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 Distributed data processing model has been one of the primary components in 

the case of data-intensive applications; furthermore, due to advancements in 

technologies, there has been a huge volume of data generation of diverse 

nature. Hadoop map reduce framework is responsible for adopting the ease of 

deployment mechanism in an open-source framework. The existing Hadoop 

MapReduce framework possesses high makespan time and high Input/Output 

overhead and it mainly affects the cost of a model. Thus, this research work 

presents an optimized cost aware resource provisioning MapReduce model 

also known as the cost-effective resource provisioning MapReduce (CRP-

MR) model. CRP-MR model introduces the two integrated approaches to 

minimize the cost; at first, this model presents the optimal resource 

optimization and optimal Input/Output optimization cleansing in the Hadoop 

MapReduce (HMR) scheduler. CRP-MR is evaluated considering the 

bioinformatics dataset and CRP-MR performs better than the existing model.  
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1. INTRODUCTION 

Big Data is generated by application industries, requiring a scalable storage and computation strategy. 

It's essential to make efficient use of limited resources - money, power, space, and people - to resolve an 

application of interest [1] for tackling large data and computational problems. In turn, this demands a grasp of 

the nature of the data and the analytic techniques and their application. Cloud computing and heterogeneous 

computational environments are relatively new ideas that solve a number of the aforementioned problems about 

the scalability and efficiency of computing for data-intensive and scientific applications. 

High-performance computing (HPC) is a subfield of computer science that focuses on the 

development of high-performance machines and the software that runs on them. The creation of parallel 

processing techniques [2] or software, known as parallel computing, is a key aspect of this field. We get 

slowdown in uniprocessor performance because of diminishing returns in exploiting instruction level 

parallelism. The increase in servers and server performance, results in increase of scientific and data-intensive 

applications. The realization that increasing performance on the desktop is less important and a better 

understanding of how to use multiprocessors effectively, especially in scalar applications. Through the 

advancement of virtualization technology, HPC computing has become more accessible and economical. 

Virtualization software enables computers to function like a genuine physical computer, but with the ability to 

specify parameters such as the number of processors, memory and disc capacity, and operating system, with 

flexibility [3]. The use of heterogeneous multiple core (one-CPU) computers is a system that complements 
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cloud-based computing. These computers have integrated specialized accelerators that boost peak arithmetic 

throughput by 10- to 100-fold and can turn individual computers, the workhorses of both desktop and cluster 

computers, into mini-supercomputers. The bulk of the Hadoop MapReduce paradigm's steps which are Setup, 

Map, shuffle, sort, and reduce are represented in Figure 1. A cluster of computer nodes and a master node make 

up the Hadoop architecture. Additional distribution of map and reduce jobs among Hadoop processes. The 

setup step involves conceptually partitioning the input data of a job to be processed into homogeneous volumes 

known as chunks for the map worker nodes. The input data is commonly housed on the Hadoop distributed file 

system (HDFS). Each MapReduce job is broken down into a sequence of map worker-performed tasks in 

Hadoop. Key/value pairs are entered into the map phase (k1, v1), and an output of intermediate key/value pairs 

(k2, v2) is produced. The map phase, which gathers all intermediate key/value pairs, ends with the start of the 

Shuffle phase. The intermediate key/value pair is sorted in the map stage. For ease of assessment, the sort and 

shuffle stages are evaluated simultaneously. The intermediate data is sorted in the reduction step using a user-

defined function. The result of the reduction stage is kept in HDFS. Figure 1 shows the typical Hadoop 

MapReduce model.  

 

 

 
 

Figure 1. Hadoop MapReduce model 

 

 

In recent years, multiple academics have proposed different efficient Hadoop models [4]–[9] to 

improve the performance of Hadoop applications [4]–[9]. Using the Starfish model, which collects an active 

Hadoop task profile at an adequate resolution, it is possible to offer complete data for job prediction and 

optimization. Elasticiser is offered for virtual machine (VM)-based resource allocation, which is regarded as 

superior to Starfish. However, establishing a thorough profile of a current Hadoop job might result in significant 

overhead and, thus, an over-optimistic time estimate. The shuffle stage is overlapping and non-overlapping 

phases are employed in [6]–[8], and a traditional linear regression approach is applied for task prediction. For 

a variety of time-sensitive tasks, this tool also helps with resource estimation. Cloud resource provisioning 

(CRESP) [9] successfully predicts task completion, which facilitates resource distribution under MapReduce 

slots. However, the impact of fewer jobs is disregarded in CRESP application models. A similar number of 

jobs were lost in both [10], [11].  

The typical My structured query language (MySQL) technique proved unable to manage the immense 

volume of data. Google established the MapReduce framework, a distributed computer processing and 

programming architecture built in the Java programming language, to manage huge data. In the MapReduce 

algorithm, the two most critical jobs are Map and Reduce. Map converts a fixed quantity putting data into a 

new set of data in which single components are broken into tuples (key/value pairs). The output of the map job 

then becomes the input of the reduce task, which concatenates the data tuples into a small collection of tuples. 

