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 Several studies have shown that an ensemble classifier's effectiveness is 

directly correlated with the diversity of its members. However, the algorithms 

used to build the base learners are one of the issues encountered when using a 

stacking ensemble. Given the number of options, choosing the best ones might 

be challenging. In this study, we selected some of the most extensively applied 

supervised machine learning algorithms and performed a performance 

evaluation in terms of well-known metrics and validation methods using two 

internet of things (IoT) intrusion detection datasets, namely network-based 

anomaly internet of things (N-BaIoT) and internet of things intrusion 

detection dataset (IoTID20). Friedman and Dunn's tests are used to 

statistically examine the significant differences between the classifier groups. 

The goal of this study is to encourage security researchers to develop an 

intrusion detection system (IDS) using ensemble learning and to propose an 

appropriate method for selecting diverse base classifiers for a stacking-type 

ensemble. The performance results indicate that adaptive boosting, and 

gradient boosting (GB), gradient boosting machines (GBM), light gradient 

boosting machines (LGBM), extreme gradient boosting (XGB) and deep 

neural network (DNN) classifiers exhibit better trade-off between the 

performance parameters and classification time making them ideal choices for 

developing anomaly-based IDSs. 
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1. INTRODUCTION 

Businesses, manufacturing sectors, and financial institutions are all becoming more and more reliant 

on technology. The risk of cyberattacks is therefore extremely high. Therefore, protecting these devices is one 

of the main issues facing researchers today [1]. Intrusion detection is a topic that is the subject of extensive 

research globally [2], [3]. Based on the mechanism used for detection, intrusion detection systems (IDSs) are 

divided into three classes: signature, anomaly, and specification-based. This is better explained with Figure 1 

which depicts an intrusion detection system classified by detection strategy, deployment, architecture, and 

detection behaviour or responses. 

Anomaly-based IDS [4] is preferable to signature-based and specification-based IDS due to its ability 

to detect novel threats. The problems of misclassification of intrusions in intrusion detection systems can be 

solved by a supervised learning algorithm [5]. Many supervised machines learning methods, including 

individual classifiers and ensemble classifiers, have been used to develop anomaly detection systems. Even 

while combining several classifiers has helped machine learning research develop over the past decade, selecting 

the appropriate ones to combine can be challenging, especially when employing an ensemble of the stacking type. 

https://creativecommons.org/licenses/by-sa/4.0/
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Figure 1. Taxonomy of IDS 

 

 

It is necessary to compare the performances of the best machine learning (ML) classifiers in ML 

studies. This is a major challenge, especially when compared across various datasets [6]. An algorithm could 

perform well on one dataset while failing to get the same results on another. This can be due to the existence 

of outliers, feature distribution, or algorithm properties. As a result, comparing several algorithms to one 

another becomes rather challenging. 

Several studies on the performance evaluation of ML classifiers, particularly in network attack 

detection, have been conducted. Subbiah et al. [5] presented a novel framework for intrusion detection that is 

enabled by Boruta feature selection with grid search random forest (BFS-GSRF) algorithm. The proposed work 

was evaluated on the knowledge discovery and data mining (NSL-KDD) dataset and its performance were 

compared to linear discriminant analysis (LDA) and classification and regression tree (CART). According to 

the results obtained in their study, the proposed BFS-GSRF outperforms LDA, CART and other existing 

algorithms with an accuracy of 99% in detecting attacks. Studies in [7] investigated the comparative study of 

several ML methods used in IDS for a variety of applications such as big data, fog computing, internet of things 

(IoT), smart cities, and 5G networks. Furthermore, they classify intrusions using classifiers such as CART, 

LDA, and RF, and implemented on the knowledge discovery and data mining tools competition (KDD-

CUP’99) dataset, and their efficiency was measured and compared to recent researches. Zaman and Lung [8] 

used ensemble methods, fuzzy c-means, nave bayes, radial basis function and support vector machine (SVM) 

to build an IDS using the Kyoto 2006+ dataset. They obtained promising results in terms of accuracy with 

ensemble methods reaching 96.72%. 

