] conducted a study on the effect of batch size on the performance of CNNs for various datasets. 

Xu [9] using hyperparameter learning rate, batch size, and number of epochs. The experimental results show 

that when the other hyperparameters remain unchanged, the error trained by the network model decreases 

significantly as the learning rate increases, the batch size decreases and the number of epochs accumulates 

within a certain range [9], [10] conducted research on the importance of using hyperparameter tuning. Machine 

learning algorithms such as neural networks involve a number of hyperparameters that must be defined before 

they are executed. Hyperparameters can be determined during training and need to be optimized to achieve 

maximum performance. Determination of hyperparameters can minimize generalization errors. Therefore, the 

results of image classification accuracy using CNN architecture with pretrained MobileNetV2 model can be 

optimized by optimizing hyperparameters. 

To support the model's performance in classifying images, there are several factors that influence in 

terms of data availability, namely the image focused on the object [11], the amount of data processed is 

sufficient [12], the image can be processed with small computations [11], and so on. In a study using medical 

images, [11] detected a disease of narrowing of blood vessels in the brain. This study uses several pre-

processing techniques, namely image scaling, image gray-scaling, and image noise removal using several 

techniques. In medical image processing, image pre-processing is very important so that the extracted image 

does not have noise [2], [11] apply image augmentation and morphology image processing before classifying. 

Efficient classification of white blood cell types requires a lot of information for study. This researcher 

reproduced the data up to 10,000 images. Novoselnik et al. [12] classifying white blood cell images using the 

CNN model where one of the preprocessing techniques used is data augmentation. The available dataset 

contains 738 images of blood samples, the dataset is very unbalanced (50% of the dataset is neutrophils) which 

can result in a biased model. Therefore, augmentation techniques are used, namely random rotation, horizontal 

shift, vertical shift, and horizontal flipping [12]. That results in a higher variance of the training data, which 

prevents the model from overfitting. Throngnumchai et al. [2] perform morphology image preprocessing and 

data augmentation in white blood cell image classification to improve the quality and increase the number of 

white blood cell images. The white blood cell image which initially numbered 410 was augmented to 10,000 

data [2]. Based on the literature study that has been described, the researcher will perform several image 

preprocessing techniques and hyperparameter optimization to improve the performance of the pretrained 

MobileNetV2 model in classifying white blood cell images. 

 

 

2. RESEARCH METHOD 

This section describes the research methods used to classify white blood cell images. The first step is 

to download the data to be used from the Kaggle website, that is the white blood cell image dataset. Then 

perform several stages of image processing to improve image quality. Transfer learning from pre-trained 

MobileNetV2 was carried out and a hyperparameter optimization algorithm was applied to classify white blood 

cell image types. Then evaluate the results of the classification of the type of white blood cell image obtained 

previously. 

The research was conducted using the MobileNetV2 Pretrained Model. MobileNetV2 is a CNN 

architecture that works based on an inverted residual structure, where the input and output of the residual block 

are bottleneck layers as opposed to the traditional residual model, which uses an extended representation in the 

input. The MobileNetV2 architecture consists of 32 fully convolution layers with 32 filters, followed by 19 

residual bottleneck layers. The MobileNetV2 model runs faster for the same accuracy across the latency 

spectrum. Specifically, the new model uses twice less operation, requires 30% fewer parameters and is about 

30-40% faster on Google Pixel phones than the MobileNetV1 model [13]. In MobileNet there is a special layer 

known as depthwise separable convolution and could be senn in Figure 1. This layer plays a role in reducing 
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complexity and parameters so that it will produce a model with a larger size. In the last stage we will apply 

pointwise convolution to reduce the dimensions, the pointwise convolution could be seen in Figure 2. 

 

 

 
 

Figure 1. Depthwise convolution 

 

 

 
 

Figure 2. Pointwise convolution 

 

 

One of the developments from the previous version of MobileNet is the Linear Bottleneck. The linear 

bottleneck function is to remove the nonlinear activation function from the 1×1 pointwise convolution, to 

maintain the features that have been extracted by the convolution, the linear activation function will be used. 

The use of linear bottlenecks aims to ensure the expressiveness of the model. To reduce the loss of information, 

the output of the dimension layer reduction, namely the bottleneck layer is not connected to the non-linear 

activation layer, but is connected to the Linear Bottleneck [14], [15]. 

