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 Speech dialects refer to linguistic and pronunciation variations in the speech 

of the same language. Automatic dialect classification requires considerable 

acoustic and linguistic differences between different dialect categories of 

speech. This paper proposes a classification model composed of a 

combination of classifiers for the Arabic dialects by utilizing both the 

acoustic and linguistic features of spontaneous speech. The acoustic 

classification comprises of an ensemble of classifiers focusing on different 

frequency ranges within the short-term spectral features, as well as a 

classifier utilizing the ‘i-vector’, whilst the linguistic classifiers use features 

extracted by transformer models pre-trained on large Arabic text datasets. It 

has been shown that the proposed fusion of multiple classifiers achieves a 

classification accuracy of 82.44% for the identification task of five Arabic 

dialects. This represents the highest accuracy reported on the dataset, despite 

the relative simplicity of the proposed model, and has shown its applicability 

and relevance for dialect identification tasks.  
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1. INTRODUCTION 

Speech variations sharing the same linguistic characteristics but differing only in pronunciation 

styles are referred to as accent variations, whereas variations in terms of linguistic as well as pronunciation 

characteristics of spontaneous speech are referred to as dialect variations. Speech processing task for the 

identification of speech dialects has multiple applications, including providing assistance in forensic 

investigation. In the presence of crime-related speech evidence, dialect profiling for forensics can be used to 

track down criminals. Moreover, automatic speech recognition (ASR) models can also be adapted according 

to the identified dialects for performance improvement. Adapting the speech recognition models for 

particular dialects improves the model performance as the universally trained global ASR models 

considerably underperform when faced with dialect variations. An effective method to handle dialect 

variations for ASR is to train multiple models for different dialects and then select the suitable speech 

recognition model after identifying the speaker dialect [1]. 

Dialect identification requires considerable linguistic differences with discrete boundaries between 

dialects and is particularly applicable to the Arabic language as Arabic dialects commonly have distinct 

divisions between the different dialects whilst sharing a common lexical inventory. The most widely considered 

dialects of the Arabic language are Egyptian (EGY), Levantine (LAV), Gulf (GLF), North African (NOR), and 

modern standard Arabic (MSA) [2]. The Egyptian dialect is spoken in urban Egypt. North African is the dialect 

of the North-West African countries: Algeria, Libya, Morocco, and Tunisia. The Gulf dialect prevails in the 
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countries of the Arabian Peninsula: Bahrain, Kuwait, Oman, Yemen, Saudi Arabia, UAE, and Qatar. Levantine 

is the dialect of Syria, Jordan, Palestine, and Lebanon, i.e., the countries of Levant. Finally, Modern Standard 

Arabic is the formal Arabic dialect used in the literature and informal settings. The MSA is also, arguably, 

considered identical to classical Arabic, which is the language of the Quran. 

Classification models for spontaneous speech can utilize both acoustic and linguistic features. Most 

utterance-level acoustic classification models use fix-sized embeddings obtained by temporal modeling of the 

sequence of short-term spectral or cepstral features [3]–[7]. On the other hand, deep learning models pre-

trained on large unlabeled datasets have proved most effective in capturing linguistic representations for 

sentence classification tasks [8]–[10]. 

Multiple speech datasets have been collected for Arabic dialects, and a number of dialect 

classification models have been proposed using these datasets. Ziedan et al. [11], [12] have collected a 

dataset of Arabic spontaneous speech from YouTube videos in three different dialects: the dialects of Levant, 

Egypt, and Arabian Peninsula, and have named the dataset as the spoken Arabic Regional archive (SARA). 

Subsequently, the authors have proposed a dialect classification model using acoustic cepstral features 

together with delta coefficients as input to the universal background Gaussian mixture model (UBM-GMM). 

The language recognition and evaluation 2015 challenge (LRE 2015) has provided a dataset of 20 

dialects from six different languages, including the Arabic language, as part of the language identification 

challenge. Gelly et al. [13] has proposed the fusion of deep neural network (DNN) on the phonotactic and 

lexical features, recurrent neural network (RNN) on the acoustic short-term features, and probabilistic linear 

discriminant analysis (PLDA) on the acoustic i-vector features to classify the different dialects in the LRE 

2015 dataset. The fusion of these different classifiers has been shown to achieve a close-set multi-language 

cost function score of 0.075, an evaluation metric provided by the LRE challenge. 