A gradient boosted machine (GBM) is a suggested detection engine for an anomaly-based IDS by [9] 

using various datasets which are general packet radio service (GPRS), NSL-KDD and University of New South 

Wales network-based attacks (UNSW-NB15), the proposed IDS's performance is assessed with hold-out and 

cross-fold techniques, and the optimal GBM parameters are obtained using grid search. The proposed method 

outperformed fuzzy classifiers and tree-based ensembles in terms of all the metrics considered. Kilincer et al. 

[10] conducted a thorough literature review in 2021 to compare the performance of SVM, k-nearest neighbors 

and decision tree (DT). The communications security establishment and the canadian institute for cybersecurity 

intrusion detection evaluation dataset (CSE-CIC-IDS2018), UNSW-NB15, information security centre of 

excellence intrusion detection evaluation dataset (ISCX-2012), NSL-KDD, and the cyber intrusion detection 

system dataset 001 (CIDDS-001) datasets were all used for the comparative analysis. Except for the UNSW-

NB15 dataset, the study found that the accuracy of the models varied from 95% to 100%. DT consistently 

outperformed all other implemented models, irrespective of dataset. The ability to detect unknown threats is 

also a concern when evaluating the performance of the IDS. Hindy et al. [11] studied the effectiveness of ML-

based IDS in detecting unknown attacks in 2020. The study proposed an intrusion detection system (IDS) that 

could detect zero-day threats with high recall rates while having a low false positive rate. In addition, to 

compare with the proposed model, they implemented a one-class SVM. The canadian institute of cybersecurity 

intrusion detection evaluation dataset (CICIDS2017) and the NSL-KDD dataset were used for model training 

and evaluation in this study. To achieve the zero-day attack detection setting, only normal traffic was used 

when training the model, and all attack samples were used to simulate zero-day attacks. The study found that 

both models had a low false positive rate when it came to detecting zero-day attacks. Pranto et al. [12] 

demonstrated a method to classify NSL-KDD dataset as normal or malicious using several machine learning 

techniques such as k-nearest neighbor, decision tree, Naȉve Bayes, logistic regression, random forest, and their 

ensemble approach. They obtained a highest accuracy of 99.5% with a 0.6% false alarm rate. Making a choice 
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about which algorithm is superior to others is therefore difficult. Statistical validation of the performance 

outcomes is required to address this problem. 

The performance of ML classifiers for the design of an IDS is evaluated in this work. The accuracy, 

precision, recall, and f-score of classifiers such as logistic regression (LR), stochastic gradient descent classifier 

(SGDC), deep neural network (DNN), random forest (RF), adaptive boosting (AB), extreme gradient boosting 

(XGB), gradient boosting machine (GBM), and extra tree classifier (ETC), are all measured. All classifiers, 

excluding DNN, have their hyper-parameters tuned via random search [13]. Using well-known statistical tests, 

the major differences between classifiers are statistically examined. Our major contributions are summarized. 

i) Using well-known validation methods, the performance of various ML classifiers on the network-based 

anomaly internet of things (N-BaIoT) and internet of things Intrusion detection dataset (IoTID20) datasets is 

evaluated; ii) Statistical evaluation of performance results are carried out with the widely used Friedman and 

Dunn's post-hoc tests. The significance of classifier was conducted with Friedman’s test and the Dunn's test 

was used for pairwise comparison between the ML classifiers; iii) Classifiers that exhibit better trade-off 

between the metrics considered and evaluation time are recommended for the design of IoT-specific anomaly-

based IDS. The remainder of the paper is structured by briefly discussing the materials and methods adopted 

in our work in section 2, section 3 discusses the experimental setup and classifier performance. Additionally, 

it discussed the statistical evaluations that were carried out. The paper is summarized and concluded in section 4. 

 

 

2. MATERIALS AND METHODS 

This section describes the materials and methods used in this study. Firstly, we discussed about the 

learning techniques and their characteristics. Then, we discussed about the datasets that was used, experimental 

tools and their configurations. 

