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ABSTRACT

Conventional methods of circuit simulation such as full-wave electromagnetic field
solvers can be very slow. Machine learning is an emerging technology in modelling,
simulation, optimization, and design that present attractive alternatives to the conven-
tional methodologies because they can be trained with a small amount of data, and then
used to perform fast circuit predictions within the same design space. In this paper, we
present applications of machine learning techniques for the modelling of transmission
lines from their impulse reponses. The standard multilayer perceptron (MLP) neural
network and the gaussian process (GP) regression techniques are demonstrated, and
both models are successfully implemented to model the impulse responses of trans-
mission lines with great accuracies. We show that the GP outperforms the MLP in
terms of prediction accuracies and that the GP is more data efficient than the MLP.
This is beneficial considering that each training sample is expensive, making the GP a
good candidate for the task, compared to the more popular MLP.
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1. INTRODUCTION
Advanced modelling and simulation techniques are crucial in analysing the electrical performances

of complex electronic packages and other interconnections in order to achieve a first-pass design success [1].
However, computer-aided design (CAD) tools of high-speed circuit components typically require the develop-
ment of specific codes or algorithms for the simulation process. These conventional ways to simulate circuits
are computationally expensive and time consuming, which slows down the design and development process, in
addition to requiring specific knowledge and engineering know-hows to run and produce the required results.
On top of that, the simulation of the design has to be repeated whenever there are any changes to the simulation
parameters, which further adds to the development time.

Machine learning algorithms are efficient alternatives to conventional methods such as full-wave elec-
tromagnetic (EM) simulators, which are very accurate but computationally very slow. While analytical methods
and empirical models are much faster, they are not easy to obtain for new devices, and their accuracy and range
could be limited. In the past two decades, machine learning models have been used in the modelling of various
radio frequency (RF) and microwave structures such as antennas and microwave filters [2]-[3]. A recent re-
view of machine learning techniques on RF and microwave circuit modelling can be found in [4]. The working
principle of machine learning models is that they can be trained to learn the behaviour of individual circuit com-
ponents, and then the trained model can be used for high-level design. Normally, the machine learning models
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are much faster during the predicting than training. Thus, the circuit designers will often spend a considerable
amount of time to train the machine learning models. However, machine learning models often require a large
amount of data to be properly trained, and the generation of these data can be very time consuming, especially
if they are generated using full-wave EM simulators, physics-based models, or measurements [5]. Thus, it is
beneficial to have machine learning models which can be easily and quickly trained with a limited amount of
data.

The artificial neural network (ANN) is one of the most popular machine learning methods for circuit
modelling. Besides being used for various microwave and RF circuit modelling [6]-[7], the ANN has also
been used for various signal integrity modelling tasks involving high-speed channels [8], [9]. These include
modelling of crosstalk [10], eye diagram [11]-[12], and transient responses [13], [14]. The Gaussian process
regression (GP) model is another alternative to the ANN. Similar to the ANN, the GP has also been used for
the modelling of various microwave structures such as the microwave filter [15], microwave antenna [16], and
microwave amplifier [17]. Inspired by the success in the implementations of ANN and GP in the field of circuit
modelling, this paper aims to demonstrate the use of GP and multilayer perceptron (MLP) neural networks
for the modelling of transmission lines based on their impulse responses. Section 1 of this paper describes
the introduction and motivation behind this work. Section 2 describes the fundamentals of MLP and GP.
Section 3 describes the time domain modelling of trainsmission lines, and the motivation behind the utilization
of the impulse response. The training process of the machine learning models are described in section 4, and
the results and discussions are presented in section 5. Finally, conclusions and future works are proffered in
section 6.

2. MULTILAYER PERCEPTRON AND GAUSSIAN PROCESS
The MLP is a popular neural network structure consisting of multiple connected network layers [18].

Figure 1 shows an MLP neural network with L layers. It consists of an input layer, an output layer, and one or
more hidden layers, where each layer hasNi neurons. The MLP receives the inputs, x = {x1, x2, x3, . . . , xN1

}
and generate the outputs, y = {y1, y2, y3, . . . , yNL}. For many modelling problems, a simple MLP neural
network consisting of a single hidden layer is sufficient, thanks to the basic characteristics of neural networks,
which include inherent parallelism, fault tolerance, and learning and self-adaptability, which allows them to
model even highly non-linear functions [19]. Sometimes, two hidden layers will be used for more complicated
problems. Multiple papers have been published on MLP neural network applications, for example on fingerprint
image region of interest segmentation [20], high-electron-mobility transistor (HEMT) modelling [21], and
the modelling of terminal electrical noise in semiconductor lasers [22]. The basic feature of an ANN is the
capability to learn the patterns of the input samples to predict the system behaviour. Once the network has
learnt the input-output relationships, it can then produce outputs for other inputs, even those that were not
encountered during training. In machine learning terms, this is known as generalization [23]. In the context
of ANN, the term learning refers to the method of varying the weights of the connecting links between the
neurons of the network to match to the desired output. Further background on the MLP can be found in [24].
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Figure 1. The MLP structure