Ali et al. [14] have collected an Arabic dataset of spontaneous speech from broadcast news in five 

different Arabic dialects: EGY, NOR, GLF, LAV, and MSA. Subsequently, a dialect classification model fusing 

the support vector machine (SVM) outputs of the acoustic i-vectors and singular value decomposition (SVD) of 

lexical term frequency-inverse document frequency (TF-IDF) has been proposed, which demonstrates 60.2% 

classification accuracy on the dataset. Najafian et al. [15] have used another Arabic corpus [16] with the same 

five Arabic dialects to evaluate their dialect classification model. The proposed classification model applies 

convolution neural networks (CNNs) for phoneme sequence, phoneme durations, and phoneme probabilities, 

before fusing the CNN outputs with SVM output for the ‘i-vector’ to achieve 73.27% classification accuracy. 

Ali et al. [17] have presented the Arabic dialect identification (ADI) dataset as part of the 3rd  

multi-genre broadcast (MGB-3) challenge; consisting of the same five Arabic dialects. For benchmark 

results, the authors have applied SVM to i-vectors as well as bigram-word vector space and obtained a 

classification accuracy of 57.20%. Many proposals have utilized the ADI dataset in recent literature for 

various dialect classification techniques. Shon et al. [18] has proposed the siamese network to reduce the 

dimensions of i-vectors by trying to minimize the distance in the reduced dimensions for the same category 

vectors. The SVM classifiers for the lower-dimensional i-vectors, and the vector space of characters and 

phonemes, have been subsequently fused for the classification task. Classification accuracy of 75% has been 

reported on the ADI dataset. Khurana et al. [19] have applied CNN directly to the sequence of embedded 

words, characters, and phonemes as well as the short-term mel frequency cepstral coefficients (MFCC) 

acoustic features before fusing the CNN outputs with the SVM for i-vector, to give a classification accuracy 

of 73%. Shon et al. [20] have also proposed to use CNNs for acoustic features: MFCC, Filter-Bank 

(FBANK), and spectrograms by employing volume and speed perturbation for the augmentation of the input 

speech. The acoustic CNNs are then fused with the CNNs for the character, word, and phoneme sequences, 

as well as the probabilistic linear discriminant analysis (PLDA) of the ‘i-vectors’, to achieve a final fused 

classification accuracy of 81.36%. The same ADI dataset has been used in this paper. 

This paper analyzes the task of classifying Arabic dialects (EGY, LAV, GLF, NOR, and MSA) from 

a spontaneous Arabic speech dataset. A classification model based on the fusion of linguistic and acoustic 

features has been proposed. For the acoustic dialect classification, the method presents a novel ensemble of 

convolutional neural networks (CNNs), applied to different ranges of the filter Bank (FBANK) energies. To 

extract the linguistic features, the method uses pre-trained bidirectional encoder representations from 

transformers (BERT) models [8], without fine-tuning, which is the first time that the BERT model has been 

analyzed for Arabic speech dialect identification tasks without fine-tuning. The proposed model has 

demonstrated the highest accuracy, with a much simpler and resource-efficient model, as compared to the 

existing techniques in recent literature for the same dataset [20]. The next section introduces the proposed 

method and explains the architecture details for both the linguistic and acoustic classifiers, whilst the third 

section presents the results and discussion. The last section concludes the paper and lays out possible future 

directions for this study. 
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2. METHOD 

The proposed method for dialect classification utilizes both acoustic and linguistic speech features. 

The acoustic model ensembles multiple classifiers for different FBANK frequency ranges, in addition to 

simple averaging of classifier outputs for multiple fix-sized time frames of acoustic features segmented from 

the complete utterance. In contrast to the benchmark model [20] for the same acoustic features, the proposed 

model does not employ data augmentation and thereby considerably reduces the system memory 

requirement. Additionally, the neural network architecture is also relatively simpler than the benchmark 

model, with far fewer parameters. For linguistic classification, the proposed method uses two different  

pre-trained BERT models to obtain sentence representations, which are in turn used to train a simple  

feed-forward classifier for dialect prediction. The proposed method does not consider word, character, or 

phone-level linguistic features. Figure 1 illustrates the proposed classification method, which fuses both 

linguistic and acoustic classifications. 

 

 

 
 

Figure 1. The proposed dialect classification model 

 

 

2.1.  Acoustic model 

For the acoustic classification, CNNs are used on the time series of Mel-scaled FBANK energies for 

the speech utterances. The convolution kernel runs across the time axis of the FBANK vector frames. To 

focus on different frequency ranges, the classification uses an ensemble of four CNNs, with each CNN 

considering different bands of the frequency bins. Separate CNNs are trained using the lower, middle, and 

higher ranges of the FBANK energies, as well as using the complete range of the FBANK energies. As such, 

each classifier focuses on accent-specific characteristics from different frequency ranges of the speech signal. 

