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 The localization of mobile sensor nodes in a wireless sensor network (WSN) 

is a key research area for the speedy development of wireless communication 

and microelectronics. The localization of mobile sensor nodes massively 

depends upon the received signal strength (RSS). Recently, the least squared 

relative error (LSRE) measurements are optimized using traditional 

semidefinite programming (SDP) and the location of the mobile sensor nodes 

was determined using the previous localization methods like least squared 

relative error and semidefinite programming (LSRE-SDP), and approximate 

nonlinear least squares and semidefinite programming (ANLS-SDP). 

Therefore, in this work, a novel high uncertainty aware-localization error 

correction and optimization (HUA-LECO) model is employed to minimize 

the aforementioned problems regarding the localization of mobile sensor 

nodes and enhance the performance efficiency of root mean square error 

(RMSE) results. Here, the position of target mobile sensor nodes is evaluated 

based on the gathered measurements while discarding faulty data. Here, an 

iterative weight updation approach is utilized to perform localization based on 

Monte Carlo simulations. Simulation results show significant improvement in 

terms of RMSE results in comparison with traditional LSRE-SDP and  

ANLS-SDP methods under high uncertainty. 
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1. INTRODUCTION 

Wireless sensor networks (WSNs) are a collection of a large number of sensor nodes that can 

communicate with each other in varied environmental conditions through wireless channels [1], [2] to measure 

physical changes. The distributed sensor nodes gather data related to their adjacent activities and events and 

share gathered information with the other nodes to the base station through cluster head (CH) node for further 

processing [3]. Moreover, there are numerous applications of WSNs in different fields and some of those fields 

are animal tracks, medical fields, environmental tracking, military task handling, oil exploration, fire 

identification, intruder identification, infrastructure management, disaster detection and situation handling, and 

tracking of sea animals and creatures [4]–[7]. In most of these mentioned applications, sensor nodes are placed 

in very harsh, unpredictable, unapproachable, and in such environments that humans cannot reach easily [8]. 

In these types of applications, sensor nodes are distributed in a random scattering style through aerial vehicles 

or some other way at the desired location. However, in these types of applications, accurate knowledge of node 

location is extremely important to detect the source of sensed information and to take required actions based 

on this obtained sensed information [9]. 

https://creativecommons.org/licenses/by-sa/4.0/
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Furthermore, it is highly essential to have knowledge of the source of data generation to analyze 

sensed data. For an instance, in some cases, node positions remain static in a WSN environment and knowledge 

of installation points will make analysis easier and better. However, in some cases, node positions remain 

mobile, and these nodes change their position dynamically. Moreover, the use of mobile sensor nodes can 

enhance the scope of applications with several benefits like coverage and scalability enhancement and 

improves packet transmission rate. However, there can be a few limitations as well in the case of mobile sensor 

node utilization in terms of energy decay and uncertainty regarding the source of sensed data. Moreover, precise 

knowledge of the location of source data is a base for several applications like fraud detection systems, routing 

analysis, surveillance, and tracking. In dynamic WSNs, the sensor node position and location need to be 

identified dynamically, which can be an extremely complicated and tiresome task. Thus, localization in 

dynamic WSNs can be a significant research direction. 

Therefore, precise geographic and sensor node position information has become an essential need in 

WSNs to perform multiple operations like environmental tracking, indoor navigation, and data gathering  

[10]–[12]. Additionally, multiple networking protocols, sensor node tracking, association, and geographical 

routing require precise knowledge of sensor node locations. However, adding global positioning system (GPS) 

receivers for every node is challenging and complicated due to their massive cost, hardware constraints, high 

power dissipation, and reduced performance due to shadowing effects. Besides, multiple localization detection 

techniques are developed in recent years by numerous researchers [13]. Some location detection techniques  

utilize few reference nodes and based on these adopted reference nodes, the location of an unknown node is 

identified [14]. Some of the measurement methods are angle of arrival (AoA), time of arrival (ToA), connectivity, 

and radio signal strength (RSS) [15], [16]. Among all these measurement or source location identification 

methods, RSS-based measurement is extremely effective due to the advantage of the ease of deployment and is 

less complex in nature. However, there are a few limitations regarding RSS-localization methods, which may 

cause high localization errors. The main limitation of the RSS method is the use of transmit power as a priori 

knowledge to identify node locations. However, the obtained transmit power is massively dependent on antenna 

gain and the battery status of sensor nodes. Thus, in real-time applications, transmit power may not remain steady 

which can lead to poor estimation regarding transmitted power [17], [18]. 