MobileNetV2 has been used by several researchers to classify images and the classification results 

obtained are good. MobileNetV2 which uses a linear bottleneck can achieve higher accuracy with much less 

processing time making it more efficient. Some of the reasons that support researchers using MobileNetV2 are 

considered from several advantages [16], [17]. 

− MobileNetV2 is able to achieve higher accuracy with much less processing time so that it is more efficient 

than the CNN model. 

− MobileNetV2 has a smaller number of parameters than the original MobileNet so less computational costs 

are required. 

− MobileNetV2 is a very effective feature extractor for image classification, object detection, and 

segmentation. 

− MobileNetV2 is an architecture that optimizes memory consumption. 

The following Figure 3 is the MobileNetV2 architecture which is composed of several layers. Based 

on Figure 3, it can be seen that MobileNetV2 is composed of input layer, functional layer, average pooling, 

and dense layer. The input layer will input 224×224×3. The output of the input layer is an array with a size of 

224×224×3. The output of the input layer will be processed into the functional layer. The functional layer 

consists of several bottlenecks. The number of bottlenecks in MobileNetV2 is 17 blocks. Each bottleneck will 

receive and process a different input size. The output of the functional layer is an array with a size of 7×7×1280. 

Then the results of the Functional layer will be processed on the next layer, namely GlobalAveragePooling2D. 

In GlobalAveragePooling2D will be given a 7×7 filter. The channel given to this layer is None so that the 

output size is 1×1×1280. In the Dense Layer, the four types of white blood cells will be classified. Every 

bottleneck in MobileNetV2 has its constituent components. The following Table 1 are the components that 

make up the bottleneck in MobileNetV2. The research method used to classify white blood cell images can be 

seen in the following Figure 4. 
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Figure 3. The Architecture of MobileNetV2 

 

 

Table 1. The components of bottleneck in MobileNetV2 
No Bottleneck Components 

1 Bottleneck I Depthwise Conv2D 

Batch Normalization 
ReLU 

Conv2D 

Batch Normalization 
2 Bottleneck II, IV, VII, XIV Conv2D 

Batch Normalization 

ReLU 
Zero Padding 

Depthwise Conv2D 

Batch Normalization 
ReLU 

Conv2D 

Batch Normalization 
3 Bottleneck III, V, VI, VIII, IX, X, XI, XII, XIII,  XV, XVI, XVII Conv2D 

Batch Normalization 
ReLU 

Depthwise Conv2D 

Batch Normalization 
ReLU 

Conv2D 

Batch Normalization 

 

 

 
 

Figure 4. The general stages of the system in the research 
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2.1.  Provide white blood cell image dataset 

To train and evaluate MobileNetV2, we have utilized the dataset available from the Kaggle website. 

The dataset stores 367 images consisting of five types of white blood cells, namely basophils, eosinophils, 

lymphocytes, monocytes, and neutrophils. However, in this study, 4 types of white blood cells were used, 

namely eosinophils, lymphocytes, monocytes and neutrophils. Available images have been labeled; each 

picture contains 1-2 pictures of white blood cells. The white blood cell object in the image file is located in a 

non-uniform position. The white blood cell images in the dataset are composed of Red, Green, Blue (RGB) 

color modes. The following Table 2 is an image of a white blood cell obtained from Kaggle that will be used 

in this study. 

 

 

Table 2. Example of white blood cell image on the dataset 
Image Cell Type Image Cell Type 

 

Eosinophils 

 

Monocytes 

 

Lymphocytes 

 

Neutrophils 

 

 

2.2.  Image preprocessing 

Image pre-processing plays an important role in supporting image processing. This is necessary to 

simplify processing because most of the image data is impractical to manipulate. With the implementation of 

image preprocessing some irrelevant image features will be reduced to make processing and analysis tasks 

more effective and efficient. There are several stages applied in the image preprocessing stage in this study, 

namely resizing, cropping, grayscaling, and data augmentation. 

 

2.2.1. Cropping 

Cropping is an image cutting process that is used to remove other components that are not included 

in the object of study. Cropping is done to focus the main image that will be used in image processing. Before 

the image is cropped, the image position (right, left, up, down) will be adjusted according to the desired pixels 

to get an image that focuses on the desired main object. After being analyzed there are several images that 

contain many other components besides the white blood cell object. The purpose of cropping is to focus on the 

main object that you want to extract and eliminate components or noise that are not included in the focus of 

the research object [18], [19]. 