 

2.1.  Classification algorithms 

The classification algorithms used in our study are described briefly in this section. To start with, we 

provided a general definition of ML classifiers and DL concepts. Furthermore, it introduces Ensemble learning 

approaches and explains how they can be used to boost classification performance. 

 

2.1.1. Logistic regression 

Logistic regression is a supervised machine learning technique that works with categorical dependent 

variables. Its aim is to assign data to the correct classes based on their correlation. Logistic regression equation 

can be derived by substituting (1) in (2). Where 𝛽0 , 𝛽1 … . 𝛽𝑛  are the regression parameters, 𝑥1, 𝑥2 … . 𝑥𝑛 are 

values of the predictors. 

 

𝑝 =
1

1+𝑒−𝑦 (1) 

 

ln(
𝑝

1−𝑝
) =  𝛽0 + 𝛽1𝑥1 + ⋯ 𝛽𝑛𝑥𝑛 (2) 

 

2.1.2. Stochastic gradient descent  

They are a variation of gradient descent methods that address computational time issues. Stochastic 

gradient descent (SGD) computes the gradient of a selected subset of observations rather than all of them. A 

few machine learning libraries may cause confusion between the two concepts. In scikit-learn, for example, a 

model called SGD classifier may prompt a user to believe that SGD is a classifier. That is, however, an SGD-

optimized linear classifier. 

 

2.1.3. Deep learning 

Deep learning enables scalable training of nonlinear models on huge datasets and succeeds at 

generalizing new examples when the input data is complex and has high dimensionality [14]. Multiple-layered 

artificial neural networks (ANN) are used for the learning process. Let’s assume that (𝑥1 and 𝑥2) are the input 

vector, and the neuron's output is given by, 

 

𝑦 = 𝜎(𝑥1𝑤1 + 𝑥2𝑤2 + 𝑏) (3) 

 

where y denotes the output, 𝜎 = activation function, 𝑤1 and 𝑤2 denote connection. Weights, and 𝑏 denotes 

bias. An activation function's role is to introduce nonlinearity and enable the model to learn complex nonlinear 

functions.  
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2.1.4. Extreme gradient boosting (XGBoost) 

Extreme gradient boosting (XGBoost) is a boosting method that is part of the ensemble-based 

approach that uses decision trees to build a model. Chen and Guestrin first presented the XGBoost algorithm 

at the association for computing machinery (ACM) special interest group on knowledge discovery and data 

mining (SIGKDD) conference in 2016, and it has since had a significant impact on the machine learning 

community globally, from winning Kaggle contests to solving significant problems [15]. XGBoost algorithm 

performs best with medium to small dataset size and it is approximately 10 times quicker than the existing 

techniques on a single platform, removing time consumption issues, particularly during network data pre-

processing. 

 

2.1.5. Light gradient boosting machines (LGBM) 

LGBM is a decision tree-based high-performance gradient boosting system. LGBM filters samples 

for finding divided values using gradient-based one-sided sampling (GOSS). It can be used for classification, 

ranking, and several other machine learning tasks. Based on the best fit, LGBM splits the tree leaf_wise. This 

approach can significantly reduce loss more than other boosting techniques. 

 

2.1.6. Gradient boosting machine (GBM) 

GBM is a part of the "ensembles" method family that attempt to enhance how well decision trees 

perform [16]. It sequentially aggregates weak classifiers and allows them to optimise any differential loss 

function to produce a robust prediction model. This is similar to other boosting techniques. In order to reduce 

prediction errors, each current learner (Tree) is dependent on the predictions of earlier learners. 

 

2.1.7. Extremely randomized tree (ET) 

This classifier is occasionally referred to as extra trees classifier (ETC) [17]. It is a tree induction 

approach that can be used for supervised classification and regression. It creates a group of DTs that haven't 

been pruned. One of the essential steps in ETC is to select the features and the cut-point at random, without 

respect to the dependent variable. At each tree node, this process is repeated by choosing one or more attributes 

to use in making the best decision. 