Recently, in [19], a fault-filtering method is adopted to identify fault-reference nodes so that 

localization error can be minimized. This technique mainly focuses on distance estimation for the 

implementation of the fault-filtering method based on the communication range of the nodes. In [20], a 

robustness enhanced sensor assisted Monte Carlo localization (RESA-MCL) method is adopted to identify the 

accurate position of mobile sensor nodes. Based on the node movements, RESA-MCL enhances the 

performance of the localization of sensor nodes. In [21], an extension of the distance vector-hop algorithm 

(DV-Hop) localization method is introduced as a regularized least square DV-Hop localization algorithm to 

enhance node localization accuracy based on statistical filtering optimization and the least square localization 

method. In [22], an anchor-assisted localization method is adopted to detect precise positions of mobile sensor 

nodes based on the transmission power control mechanism. However, a major limitation related to least square 

relative error (LSRE) approach is the presence of high uncertainty and high noise can change measured values 

drastically and remains extremely sensitive to outliers. Moreover, the traditional localization methods remain 

sensitive to the different environmental conditions like path loss and fading which can further enhance the 

noise factor. To overcome this challenge, a novel high uncertainty aware-localization error correction and 

optimization (HUA-LECO) model is adopted in this article to precisely identify the location of mobile sensor 

nodes. This work is an extension of the dynamic noisy measurement aware localization (DNMAL) model [23], 

in which the major focus was the minimization of the localization error of static sensor nodes with varying 

noise levels.The contribution of using the proposed HUA-LECO model is described. 

− The HUA-LECO model performs extremely well in the case of inducing high uncertainty considering the 

dynamic mobility pattern of sensor nodes in the measurement model.  

− Minimize localization error of mobile sensor node with a higher convergence rate. Thus, the HUA-LECO 

model can be utilized in different WSNs applications that require precise node localization data with higher 

accuracy and better performance in cases of high uncertainty regarding mobile sensor node position to 

accurately identify their position. 

− The proposed HUA-LECO model shows a high-accuracy performance in terms of localization error 

minimization for both indoor and outdoor complex WSNs scenarios. 

− Comparatively higher localization accuracy of mobile sensor nodes is achieved considering varied 

simulation parameters than state-of-art-localization error minimization methods like LSRE and 

semidefinite programming (SDP), even when some mobile sensor nodes provide faulty measurements and 

the impact on localization errors considering varied noise levels and the size of Monte Carlo simulations is 

also observed.  
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The paper is structured in the following style. Section 1, discusses the estimation of mobile sensor 

node localization and the significance of the proposed HUA-LECO model in WSNs. In section 2, a literature 

survey regarding the proposed HUA-LECO model and limitations of the existing localization detection 

methods are presented. In section 3, the methodology to reduce localization errors in dynamic WSNs is 

discussed. In section 4, the performance results of the HUA-LECO model are discussed and compared with 

traditional localization error minimization methods. Lastly, the percentage enhancement of the proposed  

HUA-LECO model is concluded and future enhancement of the HUA-LECO model is discussed.  

 

 

2. LITERATURE SURVEY 

This section studies some recent research works for performing localization in WSNs. In [24], node 

localization is achieved using uncertain data mapping in WSN applications based on RSS. Performance results 

are evaluated considering absolute mean localization error and compared against traditional localization 

methods. However, four beacon nodes are made static at the edges of the experimental WSN environment 

which may heavily affect accuracy results in the case of RSS attenuation and uncertainty of node position.  

In [25], a localization method in asynchronous WSNs is adopted based on time-of-flight (ToF). Here, 

localization accuracy results are obtained to compare against varied state-of-art-localization methods. 

However, in this method, beacon nodes are kept static in WSN. The calculation of the clock skews and 

localization capacity performance measurement is heavily dependent upon the centralized server. As a result, 

breaking down at one single centralized point can cause a system or server failure, and the complete localization 

process in WSN can be compromised.  

In [26], a combined localization and synchronization method is introduced using time difference of 

arrival (TDoA) in asynchronous WSNs. Here, the localization process mainly depends upon the centralized 

server. The experimental results are performed on the basis of uncertainty in the position of anchor nodes. 