The outputs of the multiple classifiers focusing on different frequency ranges are then averaged to get the 

ensemble output. 

The sequences of FBANK vectors for each range have been further segmented into multiple, smaller 

frames of fixed time durations, with the average of output predictions from the CNN classifiers for all the 

frames of a speech utterance giving the utterance level classification. Smaller duration frames allow the 

classifier to focus on accent-specific characteristics from a localized time segment. Moreover, segmentation 

also increases the number of samples to train the classifier. 

The speech signals for the proposed model are initially transformed into the log FBANK energies 

with 39 filters applied to the frequency spectrum for 30 milliseconds sliding windows with a hop size of 20 

milliseconds. The FBANK hop length is double the 10ms hop length used by the benchmark model [20] for 

the same FBANK features, resulting in half the length of the feature vector series and thereby reducing the 

system memory requirement. Subsequently, frequency bins of 1-26, 7-32, 13-39, and 1-39 from the FBANK 

energies are used as input for training the four different classifiers. The final predictions for each speech 

utterance are calculated by averaging the classifier outputs for the four different FBANK ranges. 

For each of the CNN inputs, the FBANK feature series is segmented into multiple frames, with the 

length of each frame equal to the length of the smallest utterance within the training set. The fixed length of 

the smallest frames for experiments in this paper was 81 samples, with a speech sampling rate being 16 kHz. 

The frames are extracted with a sliding hop length of almost half of the frame length, i.e. after every 40 

samples, with each feature frame normalized by its mean and variance. During testing, the classification 

outputs of all frames for a particular speech utterance are averaged to get the utterance level classification. 
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The segmented frames are fed into the CNN classifiers for dialect classification. Each CNN consists of 

two 1 dimensional (1D) convolutional layers, with the convolutions running across the time axis of feature frames. 

The two 1D convolutional layers have 256, and 512 filters and kernel sizes 4 and 2, respectively. The stride length 

for both the convolutional layers is one. Each convolutional layer is followed by rectified linear unit (ReLU) 

activation and max-pooling from two samples. The two convolutional layers are followed by a global average 

pooling layer, which collapses the time axis into the 512 filters from the 2nd convolutional layer. Output from the 

global average pooling is fed to a dense, fully connected layer with 256 units and ReLU activations. The dense 

layer is then connected to the output layer for classification with five softmax units corresponding to the five 

dialects to be classified. The model is trained with Adamax optimizer [21], with training stopped when the training 

error does not reduce over 1 epoch. Generally, the employed CNN architecture has far fewer parameters than the 

benchmark FBANK model [20], making it more resource-efficient. 

i-vectors computed in [14] has also been used to aid the classification. The 400-dimensional i-

vectors are fed to a feed-forward neural network for the dialect classification task, with the feed-forward 

neural network consisting of a single hidden layer with 192 units, ReLU activations, and batch normalization, 

followed by the softmax output layer with 5 units corresponding to the five dialects to be classified. Similar 

to the CNN employed for the FBANK features, the training uses an Adamax optimizer, with early stopping if 

training error stops reducing over 1 epoch. 

 

2.2.  Linguistic model 

Linguistic classification is based on sentence-level embeddings obtained using the two different  

pre-trained transformer models for the Arabic language: QARIB-base [22] and AraBERTv0.2-base [23]. 

Both the models use the base BERT architecture [8] and have been trained on different Arabic datasets. As 

such, the models capture different linguistic feature representations of the sentences. The models consist of 

12 encoder blocks with 12 self-attention heads followed by hidden layers of size 768, with the base model 

having a total of 110 million parameters and allowing a maximum sequence length of 512 for a sentence. 

Each Bert model has a particular tokenizer that segments the sentences to obtain a numeric embedding for 

each segment by considering its vocabulary index and position in the sentence. A classification (CLS) token 

is added at the start of each sentence for sentence-level embedding. 