Cropping will be done by using the Numpy and cv2 libraries. At the cropping stage, the bounding box 

will be used by utilizing the region of interest (RoI) function. First, the image will be loaded, then define the 

RoI function and then determine the bounding box of the image to be cropped. Cropping will be carried out on 

all 367 raw white blood cell images by utilizing the RoI function, 367 new white blood cell images will be 

generated as well. This cropping process will be repeated 367 times according to the amount of raw data you 

want to crop using the same configuration. The following Figure 5 is the result of the cropping process.  
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Figure 5. The results of cropping technique on image of white blood cells 

 

 

2.2.2. Grayscaling 

Grayscaling is applied to convert the RGB image color to grayscale. Grayscaling helps to simplify the 

RGB layer of the image containing the image information at each layer and obtain the image in grayscale 

intensity levels. The application of grayscale on white blood cell images will make computational time 

efficient, the storage space required when running the algorithm [11]. The color conversion that will be carried 

out in this study will use the formula [20], 

 

I = 0.299 R + 0.587 G + 0.114 B  

 

the color conversion to grayscale will be done by using the cv2 libraries. This grayscale process will be repeated 

as many as 367 according to the amount of raw data that you want to grayscale using the same configuration. 

The image conversion process begins by loading the previously cropped image as grayscaling input. Then 

convert the image color using a formula. The results of the grayscale image will then be saved. The data used 

as input in the grayscale process is the image of white blood cells resulting from the cropping process that has 

been done previously. The following Figure 6 is the result of the grayscale process.  

 

 

  
 

Figure 6. The results of grayscale technique on image of white blood cells 

 

 

2.2.3. Data augmentation 

The data available on the sources used still amount to 367 files. This amount of data is very less to be 

used in the process of implementing image classification so that the augmentation process is needed to produce 

more data to get more optimal performance [21]. After the preprocessing of cropping and grayscale is done, 

the next step will be the augmentation stage. The augmentation stage carried out in this study will produce 

8,000 train data images, each type 2,000, and test data will be generated as many as 2,000 images, each type 

500. 

Image augmentation in python can be done using the ImageDataGenerator function provided by 

Keras. The techniques used for this augmentation are random horizontal flip, random vertical flip, random 

image rotation, and zooming. The data used as input in the augmentation process is the image of white blood 

cells resulting from the grayscale process that has been done previously. The data will be loaded by defining 

the path of the image directory location and then checking the image size. The size of the image is a 3-

dimensional array (224, 224, 3) so it is necessary to change the size of the image dimensions to a 4-dimensional 

array by adding 1 dimension, this is because the NumpyArrayIterator must have a 4-dimensional array so that 

the result of the image array size becomes (1, 224, 224, 3). The next step is to produce n images. The following 

Figure 7 is the result of the image augmentation process where 1 image is augmented into 5 images. 
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Figure 7. The results of augmentation technique on image of white blood cells 

 

 

2.2.4. Resizing 

Resizing is used to equalize the size of all images that will be used in image processing. Resizing the 

image can speed up the computational process and increase the effectiveness of model training as the image 

size gets smaller [18]. The application of image resizing makes the results of feature extraction consistent. In 

MobileNetV2, the image size usable on the model is larger than 32×32. However, the larger the image size, 

the better the model performance will be. The image size that will be used for this research is 224×224. The 

data used as input in the resizing process is the image of white blood cells resulting from the augmentation 

process that has been done previously. 

Image resizing can be done by using the cv2 and Glob libraries. The program will read the image of 

white blood cells resulting from the augmentation process and resize the image according to the input 

dimensions using the cv2.resize function. In this study, the image size that will be used is 224×224. The 

following Figure 8 is the result of the image resizing. 

 

 

  
 

Figure 8. The results of resize technique on image of white blood cells 

 

 

2.3.  Transfer learning from pretrained model 

The use of transfer learning is aimed at improving the performance of the model that will be used in 

white blood cell image classification. The use of transfer learning makes it easier for researchers not to carry 

out the training process from the beginning. In this study, researchers can use the results of the pre-trained 

model to extract features from all white blood cell images in a predetermined dataset [5], [6]. 

In this study, transfer learning from the Pretrained Model MobileNetV2 will be used to classify white 

blood cell images. Researchers will implement the system by loading MobileNetV2 using Keras tools and the 

Tensorflow backend on the initial layer, then adding a dense layer to classify white blood cell types. At each 

layer on MobileNetV2, the research team used Imagenet as the weight. All weights in the pre-trained model 

(MobileNetV2) have been trained with ImageNet to recognize colors, textures, and other patterns. In addition 
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to using the pretrained CNN model as a feature extractor and retraining the classifier layer that is fully 

connected. Transfer learning can also be done by fine-tuning the weights of the pretrained model [22]. 