Therefore, similar to [25], breaking down centralized points can cause server failure. In [27], a node localization 

approach is performed on the basis of measurement of noise weighted least squares and error variance in an 

indoor environment. Here, a weighted approach is adopted based on the hybrid RSS/AoA measurements and 

utilizes three beacon nodes for localization measurements. However, faults in beacon node measurements can 

give faulty measurements. Another disadvantage is that the multipath fading and non-line of sight (NLoS) 

effects are not considered. 

In [28], a Monte-Carlo localization (MCL) method is presented which is a range-free localization with 

no additional hardware complexities. Further, all the sensor nodes and beacon nodes move freely over time in 

a random manner. Here, a particle filter is used to enhance localization accuracy based on node mobility. 

Similarly, in [29], [30], MCL methods are adopted to enhance localization efficiency. However, the possibility 

of localization failure in these methods is high due to loss in connectivity and lower density of beacon nodes. 

This problem can be sorted by the sensor-assisted Monte Carlo localization (SA-MCL) method [31] which 

enhances the connectivity of beacon nodes in WSNs and handles the limitations of MCL methods. To improve 

localization accuracy [29] an enhanced MCL method is presented based on the differential evolution 

optimization (DEO) approach under low beacon density of sensor nodes. Here, the MCL-DE objective 

functions through sample weights instead of a regular sampling method. This method estimates valid samples 

for localization measurements. However, communication and computation cost are reasonably high. In [32], a 

neural network-based localization system is presented for WSNs in indoor scenarios to evaluate the position 

of Alzheimer’s patients. Here, beacon nodes pre-dominantly utilize RSS to get the experimental results 

considering mean localization error. Here, beacon nodes are static and RSS samples are recorded to enhance 

connectivity. However, hardware needs to make this design more complex and the transformation of this 

approach for mobile nodes is a very complicated process. In [33], data aggregation and clustering-based 

methods are presented to improve the lifetime of the network based on the node localization and routing 

mechanism. In [34], a grid clustering method is presented to identify sensor node locations based on the genetic 

algorithm. In [35], a detailed review is performed to analyze localization problems and their performance. In 

the next section, solutions to avoid these addressed research limitations are presented in this paper namely a 

novel HUA-LECO model. 

 

 

3. HUA-LECO MODEL FOR WIRELESS SENSOR NETWORKS 

This section provides details of the methodology used to study the proposed HUA-LECO model for 

WSNs. First of all, the foremost aim of this work is an estimation of the mobile sensor nodes by accurately 

predicting their position based on the root mean square error (RMSE) when there is high uncertainty regarding 

the position of the sensor nodes. The second aim is the optimization of uncertainty-aware errors to precisely 

estimate the location of sensor devices. Here, mobile sensor nodes are used inside WSN which continuously 



Int J Artif Intell  ISSN: 2252-8938  

 

High uncertainty aware localization and error optimization of mobile… (Raja Thejaswini Nandyala) 

2025 

changes its position due to which strength of the radio signal varies with an unknown decay factor. These 

continuous RSS variations make localization of mobile sensor nodes quite difficult and challenging. Therefore, 

detailed mathematical modeling is presented in this section to achieve the desired objectives. Initially, the 

system model for the HUA-LECO model is discussed. Then, the mathematical modeling and working 

methodology of the HUA-LECO model is presented. At last, an algorithm for localization of sensor devices in 

case of high uncertainty through the HUA-LECO model is discussed in multiple steps. 
 

3.1.  System model 

In this section, a system model is discussed for the detection of mobile sensor node location within 

WSN when the exact position of the sensor node is highly uncertain. Consider a WSN is formed and the number 

of sensor nodes deployed is S whose initial position is known prior, and later on; The position of the mobile 

sensor nodes is measured on the basis of radio signal strength (RSS) measurement computation from the sensor 

devices. All the measured information is gathered by a node namely the sink node and this node helps to predict 

the exact position of the desired node based on the RSS measurements. Then, the computation of RSS 

measurements from sensor nodes in a highly uncertain WSN environment is given by (1), 
 

𝑚𝑙 = ‖𝑘 − 𝑎𝑙‖2 + 𝜑𝑙 ,    𝑙 = 1, … , 𝑆, (1) 
 