 

2.1.8. Random forest (RF) 

Random forest is a group of trees which make predictions individually on a particular input 𝑥𝑖𝑛 [18]. 

Each predictor is based on a random group of variables which are taken from the same distribution 

independently. The basic idea behind RF is that if you use more predictors, you might be able to make more 

accurate predictions and avoid the problem of overfitting. In RF, each tree grows to a certain size without being 

pruned. When a lot of trees are formed, they make predictions by voting for the most popular class at input 𝑥𝑖𝑛. 

 

2.1.9. Adaptive boosting  

Adaptive booting is an adaptable meta-estimator that learns initial training weights from the original 

dataset [19]. These weights are used to feed more instances into the classifier based on the ones that were 

misclassified. The subsequent classifiers modify the weights of instances that have been classified, i.e., 

complex cases. By boosting weak learners, adaptive boosting improves the performance of learning algorithms 

and enables the final model to converge to strong learners. In (4) represents a boosting approach in which x is 

equal to an input object and 𝑐𝑝 is equal to a weak learner. 

 

𝐶𝑃(𝑥) = ∑ 𝑐𝑝
𝑃
𝑝=1 (𝑥). (4) 

 

2.2.  Datasets 

Dataset availability is important in the domain of intrusion detection systems because ML problems 

are heavily reliant on data. Additionally, the quality of the datasets available is also important because the 

higher the data quality, the better the algorithms perform. In this study, we’ve chosen two groups of some of 

the most extensively applied and popular supervised machine learning algorithms and performed a performance 

evaluation in terms of well-known metrics and validation methods using two internet of things (IoT) intrusion 

detection datasets, namely N-BaIoT and IoTID20. 

 

2.2.1. N-BaIoT dataset 

The N-BaIoT dataset was developed in 2018 in order to address the limitations of freely accessible 

botnet datasets, specifically for IoT. The IoT sensor traffic was collected in a local network using Wireshark 

in the central switch and infected by genuine botnets from two families, namely mirai and bashlite, which are 

two of the most common IoT-based botnets and have already shown their malicious abilities [20], [21]. The 
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N-BaIoT dataset includes files that each have 115 independent features designed statistically that is derived 

from the raw network packet (pcap) files as well as a class label. All 115 features are self-explanatory. The 

class instance occurrence in the N-BaIoT dataset is shown in Table 1. 

 

 

Table 1. NBaIoT category label distribution 
Attack type No of samples 

Benign 13,113 

Mirai 101,409 

Gafgyt 115,307 

 

 

2.2.2. IoTID20 dataset 

IoTID20 dataset is a new dataset proposed by authors in [22] and can be assessed in [23]. IoTID20 

dataset is originally created by implementing two basic smart home devices namely the SKT NUGU (NU100) 

and the EZVIZ Wi-Fi camera (C2C Mini O Plus 1080P) connected to a smart home wi-fi-router. All other 

devices involved such as laptops, tablets, and smartphones are connected to the same wireless network. The 

SKT NGU and EZVIZ Wi-Fi camera are IoT victim devices and all other devices in the testbed are the attacking 

devices. The number of normal and attack instances in IoTID20 dataset are described in Table 2. 
 

 

Table 2. IoTID20 category label distribution 
Class label No of instances 

Benign 40,073 

Denial of service attack 59,391 

Mirai 415,677 
Man in the middle attack 35,377 

Scan 75,265 

 

 

2.3.  Performance metrics 

The performance of the classifiers is evaluated on the test set of the experimental dataset using metrics 

such as accuracy, precision, recall and 𝐹𝑚𝑒𝑎𝑠𝑢𝑟𝑒 . Accuracy is defined as the ratio of correctly predicted classes, 

precision is the proportion of positive instances predicted that are actually positive, recall, also referred to as 

the sensitivity or true positive rate (TPR) or attack detection rate (in intrusion detection problems), is the 

proportion of actual positive instances that are accurately predicted as positive, 𝐹𝑚𝑒𝑎𝑠𝑢𝑟𝑒  is the harmonic mean 

of the precision and the recall, it is mostly used when comparing models. The mathematical expressions for 

computing the metrics are given in (5)-(8), 

 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (5) 