In this study, researchers will do fine-tuning to retrain several convolution layers that have been 

determined in number. So that the model will obtain a feature extraction result that is more in line with the data 

set because it is obtained from the results of retraining several convolution layers on fine-tuning. The 

application of fine-tuning can improve the performance of the model in image classification. In fine-tuning the 

model will extract and re-learn the features of the image on the tuned layer to extract specific features that are 

more suitable for the dataset so as to improve the model's performance in classifying white blood cell images 

according to each type. 

 

2.4.  Applying hyperparameter optimization 

At this stage the hyperparameter optimization is carried out using the manual hyperparameter tuning 

method where the hyperparameter values used will be set manually by combining hyperparameters [23]. The 

hyperparameters used in this research are learning rate, batch size and epoch [24]. This research will be 

conducted experimentally. Each experiment will collect the results and rank based on the value of accuracy 

and loss. 

The experiments were carried out sequentially, starting with the learning rate experiment. After 

obtaining the best learning rate value, then the batch size experiment was carried out. After obtaining the best 

batch size value, the epoch experiment was carried out. The experimental learning rate values are 0.1, 0.01, 

0.001, 0.0001, 0.00001, 0.000001, 0.0000001. The values of the batch size that were experimented with were 

32, 64, 128, and 256. The epoch values that were experimented with were 50, 100, 150, 200, 250. 

 

2.5.  Evaluation of experimental results 

After the experiment is carried out, then an evaluation of the model that has been built is then carried 

out. In the evaluation process starting from, the data to be processed is the white blood cell dataset. Data first 

by dividing the data into train data and test data. Each training and testing process will be evaluated to see how 

well the built model classifies the white blood cell image. Evaluation of training and testing is done by 

calculating the accuracy value of each model. The test data will be evaluated using the library confusion matrix 

to calculate the values of accuracy, sensitivity and specificity [25]. 

 

 

3. RESULTS AND DISCUSSIONS  

The results and discussions sections explain the results of the implementation and discuss the results 

obtained from the implementation system. In this part, the implementation of the design that have been made 

will be explained. The things that will be explained in this part are the implementation environment, 

implementation constraints, libraries, image preprocessing implementation, CNN model implementation and 

model evaluation and how the results obtained from each classification process carried out in this study. 

 

3.1.  Preprocessing result 

We have tested the effect of preprocessing on the resulting accuracy value. The test scenario carried 

out is to first test the effect of preprocessing on the accuracy value if the preprocessing technique is only 

resizing and augmentation. After that, testing the effect of preprocessing on the accuracy value if the 

preprocessing technique used is cropping, resizing and augmentation. Based on the Table 3, it can be seen that 

the combination of preprocessing cropping, grayscale, augmentation and resizing has a more optimal accuracy 

value by considering the resulting test value. 

 

 

Table 3. Average accuracy results of the preprocessing experiment 
Experiment Train Validation Test 

Accuracy Loss Accuracy Loss Accuracy Loss 
Resize + Augmentation 0.8670 0.3865 0.8302 0.4566 0.4770 1.6311 

Cropping + Resize + Augmentation 0.9947 0.0243 0.9906 0.0325 0.8470 0.8803 
Grayscale + Resize + Augmentation 0.8662 0.3886 0.8315 0.4517 0.5360 1.5360 

Cropping + Grayscale + Resize + Augmentation 0.95774 0.13882 0.93633 0.17748 0.9665 0.0907 

 

 

In the resize and augmentation experiments, the accuracy value obtained is quite good, but in the test 

results, the accuracy value is very low. In the cropping, resizing and augmentation experiments, the accuracy 

value obtained is good, but in the test results, the accuracy value is quite good. In the grayscale, resize and 

augmentation experiments, the accuracy value obtained is quite good but in the test results, the accuracy value 
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is very low. In the cropping, grayscale, resize and augmentation experiments, the accuracy values obtained are 

good and in the test results, the accuracy values are also good. 

 

3.2.  Hyperparameter optimization 

The selection of the appropriate hyperparameter is one of the things that plays a very important role 

in CNN training and has a major impact on the performance of the model being built. We conducted several 

experiments to select the best hyperparameter values in classifying white blood cell images. The following are 

the results and discussion of hyperparameter optimization experiments on learning rate, batch size, and number 

of epochs. 