Where the coordinates of the desired sensor node are given by 𝒌 ∈ 𝕄𝒐, the position of the 𝒍𝒕𝒉 sensor node is 

given by 𝒂𝒍 ∈ 𝕄𝒐, uncertainty-aware errors are given by 𝝋𝒍 and these errors are identically distributed with 

the help of a random distribution parameter, Euclidean distance is given by the function ‖∙‖𝟐. Modeling 

considering highly uncertain mobile sensor node position can be handled using probability density function to 

analyze uncertainty-aware error correction estimates which can be defined using (2), 
 

𝑇(𝜑) = (1 − 𝜆)Ψ(𝜑; 0, 𝜇2) + 𝜆Γ(𝜑). (2) 
 

Where uncertainty-aware measurement errors can be computed with the help of two different probability 

distributions such as one distribution is represented by Γ(𝜑) whose probability is defined by 𝜆 and the second 

distribution is defined by Ψ(𝜑; 0, 𝜇2) whose probability is expressed by 1 − 𝜆. A highly uncertain position of 

sensor nodes can be modeled based on uncertainty-aware error correction estimates from  Γ(𝜑) and 

uncertainty-aware error correction estimates with zero means and  𝜇2 variance from Ψ(𝜑; 0, 𝜇2). Assume that 

𝜆 is the ratio of uncertainty-aware error correction estimates to the overall measurement estimates from all the 

sensor devices. Furthermore, consider that the design of the proposed sensor node localization model relies 

minimum upon the uncertainty-aware error correction estimate value from probability distribution Γ(𝜑).  

Assume that only uncertainty-aware error correction estimates are considered to determine ℎ from the 

measurements  𝑚𝑙 where 𝑙 = 1, … … . , 𝑀. And the rest of the uncertainty-aware error measurement estimates 

are discarded. Moreover, the processing node does not have any idea about the sensor nodes which are giving 

error measurements and how their measurement distribution is processed in WSN. Consider that, the overall 

measurements obtained from all the sensor nodes, whether they are uncertainty-aware error correction 

estimates or uncertainty-aware error measurement estimates, or inappropriate estimates, are positive 

measurement values. 

In several cases, the position of sensor nodes in WSN is determined using the least square bounding 

approach as discussed in [36], [37]. However, measured data in [36], [37] were noisy. Thus, these methods 

failed to provide an optimum solution to minimize measurement errors. Thus, an optimum solution is achieved 

to minimize measurement errors using the proposed dynamic noisy measurement aware localization (DNMAL) 

model which is our previous work [23] with the help of an improved least square bounding model. However, 

this work is an extension of the DNMAL model where the main objective is to obtain the optimum solution to 

get the exact position of the desired node in case of high uncertainties regarding their accurate localization due 

to the dynamic sensor node mobility patterns. This objective can be achieved with the help of the proposed 

HUA-LECO model by obtaining optimized weights. Then, the improved least square bounding model is given 

by the following equation. The problem is optimized to get the constrained minimization problem  

with the help of (3).  
 

min
ℎ

∑ (‖ℎ − 𝑎𝑙‖2
2 − 𝑚𝑙

2)2.𝑀
𝑙=1  (3) 

 

min
ℎ,

∑ (Ω − 2𝑎𝑙
𝑊ℎ + ‖𝑎𝑙‖

2 − 𝑚𝑙
2)2,𝑀

𝑙=1 𝑠. 𝑡 ‖𝑎𝑙‖2 = Ω. (4) 

 

The traditional model utilizes Gaussian noise distribution as the noise distribution model. Here, Ω can be 

obtained through an optimization process and 𝜆  is obtained as the value of the uncertainty-aware error 

correction estimates with respect to the overall measurement estimates from (2). However, the main aim of the 
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proposed HUA-LECO model is to estimate the exact position of mobile sensor nodes based on the estimated 

error reduction which can be achieved by modeling the uncertainty-aware measurement error distribution 

Γ(𝜑) in WSN. Then, the optimal solution related to the sensor node localization can be obtained by estimating 

(4) iteratively with the help of (5). 