 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (6) 

 

𝑟𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃𝑅 = 𝐷𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (7) 

 

 𝐹𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 2 ×
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
 (8) 

 

 

3. EXPERIMENTAL SETUP, RESULTS, AND DISCUSSION 

3.1.  Experimental setup 

The algorithms used to generate the pool of classifiers for this experiment are implemented in Jupyter 

notebook version 6.0.3 of the Anaconda platform with Python 3, Keras, and TensorFlow using the automatic 

machine learning (AutoML) framework. To produce the best-performing models, it utilizes grid search and 

model parameter tuning during the classifier generation stage. The random grid search was implemented in the 

scikit-learn package using Python 3. We utilized the technique proposed in [24] to handle class imbalance 

problems in the datasets. To determine how well these classifiers performed overall, we ran repeated 

experiments using hold-out and k-fold cross-validation methods. 

To create a train and test set for hold-out validation, we divided the sample dataset into a 67:33 ratio 

(67% training instances and 33% testing instances). Similarly, the value of k for k-fold cross-validation is 
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considered to be 10. All performance results given in this section are the weighted average of outputs from 10 

iterations of every repeated validation approach to avoid bias. The process flow of the methodology is 

illustrated in Figure 2. The classifier evaluation time is measured during the testing phase (It is the time 

measured from when the classification process starts until the classification process stops). Using the following 

command,  

 

start_time = time.time()  

 

y_pred = clf.predict(X_test)  

 

 

 
 

Figure 2. Process flow of the methodology 

 

 

3.2.    Results and discussion 

3.2.1. Performance 

The hyper-tuned parameter configurations of the various boosting algorithms are generated from 

randomized grid search described in the previous sections are first presented in this section. The best hyper-

parameters for GBM are 500 estimators, maximum depth of the construction the tree is 3, a learning rate of 0.1 

and 100 samples is the minimum required for split. The hyper-tuned parameters for ETC are 1,788 estimators, 

maximum value of tree depth is 10, minimum split for sample size is 5, log102 is the number of features used 

for best split and gini with no bootstrapping is the criterion considered. AB's optimal parameters are 50 
estimators and a learning rate of 0.1. XGBoost’s best hyperparameters are 600 estimators, gini of 0.3, maximum 

depth of 6, minumim child weight of 5, colsample_bytree of 0.6 and learning rate of 0.05. 

Additionally, the parameters of the deep neural network were adjusted by passing a new training set 

into the network. The two network parameters that were tuned in this study is the learning rate and the number 

of iterations (epochs). As candidate parameters for the model, a range of learning rate which are [0.10, 0.010, 

0.0010, and 0.00010] were selected. Measurement standard is the model's Fmeasure on the verification set. The 

appropriate epoch numbers are obtained during the training of the model as the loss function value 

changes. It is concluded that training should end when peak performance is achieved. Otherwise, the 

performance value could deteriorate. 0.001 was selected as the learning rate. Similarly, the number of 

epochs was set to 50 because the network stabilizes at the 50th iteration. Other parameters of the DNN 

model are two hidden layers: layer one has 64 neurons and layer two has 32 neurons. Rectified linear activation 

function (ReLu) is the activation function utilized at the hidden layers, while sigmoid was employed the output 

layer. The optimization algorithm used is adaptive moment optimizer (Adam) [25]. Although parameter tuning 

was done using only NbaIoT dataset, we used same network parameters for both datasets. The model 

configurations are given in the Table 3. 
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Table 3. Description of DNN algorithm’s hyperparameters 
Description Value 

Hidden layers 2 

Neurons at hidden at neurons 1 & 2 respectively 64, 32 

Output 1 

Learning rate 0.001 

Activation functions ReLu, Sigmoid 
Optimization Adam optimizer 

Loss Function Binary cross entropy 

Epoch 50 

 

 

Secondly, the study examined the hold-out validation performance results. Figures 3 and 4 illustrates 

the results for the two experiments conducted for hold-out validation on N-BaIoT and IoTID20 datasets 

respectively. The mean value of the performance achieved with hold-out validation across both datasets is 

shown in Figure 5 which illustrates that classifier outperform each other in terms of various metrics. 