 

3.2.1. Learning rate 

Experiments on learning rate are used to determine the learning rate that produces the highest best 

accuracy value. The experimental learning rate value is 0.1, 0.01, 0.001, 0.0001, 0.00001, 0.000001, 

0.0000001. Based on the Table 4, it shows the learning rate value affects the model’s performance in white 

blood classification. 

 

 

Table 4. Average validation accuracy results of the learning rate experiment 
Experiment Learning 

Rate 

Batch 

Size 

Number of 

Epochs 

Average Value of 

Validation Accuracy 

Average Value of 

Validation Loss 

1 0.1 32 60 0.69611 3.26628 

2 0.01 32 60 0.91362 1.79781 

3 0.001 32 60 0.97009 0.41778 
4 0.0001 32 60 0.99037 0.03675 

5 0.00001 32 60 0.99098 0.02607 

6 0.000001 32 60 0.95049 0.15984 
7 0.0000001 32 60 0.53752 1.07380 

 

 

From the experiments, the learning rate with the highest accuracy was obtained at the application of 

learning rate 0.00001 (1×10-5) with an accuracy 0.99098 and a loss value 0.02607. The following Figure 9 is a 

graph of the average accuracy and loss validation values for the learning rate experiments. Based on the graph, 

it can be seen that in the learning rate range of 0.1 - 0.00001, the accuracy value tends to be higher and the loss 

value is getting smaller. This is due to a decrease in the value of the learning rate from 0.1 to 0.00001 which 

results in a better model recognizing data, so that the resulting accuracy increases and the loss decreases. 

 

 

 
 

Figure 9. Graph of average validation accuracy and loss from the learning rate experiment 
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The model training uses a learning rate of 0.001; 0.0001, 0.00001 produces high accuracy and small 

loss. This is because the use of a small learning rate value makes the model speed better at recognizing data. 

However, the use of a small learning rate will require a lot of time in conducting training. Meanwhile, model 

training using learning rates of 0.1 and 0.01 resulted in poor accuracy and significant loss. This is because the 

use of a large learning rate value makes the model speed faster in recognizing data. The use of a large learning 

rate tends to require a short time in conducting training. However, based on experiments on the learning rate, 

after training the model uses a smaller learning rate value of 0.000001 and 0.0000001, the accuracy value 

decreases (smaller) and the loss value increases. Therefore, it can be seen that the model has a good 

performance in conducting training not depending on the size of the learning rate but when the learning rate is 

at the optimal level. 

 

3.2.2. Batch size 

In the batch size experiment, 60 epochs and a learning rate of 0.00001 were used, which is the learning 

rate value with the best accuracy in the previous learning rate experiment. The following are the results  

and discussion of the batch size experiment carried out for the values of 32, 64, 128 and 256. Based on the 

Table 5, it is known that the batch size value affects the model's performance in classifying white blood cell 

images. 

 

 

Table 5. Average validation accuracy results of the batch size experiment 
Experiment Batch 

Size 

Learning 

rate 

Number of 

Epochs 

Average Value of 

Validation Accuracy 

Average Value of 

Validation Loss 

1 32 0.00001 60 0.99097 0.02607 

2 64 0.00001 60 0.98251 0.05420 
3 128 0.00001 60 0.96100 0.13669 

4 256 0.00001 60 0.90955 0.31664 

 

 

The smaller the batch size, the more optimal the accuracy value and the smaller loss value. From the 

experiments that have been carried out, it is known that the most optimal batch size=32 value is with an 

accuracy value of 0.99097and a loss value of 0.02607. The following Figure 10 is a graph of the average 

accuracy and loss validation values for the batch size experiments that have been carried out. Based on the 

experimental batch size chart in Figure 10, it can be seen that the smaller the batch size, the higher the accuracy 

value and the smaller the loss value and vice versa. 

 

 

 
 

Figure 10. Graph of average validation accuracy and loss from the batch size experiment 
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This is because the batch size experiment was carried out using a small learning rate of 0.00001. The 

use of a learning rate value of 0.00001 which is included in the small category, will require a small batch size 

value as well in order to maintain the stability of the model. Therefore, the value of batch size 32 will be more 

optimal than other batch sizes for the use of a learning rate of 0.00001 which is included in the small category. 

Theoretically, batch size affects training time but does not significantly affect test performance, therefore the 

accuracy value in each experiment does not change significantly. 