A mix of formal and informal Arabic datasets has been utilized by the QARIB model for its  

pre-training. The formal data was extracted from news websites and movie subtitles, whereas the informal 

data comprises tweets extracted using Twitter streaming application programming interface (API) with the 

language filter set to Arabic. The pre-training dataset comprises a total of 420 million tweets and 180 million 

sentences, resulting in 14 billion tokens and a vocabulary size of 64k. The model has been pre-trained by the 

unsupervised task of predicting masked words, with 15% of the words masked for prediction during  

pre-training. The next sentence prediction has not been considered for pre-training the QARIB model as the 

shorter length of the tweets somehow makes the sentences less correlated to each other. On the other hand, 

the AraBERT model has been pre-trained for both masked word prediction and next sentence prediction tasks 

on Arabic texts, which have been collected from Wikipedia and news websites. Similar to the pre-training of 

the QARIB model, 15% of the words have been masked for prediction during the masked word prediction 

training. Fine-tuning the BERT models for the Arabic dialect identification task has been experimented with 

but has not shown performance improvement and hence, has not been implemented in this paper. 

Arabic sentences are first tokenized using the relevant tokenizer for the particular transformer model, 

such that out-of-vocabulary words are segmented down to sub-words or alphabets, which are available in the 

vocabulary for the particular model. The tokens for the sentences from the training as well as test partitions are 

transformed into a 768-dimensional representation in the last hidden layer of the transformer model. Since the 

first CLS token represents the sentence, the transformer output for only the first token is retained as the 

representation or features for the sentence-level dialect classification. Extracted transformer features from the 

training and test sets using both the QARIB and AraBERT models are used to train two separate, supervised 

feed-forward neural network classifiers for the dialect classification task. Both feed-forward neural networks 

have a single hidden layer of 192 units and linear activations followed by a Softmax output layer. Adamax 

optimizer has been used, with training stopped when optimization error stops decreasing. 

 

2.3.  Fusion system 

The final result is obtained by simple averaging of the outputs from the four different classifiers: one for 

the FBANK features, the second for i-vector, the third for AraBERT based linguistic representation of sentences, 

and the fourth for the QARIB sentence representations, as shown in Figure 1. The final class prediction for each 

speech utterance is taken as the class with the maximum probability value in the averaged output. 
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2.4.  Dataset 

To analyze the performance of the proposed fusion method, the Arabic dialect identification (ADI) 

dataset [17] has been used. The dataset had been compiled from audio recordings of Al-Jazeera programs, 

and it contains a mix of spontaneous and scripted speech, with the samples belonging to one of the five main 

Arabic dialects: EGY, NOR, GLF, LAV, or MSA. Table 1 gives the number of sentence samples for each of 

the dialect categories in the training and test sets. The partitions named as ‘training’ and ‘development’ from 

the original dataset [17] have been merged to constitute the extended training set for experiments in related 

works [19], [20] as well as for this paper. 

 

 

Table 1. Sentence samples in the ADI dataset 
Dialect Training Testing 

EGY 3391 302 

GLF 3008 250 
LAV 3181 334 

MSA 2464 262 

NOR 3305 344 
Total 15349 1492 

 

 

For the linguistic features, sequences of words from transcripts corresponding to speech utterances 

have been used. Transcripts for the ADI dataset is available at an online repository [24], with the transcripts 

generated using an Arabic speech-to-text translation model trained on a separate dataset from the MGB-2 

challenge [25]. Similarly, the i-vectors for the speech utterances have also been obtained from the online 

repository [24]. The i-vectors have been extracted by a model trained on another speech dataset [14]. On the 

other hand, the FBANK features have been computed for this paper using the available audio files at the links 

provided in the repository [24]. 

 

 

3. RESULTS AND DISCUSSION 

Classification performance has been analyzed in terms of classification accuracy by individual 

classifiers as well as the overall fusion model. Table 2 shows classification accuracies by the CNN classifiers 

for the different FBANK ranges, as well as the overall accuracy of the ensemble of these CNN classifiers. 

Amongst the different individual classifiers, CNN with inputs covering the complete range of FBANK filters 

gives the highest accuracy of 59.58%. This is followed by CNN with inputs covering FBANK ranges of 1-26, 

7-32, and 13-39, with accuracies of 57.98%, 55.43%, and 53.82%, respectively. The classification accuracy 

of the ensemble of these CNNs is 64.54%, which is considerably higher than the accuracy for each of the 

individual CNNs. This indicates that focusing separately on the smaller ranges of FBANK allows the capture 

of complementary information, which, when combined, gives an overall improvement in results. 