 

Γ(𝑦, 𝑓) = ∑ 𝑓𝑙(𝑎̃𝑙
𝑊𝑦 − 𝑏𝑙)2 + ∑ 𝛽2𝑓𝑙 − ln 𝑓𝑙

𝑀
𝑙=1

𝑀
𝑙=1  (5) 

 

Where the coefficient 𝑎̃𝑙
𝑊 is determined using (6), 

 

𝑎̃𝑙
𝑊 = [−2𝑎𝑙

𝑊   1], (6) 

 

Then, parameter 𝑧 is computed using (7), 

 

𝑦 = [ℎ   Ω]𝑊 , (7) 

 

In the same way, 𝑏𝑙 is determined using (8), 

 

𝑏𝑙 = 𝑚𝑙
2 − ‖𝑎𝑙‖

2, (8) 

 

Here, the weight vector is defined by the parameter 𝑓 where 𝑓 ∈ 𝕄𝑀 and 𝑓𝑙 is computed as 𝑓𝑙 > 0, ∀𝑙. The aim 

of the proposed localization model is to optimize (5) using (9) respective to the parameters 𝑦 and 𝑓, 

 

𝑚𝑖𝑛
𝑦,𝑓

𝛤(𝑦, 𝑓), 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑦𝑊𝐶𝑦 + 2𝑗𝑖𝑦 = 0, (9) 

 

Where 𝑓𝑙 > 0, ∀𝑙 and 𝐶 is determined using (10), 

 

𝐶 = [
𝐿𝑧 𝐸𝑧∗1

𝐸1∗𝑧 𝐸
] (10) 

 

Where values of the weight matrix range from 0 to 1 and are defined with the help of 𝑧 × 1 and 1 × 𝑧 and 𝑗 are 

determined using (11), 

 

𝑗 = [
𝐸𝑧∗1

−𝐷
]. (11) 

 

Where the weights and the coefficient 𝑦 can be updated with the help of 𝑓𝑙
(0)

= 1, ∀𝑙, and the solution to update 

the coefficient 𝑦 for a specified 𝑔 − 𝑡ℎ iteration is given by (12), 
 

𝑦(𝑔+1) = 𝑎𝑟𝑔 𝑚𝑖𝑛 𝛤(𝑦, 𝑓(𝑔)), (12) 
𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑓𝑙 > 𝑦𝑊𝐶𝑦 + 2𝑗𝑊𝑦 = 0. 

 

Similarly, the weights are updated using (13), 
 

𝑓(𝑔+1) = arg min Γ(𝑦(𝑔+1), 𝑓), (13) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑓𝑙 > 0, ∀𝑙. 
 

3.2.  HUA-LECO model 

This section provides details related to the mathematical representation of uncertainty-aware 

localization error optimization. This can be achieved by optimizing the problem of (12) with the help of the 

proposed HUA-LECO model. The optimization of (12) is performed by employing some constraints, objective 

functions, and gradients of the objective function on the basis of the Lipschitz continuity [38]. The optimization 

of the problem in (12) requires large computation and several iterations. Thus, the proposed HUA-LECO model 

is adopted to perform faster computations and handle a large number of iterations. Then, the value of coefficient 

𝒚(𝒈) in every iteration gets updated using (14). 
 

𝑦(𝑔) = arg min
𝑦

〈χ𝑦Γ(𝑦̂(𝑔), 𝑓(𝑔−1)), 𝑦 − 𝑦̂(𝑔)〉 +𝑛(𝑔) ‖𝑦 − 𝑦̂(𝑔)‖
2

2
, (14) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑓𝑙 > 𝑦𝑊𝐶𝑦 + 2𝑗𝑊𝑦 = 0. 
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Where parameter 𝑦̂(𝑔) is determined by (15), 

 

𝑦̂(𝑔) = 𝑦(𝑔−1) + 𝑞(𝑔)(𝑦(𝑔−1) − 𝑦(𝑔−2)) (15) 

 

Where constant for the Lipschitz continuity is given by 𝑛(𝑔) of the function [χ𝑦Γ(𝑦, 𝑓(𝑔−1))] for 𝑔 − 𝑡ℎ 

iteration using (16), 

 

𝑛(𝑔)‖𝜌 − 𝜛‖  ≥ ‖χ𝑦Γ(𝜌, 𝑓(𝑔−1)) − χ𝑦Γ(𝜛, 𝑓(𝑔−1))‖ (16) 

 

Where first term represents gradient magnitude controller of the objective function and second term represents 

descent of the objective function. Here, the Lipschitz constant is used as a constraint on the step size of the 

objective function. Here, parameter 𝑦̂(𝑔) is represented as a prediction estimate for the estimate 𝑦(𝑔). With the 

help of prior iterations and trend estimation parameters, a prediction estimate  𝑦̂(𝑔) is obtained. Then, the trend 

estimation parameter is given by (17), 

 