The input data is managed by the map or mapper; the Hadoop file system (HDFS) stores the data as files or 

folders. Each line of the input files is passed on to the mapper function. The mapper does the job on the data 

and produces several little data slivers. Reducing the amount: The shuffle stage and the reduce stage make up 
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the reduction stage. The task of the reducer is to alter the data generated by the mapper; the output of the 

mapper acts as the reduction's input. A collection of the freshly created output is stored in Hadoop distributed 

file system (HDFS); furthermore, the importance of HDFS suggests that there is a requirement for a Cost-

effective MapReduce model. High-performance computing is becoming more and more crucial for the 

advancement of technology and the economy today. This type of computing also serves as a power 

measurement indication for a country’s economy. Consequently, it is crucial and worthwhile to enhance High-

performance computing effectiveness and accessibility, to make it more flexible and perform parallel 

computation, Hadoop Map Reduce (HMR) framework was introduced which performs the parallel execution 

of task assigned. Thus motivated by the Big data application of HMR, this research work proposes a CRP-MR 

framework for minimizing cost. A further contribution is given here. 

− Cost effective resource provisioning MapReduce (CRP-MR) model is introduced in the Hadoop 

framework, which aims to minimize the cost through memory and Input/Output optimization.  

− CRP-MR integrates the two mechanisms i.e. memory resource optimization and I/o optimization at the 

Hadoop scheduler level; also data cleansing is carried out which is ignored by several research works.  

− CRP-MR is evaluated considering the Bioinformatics dataset of various lengths considering a read 

operation, write operation, and computing operation. Moreover, considering each service with a different 

sequence length CRP-MR observes marginal improvisation over the existing model. 

This research work is organized as follows: the first section starts with the problem of data handling 

in the rising data era; further background of HMR is discussed with its typical operation and limitation. 

Thereafter, the first section ends with motivation and contribution of research work. The second section 

presents the literature work of various HMR framework.  

 

 

2. RELATED WORK 

A self-tuning model known as APlug [10], for parallel computing framework for substantial 

applications of various independent tasks. Another feature of APlug states that the ideal combination of smaller 

tasks and the amount of CPU resource used in terms of meeting client expectations for quality of service (QoS) 

requirements. APlug is also responsible for collecting a set of computations Makespan to build the model, then 

used by a distinct system that figures the performance parameter requirement. The mpiBLAST [11] is an open-

source parallelization tool of basic local alignment search tool (BLAST), which achieves rapid speed by a 

section of the BLAST database for each hub via a computational model by seeking a type of segment in the 

database. Segmentation of the database leads each hub to seek a smaller segment portion of the database, to 

wipe out the circle of I/O, which leads to effortlessly enhancing the execution of the BLAST model.  

A Deoxyribonucleic acid (DNA) structure [12] consists of a large number of genomic sequences 

assembled; however, these genomic sequences are a crucial part of the computational science environment. 

Consequently, the software-based genomic sequence takes many hours to complete. However, the hardware-

based model accelerates the alignment procedure by using field programmable gate array (FPGA) Eosinophilic 

granulomatosis with polyangiitis (). The model associated with this is designed to minimize the genomic 

sequence assembly for makespan execution. The Hadoop MapReduce framework [13] has certain limitations. 

The memory configured before the allocation of Hadoop tasks leads to problems associated with buffer 

concurrency by the tasks associated with it and heavy disk read seeks. The makespan time enhances once there 

occurs any issues associated with resulting in high input/output. The performance is affected when the 

capability of the multi-core environment does not take into account the parameters such as memory 

requirements scheduled on tasks associated with Hadoop cloud environments [4].  

Once the map tasks are completed, the reduced tasks are initiated in a Hadoop MapReduce model. 

However [5] states that the Hadoop model utilizes homogenously distributed data for homogenous map 

execution which is false. The performance is affected when a huge number of resources are utilized which 

results in a huge burden for various organizations and users in the cloud environment (storage, computation, 

and communication) [7]. The size of the HPC algorithm [14] increases the difficulties associated consisting of 

programmability, heterogeneity, energy proficiency, and fault tolerance that have emerged out of the 

distributed computing mechanism. To accommodate each one of them without compromising on the execution, 

customary techniques utilize the resources, programming models, and job schedules needed to be examined 

once more. A developing field in big data [15] that results in building short-term and long-term genomic 

sequences for the issue associated with cutting-edge genomic sequences concerning scientific research. 

However, the current philosophies developed by various research scientists for information sizes and 

straightforward entry for speeding up the current methodology to meet the prerequisites for huge information 

scales and their complex nature with it. In the Hadoop framework, jobs are executed based on the number of 

available CPU cores and the amount of memory allocated for the preset configuration. This leads to a memory 

bottleneck because of buffer concurrency and heavy disk seek, which causes i/o wait for occupancy and further 



Int J Artif Intell  ISSN: 2252-8938  

 

Cost-aware optimal resource provisioning Map-Reduce scheduler for hadoop framework (Archana Bhaskar) 

1265 

increases the makespan time. The Hadoop memory management issues employ a global memory management 

strategy. A model for resource allocation based on prioritizing and revocation using a rule-based heuristic 

method.  