 

 

  
 

Figure 3. Results on N-BaIoT dataset 

 

Figure 4. Results on IoTID20 dataset 

 

 

For the ensemble algorithms, LGBM performs better than other ensembles in terms of accuracy 

(97.31%), while AB performs better in terms of precision (97.18%), GBM outperforms the others in terms of 

recall (97.82%), and F-measure outperforms the others (97.49%). Furthermore, when only single classifiers 

are considered, DNN outperforms LR and SGDC in terms of all metrics considered (96.42%, 96.23%, 96.25%, 

and 96.24%) for accuracy, precision, recall, and F-measure, respectively. SGDC, on the other hand, achieves 

the lowest values in terms of accuracy, precision, recall, and Fmeasure, with 87.84%, 88.21%, 89.99%, and 

89.09%, respectively, among all classifiers considered. 

 

 

 
 

Figure 5. The average of each classifier's metrics with hold-out validation 
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Figures 6 and 7 illustrates the results for the experiments conducted for 10f validation on N-BaIoT 

and IoTID20 datasets respectively. The average values of all notable metrics obtained with 10f validation 

across both datasets are shown in Figure 8. In comparison to classifier performances with hold-out validation, 

all utilized classifiers perform better with 10f validation. This is a result of sampling's effect, which selects 

random occurrences and results in unsatisfactory classification. 

The adoption of 10f validation rather than hold-out validation is encouraged by this phenomenon. The 

10f validation results indicate that each classifier has a promising level of performance. DNN, on the other 

hand, outperforms all other methods in terms of accuracy (98.76%). AB has the highest average precision 

measure (98.30%). With recall and F-measure scores of 98.83% and 98.53%, respectively, GBM performs 

best. Like the hold-out validation, SGDC still yields the lowest results when all metrics are taken into 

consideration. 

 

 

  
 

Figure 6. 10f Results on N-BaIoT dataset 

 

Figure 7. 10f Results on IoTID20 dataset 

 

 

 
 

Figure 8. The average of each classifier's metrics with 10-fold validation 

 

 

Classifier test times are listed in Table 4. Given that resource utilization is a key criterion for devices 

with limited resources, it is crucial to take a classifier's evaluation time into consideration because it assists in 

creating a suitable trade-off between a classifier's classification performance and resource utilization. On the 

N-BaIoT and IoTID20 datasets respectively, LGBM training takes about 11 and 3 seconds. For both datasets, 

DNN requires the most time for model evaluation. The test time of each classifier is generated solely for 10-

fold validation. 

 

 

Table 4. Classifier test time (Seconds) across both datasets 
Dataset LR SGDC RF LGBM XGB ETC GBM AB DNN 

N-BaIoT 50 43 14 11 27 15 20 29 106 

IoTID20 37 28 8 3 9 7 13 17 97 
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3.2.2. Statistical assessment 

The Friedman and Dunn post-hoc test is used to statistically analyze the performance results. The 

Friedman test can help determine whether one classifier performs better than the others by a significant margin 

across all datasets. If one of these classifiers is discovered, the pairwise multiple comparisons of Dunn's post-

hoc test are performed to identify where that difference lies. Friedman test was chosen primarily because it is 

the most potent statistical test when more than five entities are being compared [26]. It is essential to undertake 

post-hoc tests, as proposed in [6] to identify differences in performance between classifiers. 