𝑞(𝑔) =
1

12
(

𝑛(𝑔−1)

𝑛(𝑔) ) (17) 

 

Then, weights of 𝑓 get updated by using (18), 

 

𝑓𝑔
(𝑙)

=
1

(𝑗𝑙
(𝑔)

)
2

+𝛽2
 (18) 

 

Where 𝑗𝑙
(𝑔)

 is evaluated using (19), 
 

𝑗𝑙
(𝑔)

= 𝑎̃𝑙
𝑊𝑦(𝑔) − 𝑏𝑙 . (19) 

 

Then, the optimization problem in (14) can be minimized with the help of prediction estimate 𝑦̂(𝑔), parameter 

𝑛(𝑔), and coefficient 𝐶 using (20), 
 

(𝑛(𝑔)𝐿𝑧+1 + 𝜉𝐶)𝑦(𝑔) =  −𝐷𝑊𝑃(𝑔−1)(𝐷𝑦̂(𝑔) − 𝑎) + 𝑛(𝑔)𝑦̂(𝑔) − 𝜉𝑗 (20) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑦(𝑔)𝑊
𝐶𝑦(𝑔) + 2𝑗𝑊𝑦(𝑔) = 0 

 

Where parameter 𝜉 is defined using (21), 
 

𝜉 ≥ max {−𝑛(𝑔), − (𝜉1(𝐶, 𝐷𝑊𝑃(𝑔−1)𝐷))
−1

} (21) 

 

Where parameter 𝜉 is adopted to update the value of 𝑦 and 𝑓 after finding the value of prediction estimate 𝑦̂(𝑔) 

in each iteration. Furthermore, a detailed step-by-step execution process for the exact localization of mobile 

sensor nodes by predicting and minimizing errors using the proposed HUA-LECO model is presented in 

Algorithm 1. 
 

Algorithm 1. High uncertainty aware-localization error correction and optimization model 
Input. 𝑎𝑙, 𝑚𝑙 for 𝑙 = 1, … , 𝑀, 𝛽, Λ↑, & 𝜓 
Step 1. Start. 

Step 2. Estimate 𝐶, 𝑗, 𝑦̂(𝑔), & 𝑞(𝑔)
 utilizing Eq. (10), (11), (15) and (17). 

Step 3. Initialize 𝑃(0), 𝑦(−1) = 𝑦(0) = 𝐷↑𝑎, 𝑛(0) = 0 & 𝑔 = 1. 
Step 4. Iterate  

Step 5.       𝑛(𝑔) = 2‖𝐷𝑊𝑃(𝑔−1)𝐷‖
𝐽
  

Step 6.       𝑞(𝑔) =
1

12
(

𝑛(𝑔−1)

𝑛(𝑔) ) 

Step 7.       𝑦̂(𝑔) = 𝑦(𝑔−1) + 𝑞(𝑔)(𝑦(𝑔−1) − 𝑦(𝑔−2)) 
Step 7. Establish  

         𝜉∗ using 𝑦(𝜉) =  (𝑛(𝑔)𝐿𝑧+1 + 𝜉𝐶)
−1

 − 𝐷𝑊𝑃(𝑔−1)(𝐷𝑦̂(𝑔) − 𝑎) + 𝑛(𝑔)𝑦̂(𝑔) − 𝜉𝑗  

Step 8.      𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑦(𝑔)𝑊
𝐶𝑦(𝑔) + 2𝑗𝑊𝑦(𝑔) = 0 

Step 8.       Update 𝑦: 𝑦(𝑔) = 𝑦( 𝜉∗). 

Step 8.       Update 𝑓𝑔
(𝑙)
 utilizing Eq. (18).  

Step 9. Until convergence ‖𝑦(𝑔) − 𝑦(𝑔−1)‖ < 𝜓  or when Λ↑ is reached. 

Step 10. Stop.  
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In this way, the proposed HUA-LECO Model determines the localization performance of mobile sensor nodes 

in case of high uncertainty regarding sensor node positions by estimating uncertainty-aware localization errors 

and optimizing uncertainty-aware localization errors. The minimization of uncertainty-aware localization 

errors is achieved and the impact of varying noise levels and size of Monte Carlo Simulations is discussed 

through the simulation study in next section. Further, results analysis is performed. 