 

 

Table 2. Classification accuracy by CNNs for different FBANK ranges 
Features Accuracy % 

FBANK 1_39 59.58 

FBANK 1_26 57.98 

FBANK 13_39 55.43 

FBANK 7_32 53.82 

Ensemble 64.54 

 

 

Table 3 indicates the classification accuracies of the different classifiers using the different acoustic 

and linguistic features, as well as the accuracies obtained by fusing these different classifiers. The  

feed-forward DNN using the ‘i-vectors’ achieves the highest individual accuracy of 70.17%. The fusion of 

the two classification models utilizing acoustic features: FBANK and i-vector, is referred to as acoustic 

fusion and is shown to give 74.8% accuracy. For the classification by linguistic features, the DNN utilizing 

transformed features from the pre-trained QARIB and AraBERT transformers give classification accuracies 

of 61.93% and 66.62%, respectively. Fine-tuning the pre-trained transformer models on the ADI training 

dataset has not demonstrated an improvement in classification accuracy, and hence, only results obtained 

from pre-trained QARIB and AraBERT without fine-tuning have been reported. Classification accuracy by 

fusing classification models which utilize linguistic features is 68.63%. Fusing all the four classification 

models via simple averaging gives an overall classification accuracy of 82.44%. The higher classification 

accuracy from the fusion of the classification models, in contrast to the accuracies of the individual 
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classifiers, indicate that the different features used capture complementary information. Subsequently, 

combining the outputs from these different classification models result in higher overall accuracy. 

Table 4 compares the classification accuracy of the proposed fusion system with the classification 

accuracies of other fusion methods on the same ADI dataset. It can be seen that the proposed fusion model gives 

the best accuracy of 82.44% on the ADI dataset. This is an improvement of 1.08% over the fusion method given 

in [20], despite the proposed method having a simpler architecture and far fewer parameters. The proposed 

models in [26] and [15] also have much larger CNN architectures and have reported final fusion accuracies of 

79.76% and 73.27%, respectively, which are considerably lower than the proposed model. 

 

 

Table 3. Classification accuracy for linguistic and acoustic features 
Features Accuracy % 

'QARIB' 61.93 

'AraBERT' 66.62 
'FUSION_LINGUISTIC' 68.63 

'FBANK' 64.54 

'IVEC' 70.17 
'FUSION_ACOUSTIC' 74.80 

'FUSION_ALL' 82.44 

 

 

Table 4. Classification accuracy comparison for ADI dataset 
Proposal Accuracy % 

Khurana et al. [19] 73.00 

Shon et al. [18] 75.00 

Najafian et al. [15] 73.27 
Bulut et al. [26] 79.76 

Shon et al. [20] 81.36 

The proposed model 82.44 

 

 

Figure 2 illustrates the f-score values achieved by the four individual classifiers, the fusion of 

classifiers utilizing the linguistic and acoustic features, as well as the fusion of all the classifiers over the five 

Arabic dialects. F-score gives the harmonic mean of precision and recall, where precision is defined as the 

ratio of true predictions to total predictions, whilst recall is defined as the ratio of true predictions to the total 

number of test samples for each class. It can be seen that the fusions of classification models utilizing either 

the acoustic or linguistic features result in higher f-score values as compared to the f-score values of the 

individual classification models, for all Arabic dialects, with the exception of classification models utilizing 

linguistic features for MSA. Subsequently, the overall fusion of classification models utilizing both the 

acoustic and linguistic features gives the highest f-score value for all the Arabic dialects. 

 

 

 
 

Figure 2. Class specific f-scores for different classifiers 

 

 

4. CONCLUSION 

Dialect classification requires both acoustic and linguistic differences in the different dialects. This 

paper proposes a dialect classification model based on the fusion of different acoustic and linguistic features-
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based classification models. The acoustic classification utilizes a novel ensemble of CNN classifiers focusing 

on different ranges in the FBANK energies. It has been shown that the ensemble of smaller FBANK range 

CNNs achieves considerably higher accuracy as compared to a single complete range CNN. For the linguistic 

classification, two different transformer models, pre-trained on different Arabic datasets, have been used 

without any fine-tuning to extract complementary input features for dialect classification. The proposed fused 

model has been demonstrated on a widely-used Arabic dialects dataset. The higher performance metric 

scores by the fusion systems as compared to the individual classification models confirms that the proposed 

model is capable of extracting complementary information to differentiate the different dialects. Accuracy by 

fusing the linguistic as well as acoustic-based classification models is obtained at 82.44%, which represents 

the highest reported accuracy on the ADI dataset. This demonstrates the applicability of the proposed method 

for the dialect identification task. In the future, different speech datasets shall be considered to study the 

applicability of the model on different datasets. 
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