Due to the application of IoT in delicate industries like healthcare and financial institutions, a very 

low significance level set at (𝛼 =0.05) was chosen for this experiment. It is crucial to consider even the smallest 

difference in classifier performance. The null hypothesis (𝐻0) and the alternative hypothesis (𝐻𝐴) are described 

in Table 2. The values of d and k for the numbers of datasets and classifiers considered in this experimental 

study is 2 and 9 respectively. For 𝛼 = {0.05} the values of degree of freedom f1 and f2 is 8, obtained from the 

formula, f1 = k − 1 and f2 = (d − 1) (k − 1). The summary of the test hypothesis and the friedmann’s test 

statistics for hold-out validation are given in Tables 5 and 6 respectively.  

 

 

Table 5. Hypothesis test summary 
H0 HA Test sig. 

level 

Asymp. 

Sig 

Decision 

The distributions of the 
classifiers are the same. 

At least one Classifier 
different significantly from 

the rest. 

Related-Samples Friedman's 
Two-Way Analysis of 

Variance by Ranks 

0.05 Displayed Reject the null 
hypothesis. 

 

 

Table 6. Friedmann’s test statistics for holdout validation 
Metrics Score 

N 4 

Chi-square 28.533 
df 8 

Asymp. Sig .000 

 

 

According to the results presented in Tables 5 and 6, the classifiers' performance is significantly 

different across all of the evaluated assessment metrics. As a result, it may be said that at least one classifier 

performs much better than the others. Therefore, the alternative hypothesis 𝐻𝐴 is accepted, whereas the null 

hypothesis 𝐻0 is rejected. The mean ranks of each classifier used for hold-out validation are shown in the  

Table 7. 

 

 

Table 7. Mean ranks of Friedman test for hold-out validation 
Classifier Ranks 

LR 2.00 

SGDC 1.00 

RF 3.00 

LGBM 8.00 

XGB 6.50 
ETC 6.00 

GBM 8.00 

AB 6.50 

DNN 4.00 

 

 

Dunn's post-hoc test is used to determine which classifier pairs perform significantly differently. All 

pairwise comparisons' p values are checked against the considered significance level of 0.05 for this purpose. 

Assuming that C1 and C2 are the test classifiers, the results of Dunn's test (Pairwise comparison) for hold-out 

validation are shown in Table 8. 

According to Table 8, the classifiers for SGDC and LR vs (ETC, XGB, AB, LGBM, and GBM) are 

statistically and significantly different (p < 0.05), whereas the classifiers for RF-LGBM, RF-GBM, DNN-

LGBM, and DNN-GBM pairs are less significant. Please take note that the pairs of classifiers that are red-

shaded are not significantly different. Tables 9 and 10 shows the friedman test statistics and the mean ranks of 

each classifier respectively for 10-fold validation results. 
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Table 8. Dunn’s pairwise comparison for hold-out validation 
𝐶1 − 𝐶2 P-value Decision 𝐶1 − 𝐶2 P-value Decision 

SGDC-LR 0.606 A LR-DNN 0.302 A 

SGDC-RF 0.302 A LR-ETC 0.039 R 

SGDC-DNN 0.121 A LR-XGB 0.020 R 
SGDC-ETC 0.010 R LR-AB 0.020 R 

SGDC-XGB 0.005 R LR-LGBM 0.002 R 

SGDC-AB 0.005 R LR-GBM 0.002 R 

SGDC-LGBM 0.000 R RF-DNN 0.606 A 

SGDC-GBM 0.000 R RF-ETC 0.121 A 
LR-RF 0.606 A RF-XGB 0.071 A 

RF-AB 0.071 A ETC-AB 0.796 A 

RF-LGBM 0.010 R ETC-LGBM 0.302 A 

RF-GBM 0.010 R ETC-GBM 0.302 A 

DNN-ETC 0.302 A XGB-LGBM 0.439 A 
DNN-XGB 0.197 A AB-LGBM 0.439 A 

DNN-AB 0.197 A XGB-AB 1.000 A 

DNN-LGBM 0.039 R XGB-GBM 0.439 A 

DNN-GBM 0.039 R AB-GBM 0.439 A 

ETC-XGB 0.796 A LGBM-GBM 1.000 A 

 
 