The GP is a stochastic modelling methodology that is often used for modelling spatially correlated
measurements. GP can be succinctly described by
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f(x) ∼ GP (µ(x), k (x,x′)) (1)

where the function is completely defined by its mean function µ(x) and covariance function k (x,x′) [25]. In
other words, GP can be viewed as a generalization of the multivariate Gaussian probability distribution where
the evaluations for the inputs x1, . . . ,xN are normally distributed as f (x1)

...
f (xN )

 ∼ N (µ,K) (2)

in which

µ =

 µ (x1)
...

µ (xN )

 (3)

and

k =

 k (x1,x1) · · · k (x1,xN )
...

...
k (xN ,x1) · · · k (xN ,xN )

 (4)

The covariance function and mean function play a significant role in a GP-based model. On the other
hand, the structure of an MLP model will influence the performance of the model. Several procedure have been
implemented in this project to increase the accuracy of the models. Optimization of hyperparameters are done
to cope with the real-world non-ideal problem. The hyperparameters for the covariance function and mean
function in the GP models are also optimized. Furthermore, the structure or hidden units of the MLP models
are investigated to ensure that the best performing model is selected.

3. TIME DOMAIN IMPULSE RESPONSE MODELLING OF TRANSMISSION LINES
Transmission lines are interconnects that relay signals from the transmitters to the receivers on high-

speed electronic circuits. They are formed by a combination of conductors and dielectric materials to guide a
signal along the desired path. Generally, the characteristic impedance, or natural impedance Z is the main pa-
rameter of a transmission line as it defines the behaviour of the line. The characteristic impedance is calculated
as:

Z =

√
R+ jωL

G+ jωC
(5)

where R, L, G, and C are the per unit length series resistance (Ω/m), series inductance (H/m), shunt conduc-
tance (Ω−1/m), and shunt capacitance (F/m) respectively. The physical dimensions of the printed circuit board
traces or the transmission lines play a significant role in the effects of the characteristic impedance as they
alter the values of the electrical parameters. For example, the capacitance, C, for a parallel plate structure is
calculated as:

C =
εA

d
(6)

where d is the substrate height, A is the area of the trace, and ε is the dielectric constant of the surrounding
material.

Studying the behaviour of an electronic circuit system is essential before training a machine learning
model to learn the behaviour of the system. The Gaussian impulse response is the output voltage generated
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by the electronic circuit system with a Gaussian impulse signal as the input. The Gaussian signal in the time
domain is selected as the input since the Gaussian transient response represents the behaviour of the electronic
circuit system under various frequencies. It can be shown that the Fourier transform of a Gaussian signal is
another Gaussian signal [26], where the Fourier transform is a well known tool that can be used to decompose
a function or signal into its constituent frequencies. Thus, it is possible to predict the behaviour of the circuit
over those frequencies given its Gaussian impulse response.

In this work, circuit modelling of transmission lines are performed using their Gaussian impulse re-
sponses. Firstly, frequency domain simulations are performed on transmission lines with different design pa-
rameters to extract their S-parameters. Then, circuit simulations using these S-parameters under a Gaussian
excitation are performed to extract the impulse responses of the transmission lines. The voltage source, S (t)
that acts as the input is defined as:

S(t) =
1

σ
√

2π
e−

1
2 ( t−µσ )

2

(7)

where µ represents the mean and σ represents the standard deviation that defines the bandwidth of the Gaussian
signal. The circuit simulation setup is shown in Figure 2. The design parameters of the transmission line
considered in this work are: line length, l from 1000 mils to 3700 mils and line width, w from 50 mils to
110 mil. Figure 3 shows the impulse responses of two randomly selected transmission lines cases, where
Figure 3(a) shows test case 1 and Figure 3(b) shows test case 2.

Line Width, w
Substrate Height, d

Vout(t)

StartTime = 0 nsec

StopTime = 4.0 nsec

Step = 0.01 nsec

50 Ω

50 Ω

S(t) 

Figure 2. Circuit simulation setup and transmission line parameters
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Figure 3. The impulse response, Vout(t) of (a) test case one and (b) test case two
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4. TRAINING OF MACHINE LEARNING MODELS
The training process of a MLP model involves searching for a set of weights and biases that results

in good generalization. The number of neurons and their activation functions are also optimized. In this work,
the training is done using the Levenberg-Marquardt backpropagation algorithm [27]. MLP models consisting
of one hidden layer and varying numbers of hidden neurons are trained. Grid search is performed for the
purpose of hyperparameters optimization, which involves sweeping the number of hidden neurons from 10 to
100 with a step of 10, and each configuration is trained 10 times to minimize the random nature of training.
The performances of the models are ranked based on their coefficient of determination, or R-squared values.