 

3.2.3. Number of epoch 

To determine the number of epochs that produce the highest best accuracy value, the researcher 

conducted experiments on several epochs, namely 50, 100, 150, 200, 250. In this experiment, the learning rate 

and batch size used were selected based on the learning rate experiment and batch experiment. size with a 

learning rate of 0.00001 and a batch size of 32. Based on the experiments that have been carried out, the 

researchers obtained the average value of the validation accuracy from the number of epoch experiments which 

can be seen in the following Table 6. 

 

 

Table 6. Results of the number of epoch experiment 
Experiment Epoch Learning Rate Batch size Average Value of Validation Accuracy Average Value of Validation Loss 

1 50 0.00001 32 0.98719 0.01547 

2 100 0.00001 32 0.99525 0.00844 
3 150 0.00001 32 0.99749 0.00695 

4 200 0.00001 32 0.99786 0.00488 

5 250 0.00001 32 0.99892 0.00380 

 

 

After conducting several experiments on the number of epochs, namely 50; 100; 150; 200; 250, the 

researcher obtained the highest average validation accuracy value in the experiment with a number of epochs 

of 250. From the graph in Figure 11, it can be seen that the larger the epoch, the higher the accuracy value and 

the smaller the loss value and vice versa. This statement is proven in the experimental results, namely at epoch 

50, the accuracy value is 0.98719 and the loss is 0.01547. As the epoch increases, the accuracy increases and 

the loss decreases. So that the epoch 250 obtained an accuracy value of 0.99892 and a loss value of 0.00380. 

From the experimental results, it can be seen that the number of epochs does not have a significant effect on 

the accuracy and loss values. This is because the epoch hyperparameter represents the number of iterations the 

learning algorithm will work through the entire training dataset. Therefore, the more iterations given, the better 

the accuracy value. 

 

 

 
 

Figure 11. Graph of average validation accuracy and loss from the number of epoch experiment 
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4. EXPERIMENTAL EVALUATION 

After the experiment is done, then testing is carried out on the model that has the best accuracy value. 

The test results will be evaluated using a confusion matrix. The test data used consisted of 2,000 image data, 

namely 500 images of each type of white blood cell tested. 

The evaluation results obtained in each learning rate experiment using a batch size of 32, number of 

epochs 60 and a learning rate value of 0.01-0.000001 resulted in a relatively good test evaluation (testing) 

indicated by a good accuracy value, which is close to 1. In this study, the best average model is obtained from 

the highest average value in all iterations of the fold. Test results to ensure that the model used is good for 

recognizing images with different data sets. 

The results of the evaluation carried out on each batch size experiment, it can be seen that for the 

learning level of 0.00001 and epoch 60, the batch size of 32-256 produces a relatively good accuracy value on 

the evaluation of the test (test). In this study, determining the best model is done by finding the average value 

of accuracy in all fold iterations. The test results are used to ensure that the model used performs well to 

recognize images with different data sets. 

From the epoch experiment, it is known that for a learning rate of 0.00001, batch size of 64, and 

epochs 60-250, the evaluation of testing is relatively good which shows the accuracy is close to 1. by finding 

the average value across the fold iterations. The test results are used to ensure that the model used performs 

well to recognize images with different data sets. 

 

 

5. CONCLUSION 

MobileNetV2 can be optimized by using hyperparameter optimization manually to classify white 

blood cell images by changing each hyperparameter value for each experiment performed. Based on the 

experimental results, it shows that the best learning rate value is 0.00001, the best batch size value is 32, and 

the best epoch value is 250. The use of a relatively small learning rate results in slower model speed in learning, 

but a smaller learning rate allows the model to recognize the data better. The use of a smaller learning rate will 

require a longer learning time. When the learning rate is higher, the speed of the model increases when it 

recognizes data because a large learning rate requires a faster time to train. The smaller the batch size value, 

the higher the accuracy value. A high accuracy value will be directly proportional to the smaller loss value and 

vice versa. Batch size does not really show a significant effect on test performance when choosing the right 

learning rate. The use of a small learning rate will require a small batch size to produce maximum accuracy. 

The greater the epoch value, the higher the accuracy value generated, the greater the accuracy value will result 

in a smaller loss value and vice versa. Based on the experiments that have been carried out, the researcher 

concludes that the improvement in model performance is not only influenced by hyperparameter optimization 

but also by image preprocessing. Hyperparameter optimization is able to improve model performance, but the 

accuracy value obtained is less than optimal. Therefore, researchers perform image preprocessing to improve 

the results of model performance. The data used in this study has been processed in such a way as described in 

the image preprocessing design. 
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