Table 9. Friedmann’s test statistics for 10-fold validation 
Metrics Score 

N 4 
Chi-square 25.133 

df 8 

Asymp. Sig .001 

 

 

Table 10. Mean ranks of Friedman test for 10-fold validation 
Classifier Ranks 

LR 2.00 

SGDC 1.00 

RF 3.00 
LGBM 7.25 

XGB 7.00 

ETC 5.50 

GBM 7.75 

AB 6.00 
DNN 5.50 

 
 

To determine which classifier performs statistically differently for 10-fold validation, Dunn's post-

hoc test is used. The outcomes are displayed in Table 11. The classifiers are statistically and significantly 

different (p < 0.05) when comparing the classifiers SGDC to DNN, ETC, XGB, AB, LGBM and GBM, LR to 

XGB, AB, LGBM and GBM, and RF-LGBM, RF-GBM, and RF-XGB pairs. Please note the red-shaded to be 

the non-significantly different pair of classifiers for 10-fold validation. 

 
 

Table 11. Dunn’s pairwise comparison for 10-fold validation 
𝐶1 − 𝐶2 P-value DECISION 𝐶1 − 𝐶2 P-value DECISION 

SGDC-LR 0.606 A LR-DNN 0.071 A 

SGDC-RF 0.302 A LR-ETC 0.071 A 

SGDC-DNN 0.020 R LR-XGB 0.010 R 

SGDC-ETC 0.020 R LR-AB 0.039 R 

SGDC-XGB 0.002 R LR-LGBM 0.007 R 
SGDC-AB 0.010 R LR-GBM 0.003 R 

SGDC-LGBM 0.001 R RF-DNN 0.197 A 

SGDC-GBM 0.000 R RF-ETC 0.197 A 

LR-RF 0.606 A RF-XGB 0.039 R 

RF-AB 0.121 A ETC-AB 0.796 A 
RF-LGBM 0.028 R ETC-LGBM 0.366 A 

RF-GBM 0.014 R ETC-GBM 0.245 A 

DNN-ETC 1.000 A XGB-LGBM 0.897 A 

DNN-XGB 0.439 A AB-LGBM 0.519 A 

DNN-AB 0.796 A XGB-AB 1.000 A 
DNN-LGBM 0.366 A XGB-GBM 0.699 A 

DNN-GBM 0.245 A AB-GBM 0.366 A 
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ETC-XGB 0.439 A LGBM-GBM 0.796 A 

4. SUMMARY AND CONCLUSION 

An investigation into anomaly-based IDS techniques that can be used to secure IoT was conducted in 

this research. The evaluation of the effectiveness of supervised machine learning algorithms such as RF, AB, 

LGBM, GBM, ETC, XGB, SGDC, LR, and DNN are given special attention. The best parameters for the 

classifiers are found using a random search approach. Benchmark datasets like NbaIoT and IoTID20 are used 

to evaluate classifier performance. Accuracy, precision, recall, and Fmeasure are used to evaluate the 

effectiveness of each classifier. The training time of all classifiers is measured during the training phase. 

Additionally, Friedman and Dunn's post-hoc tests are used in the statistical analysis of performance 

measurements to detect significant differences amongst classifiers. 

The performance results and statistical analysis indicates that DNN, Adaptive Boosting, and Gradient 

Boosting Machines (GBM, LGBM, XGB) classifiers exhibit the appropriate trade-off between performance 

metrics and evaluation time of 106s, 29s, 20s, 11s and 27s respectively for N-BaIoT dataset, and 97s, 17s, 13s, 

3s and 9s respectively for IoTID20 dataset. These results made them the ideal choices for developing anomaly-

based IDS specifically for IoT. The design of an IDS based on a stacking ensemble technique will be envisaged 

for future work, employing the suitable classifiers chosen in this study for preventing attacks in IoT networks.  
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