 

 

4. SIMULATION ANALYSIS AND RESULT  

This section demonstrates performance results using the proposed HUA-LECO Model regarding the 

exact localization of mobile sensor nodes by minimizing localization RMSE error and compared against varied 

traditional localization models like approximate nonlinear least squares and semidefinite programming  

(ANLS-SDP) [39] and least squared relative error and semidefinite programming (LSRE-SDP) [36]. 

Furthermore, the performance of the proposed HUA-LECO Model in terms of localization error minimization 

is validated considering the baseline cramer-rao lower bound (CRLB) model for WSNs. MATLAB 2018a 

software is utilized for the implementation of the WSN models and the adopted system is configured with the 

specifications of 16 GB RAM and an Intel I-5 processor with NVIDIA graphics. 

A generalized system is considered in this article for both indoor and outdoor applications and follows 

a uniform distribution into WSNs under a high-uncertainty environment and is used to track targets through 

cellular radio networks in WSNs. Localization of mobile sensor nodes under high uncertainty regarding their 

position is demonstrated in Figure 1 through a network model. Details of experimental configuration are kept 

the same as [36] for better analysis against the previous best localization methods. Here, all the sensor devices 

are placed in a uniform manner using a random distribution approach where the area of the WSN field is 

considered as [−50, 50] × [50,50]𝑚2. A shadowing effect is also considered to determine RSS based on the 

approach presented in [36]. Additionally, Gaussian distribution is adopted with standard deviation as  

𝜇 = 55 𝑚. All the sensor measurements are taken using Gaussian distribution and sensor geometry is gathered 

using a location-operating network. The location of sensor nodes is measured under high uncertainties by 

varying sensor node size from 8 to 16. Here, the number of Monte Carlo Simulations used as 4,000 to generate 

a system model for WSN. It can be seen from the network model diagram that 2 sensor devices show faulty 

measurements and can be referred as outliers. 

 

 

 
 

Figure 1. Localization of unknown mobile sensor node (i.e., red) in network model with multiple sensor 

nodes (i.e., blue) 

 

 

The localization error is determined using (22), 

 

𝑅𝑀𝑆𝐸 = √
1

ℵ𝑏
∑ ‖𝑓𝜕 − 𝑓𝜕‖

2
,

ℵ𝑏
𝜕=1

 (22) 

 

where Monte Carlo Simulations are denoted by ℵ𝑏 and the number of Monte Carlo Simulations are used as 

default are 4,000. Actual positions of sensor devices are given by 𝑓𝑖 and estimated positions of sensor devices 

are given by 𝑓𝑖. 
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4.1.  Scenario 1: performance by varying size of Monte Carlo simulations 

Performance of the proposed HUA-LECO model is determined in terms of localization root mean 

square error with respect to the number of sensor nodes under high certainties regarding the position of desired 

unknown mobile sensor node and compared against existing localization error optimization methods like 

ANLS-SDP and LSRE-SDP. Here, the number of sensor devices and the number of Monte Carlo simulations 

are varied to get the performance efficiency and compared against traditional ANLS-SDP and LSRE-SDP 

methods. The main objective of this work is to identify position of an unknown mobile sensor node as shown 

in Figure 1 by varying the size of Monte Carlo simulations. In this experiment, the size of Monte Carlo 

Simulations is changed to 4,000, 6,000, and 8,000. At the same time, the number of sensor nodes varies from 

8 to 16, and the noise level is kept at 8db. The localization error regarding the position of the unknown mobile 

sensor node is demonstrated in Figure 2 against varied number of sensor nodes when Monte Carlo Simulations 

are kept at 4,000. Similarly, when the size of ℵ𝑏 is changed to 6,000 iterations, the evaluated RMSE plot is 

demonstrated in Figure 3 for localizing the unknown mobile sensor device. Further, Figure 3 demonstrates the 

localization of the unknown mobile sensor node when the size of ℵ𝑏 is changed to 8,000 iterations. From all 

these graphs such as Figures 2 to 4 it is clear that the proposed HUA-LECO model minimizes the localization 

of unknown mobile sensor nodes significantly in comparison with existing localization methods ANLS-SDP 

and LSRE-SDP under high uncertainties and also satisfy the condition of generalized Cremer-lower bound. It 

is evident from Figures 2 to 4 results that RMSE is quite low in case of sensor node increment. 