In contrast, for a set of training data, a GP model produces a distribution of multiple possible functions
with an optimized weight vector, and not just one single function. GP models are specified by their mean and
covariance functions, but these functions cannot be fully specified a priori. Instead, they form a set of hyper-
parameters, that is, parameters which have to be determined during training. In this work, first, the declaration
and initialization of the covariance function, mean function, and their hyperparameters are done. Then, the
hyperparameters are optimized with the aid of the Gaussian processes for machine learning (GPML) toolbox
[28]. The optimization is done by minimizing the negative log marginal likelihood together with the partial
derivatives with respect to the hyperparameters. Finally, the optimized hyperparameters are implemented in
training the GP model as well as predicting the unseen inputs.

5. RESULTS AND DISCUSSION
In many circuit modelling applications, the generation of the training data can be a very computa-

tionally expensive process, as each data requires an intricate simulation setup and solution process. Thus, it
is highly beneficial to have models which are able to function based on a small or limited data sample. In
this work, the data of 70 transmission line designs are utilized and the data is divided into subsets for train-
ing, validation, and testing with a ratio of 50:10:10. The training results of the MLP models are tabulated in
Table 1. By comparing the R-squared values, the model with 50 hidden neurons is selected as the best perform-
ing model since the model has the greatest R-squared values.

Table 1. Training results of the MLP models
No. of neurons Training R2 Validation R2 Testing R2 Training time (s)
10 0.9276 0.9286 0.9115 9.001
20 0.9347 0.9154 0.9399 25.605
30 0.9265 0.9274 0.9288 11.498
40 0.9255 0.9379 0.9346 23.713
50 0.9408 0.9540 0.9455 29.734
60 0.9307 0.9384 0.9371 72.201
70 0.9367 0.9196 0.9227 39.845
80 0.9320 0.9278 0.9366 50.927
90 0.9326 0.9352 0.9142 75.359
100 0.9277 0.9352 0.9289 82.341

Table 2 compares the performances of the MLP and GP models. The results show that the GP model
outperforms the MLP model in both training and testing accuracies. Besides that, the results also show that the
training of the MLP model is more arduous than the GP model. However, the MLP model can predict much
faster than the GP model. The GP model shows a higher level of accuracy than the MLP model when both of
them are trained on small amount of samples, which means that the GP is a very data efficient model. However,
the slow prediction speed of GP can be a limitation when modelling large amount of designs. Other than that,
further increasing the amount of training samples can also slow down the prediction speed of the GP model
even more, whereas the prediction speed of the MLP is not affected by the size of training samples as long
as the model complexity remains the same. Nevertheless, the training time of the MLP will increase with the
increase in the size of the training dataset. Figure 4 shows the comparison of the actual impulse responses and
the MLP predictions, where Figure 4(a) shows the result for test case one and Figure 4(b) shows the result for
test case two. Figure 5 shows the comparison of the actual impulse responses and the GP predictions, where
Figure 5(a) shows the result for test case one and Figure 5(b) shows the result for test case two.
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Figure 4. The impulse response, Vout(t) simulated by the circuit simulator versus MLP predictions of the
(a) test case one and (b) test case two

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Time / nSec

-100

0

100

200

300

400

V
ol

ta
ge

 / 
m

V

Test Case 1

Predicted
Truth

(a)

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Time / nSec

-100

0

100

200

300

V
ol

ta
ge

 / 
m

V

Test Case 2

Predicted
Truth

(b)

Figure 5. The impulse response, Vout(t) simulated by the circuit simulator versus GP predictions of the
(a) test case one and (b) test case two

Table 2. Comparisons between the MLP and GP models
Model

Performance metric MLP GP
Training MSE 54.29 2.43× 10−3

Testing MSE 83.09 22.21
Average training time (s) 29.7 6.9
Average prediction time (s) 2.18× 10−2 1.48

6. CONCLUSION
In conclusion, both the MLP and GP models show promising results on the time domain impulse re-

sponse modelling of transmission lines. On one hand, the GP model shows better performance (lower training
and testing errors) when trained on a small dataset, while the MLP model has a faster prediction speed. De-
spite that, we believe that the high data efficiency of the GP model far outweighs its shortcomings, especially
when each training sample is very expensive to produce. As a future work, the size of the design space can
be expanded to include increasing amounts and ranges of design parameters in order to better model more
complicated problems. In this case, the data efficiency of the models will play an important role in optimizing
the modelling process.
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