 

 

  
 

Figure 2. Comparison for RMSE against the number 

of sensor nodes considering different methods for 

Monte Carlo simulations as 4,000 iterations 

 

Figure 3. Comparison for RMSE against the 

number of sensor nodes considering different 

methods for Monte Carlo simulations as 6,000 

iterations 

 

 

 
 

Figure 4. Comparison for RMSE against the number of sensor nodes considering different methods for 

Monte Carlo simulations as 8,000 iterations 
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4.2.  Scenario 2: under varying noise levels 

Here performance of the proposed HUA-LECO model is discussed based on the varying noise levels 

and keeping number of Monte Carlo simulations fixed in terms of RMSE against number of sensor nodes. 

Moreover, a simulation is performed by keeping Monte Carlo simulations as 4,000 and considering a noise 

level of 3dB, 5dB, 7dB, 9dB and number of sensor devices changes from 8 to 16. All the experiments are 

performed by setting up environment similar to [36]. Here, Figure 5 demonstrates the localization of mobile 

sensor nodes by evaluating RMSE for different number of sensor devices at noise level as 3dB. Similarly, 

similar to [36], Figure 6 shows the localization of mobile sensor nodes by determining RMSE for different 

number of sensor devices (8 to 16) at noise level as 5dB. In the same way, with reference to [36], Figure 7 

demonstrates the localization of unknown mobile sensor nodes by determining RMSE for the different number 

of sensor devices (8 to 16) at noise levels as 7dB. Finally, the last simulation is performed considering a noise 

level of 9dB to evaluate mobile sensor node position in terms of RMSE against the varying number of sensor 

nodes from 8 to 16 as shown in Figure 8. It can be observed from Figure 5 to Figure 8 that with the increase in 

noise level, the localization errors vary for all the localization models. However, the variations in localization 

error with the increase in noise level using the proposed HUA-LECO model are significantly lower than in 

comparison with the previous best localization models ANLS-SDP and LSRE-SDP. Whereas, the localization 

error varies using ANLS-SDP and LSRE-SDP models is quite high. Therefore, it is evident from the 

performance results that the proposed HUA-LECO model provides significant results and minimizes 

localization errors compare to ANLS-SDP and LSRE-SDP models in terms of RMSE by varying noise levels 

to estimate the location of the mobile sensor device.  

 

 

  
 

Figure 5. Comparison of RMSE versus the number 

of sensor nodes for different methods considering 

noise level of 3dB 

 

Figure 6. Comparison of RMSE versus the number 

of sensor nodes for different methods considering 

noise level of 5dB 

 

 

  
 

Figure 7. Comparison of RMSE versus the number 

of sensor nodes for different methods considering 

noise level of 7dB 

 

Figure 8. Comparison of RMSE versus the number 

of sensor nodes for different methods considering 

noise level of 9dB 
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5. CONCLUSION  

The significance of mobile sensor node localization is extremely high in WSN. The continuous change 

in mobile sensor node position can vary strength of radio signals based on an unknown decay factor under high 

uncertainties regarding position of mobile sensor node. Moreover, few works are presented related to 

localization of sensor nodes in terms of error minimization. However, localization of mobile sensor nodes 

under high uncertainties using these models is not that efficient due to complexity of continuous varying RSS. 

Therefore, a detailed study is conducted in this work to determine location of unknown mobile sensor node 

using the proposed HUA-LECO model. Moreover, varied works are presented related to error minimization to 

determine sensor node location such as LSRE through SDP optimization and ANLS-SDP model. However, in 

this work, a study to determine the localization of mobile sensor nodes and the impact of noise factor and 

Monte Carlo iterations on localization error is observed against the varied number of sensors from the obtained 

multi-measurements using the proposed HUA-LECO model. An iterative weight updation approach is used 

based on the Monte Carlo Simulations to minimize the root mean square error and achieve fast convergence. 

Simulation performance results demonstrate a significant improvement in terms of mobile sensor node 

localization with minimum localization error in comparison with ANLS-SDP and LSRE-SDP models. The 

major contribution of this study is the estimation of mobile sensor node location when RSS is continuously 

varying under high uncertainties and minimization of localization error in comparison with ANLS-SDP and 

LSRE-SDP models. Another contribution is the observation of impact of varying noise levels and Monte Carlo 

iterations on localization error. In future work, impact of several environmental conditions like multi-path loss 

and fading can be considered. 
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