In [16] Management of jobs, creation of jobs, and execution of jobs incur a computational cost, 

reducing the performance of a just-in-time compiler for brief tasks in the Java virtual machine (JVM). A direct 

consequence of information placement (region) in a computer cluster, task and job scheduling, and resource 

allocation in HMR. In the HMR [17], [18] parallel computing environment, the distribution of assets and 

resources remains a challenge. They proposed H2Hadoop (H2H), an enhanced version of the HMR architecture 

that reduces the cost of calculations associated with Big Data inspection. In addition, their solution solves the 

resource allocation issues in HMR. H2H [19], [20] provides a superior technique for "content information," 

such as detecting genomic sequence and motif relationships between reference genomes. In addition, H2H 

provides an efficient approach for cloud computing (CC) platforms. The H2H framework affects name node’s 

(NN's) ability to assign tasks to Task Trackers (i.e., Data Nodes) within the H2H computing cluster. By 

exploiting the attributes of the NN, H2H can logically guide and assign jobs to the DNs that hold the required 

information without communicating the task activity to the full computing cluster. In contrast to HMR, H2H 

reduces the number of reading functions and CPU time. Hadoop processes the Map and Reduce stages [21], 

[22] sequentially, its scalability is inefficient due to its cluster-based computing mechanism, it does not enable 

the processing of stream data, and it lacks variable pricing. To circumvent sequential execution, they devised 

a cloud-based parallel MapReduce paradigm in which Amazon EC2 instances (virtual machine (worker)) 

execute tasks. For parallel processing of stream and batch data, they devised a pipelining technique that offers 

adjustable pricing by utilizing Amazon Cloud spot instances [23]. Compared to the Hadoop MapReduce 

paradigm, the parallel processing of the HMR approach increases throughput and processing speed by 30% for 

larger datasets. In the field of bioinformatics, handling an ever-increasing amount of biological data 

necessitates high-performance processing. In this field, cloud-computing technologies are rapidly employed as 

handy, high-performance system. On a cloud system, we develop and evaluate prototypes of high-performance 

bioinformatics. In this thesis, a memory-optimized Hadoop MapReduce framework is provided.  

The model for Hadoop Map Reduce framework (MOHMR) framework employs thread-based 

execution and dynamic memory management. Such an approach aids in effective resource use (i.e......, 

reduction of unutilized computing node resources). In addition, this thesis considers parallel execution 

leveraging the existing multi-core environment on computer nodes. A makespan model to describe the memory 

and I/O efficient parallel HMR framework's functionality. As may be observed, several methods are offered 

for performing bioinformatics applications. Due to iterative computations that frequently, include distinct, 

successive repetitions of computing, this might incur costs and lengthen computation time. HMR system is 

utilized by the state-of-the-art long genomic sequence alignment model for the CC platform. Memory 

optimization [24] for the Hadoop MapReduce (HMR) architecture, dubbed MOHMR, enables real-time data 

processing and optimal system resource use. The MOHMR schedule is intended to implement global memory 

management, resolve garbage collection (GC) difficulties in the virtual machine (VM), and decrease Disk I/O 

seek. Experiments are undertaken on the Microsoft Azure HDInsight cloud platform taking into account several 

applications, including text mining and bioinformatics applications, to evaluate the performance of MOHMR 

over the previous paradigm. The result demonstrates considerable performance enhancements in terms of 

calculation time and memory use.  

MOHMR represents an improvement in MR by introducing a thread-based execution strategy for 

managing and effectively using memory resources. The MOHMR architecture, [25] MOHMR operates within 

a virtual machine (VM), which is one of the primary architectural design changes between the MOHMR and 

HMR, although the remainder of the upper layer architecture of HMR is kept. Compared to the state-of-the-art 

Hadoop-based parallel computing model, the proposed MOHMR framework model decreases execution time 

and makes better use of memory resources when performing steam and non-steam applications. 

 

 

3. PROPOSED METHODOLOGY 

MapReduce is a paradigm in programming, which enables huge scalability across several servers in 

the Hadoop cluster, it performs two distinctive tasks and Hadoop performs the same thus known as the Hadoop 

MapReduce framework, also popularly known as HMR. In HMR, various tasks are distinctly executed on 

various nodes; the memory scheduler is responsible for the tasks to be carried out for the allocation and 

deallocation of resources. To obtain high performance, a large-scale data center has to deal with various issues 

discussed earlier; these issues directly affect the model cost. However, previous research indicated memory 

resource utilization and Input/output utilization; this research develops a CRP-MR framework, which aims at 

reducing the cost. CRP-MR introduces optimal various workers will tend to have different information related 

to memory resource capacity. Memory resource is utilized here efficiently to reduce the makespan.  

 



                ISSN: 2252-8938 

Int J Artif Intell, Vol. 13, No. 2, June 2024: 1262-1271 

1266 

3.1.  The makespan model 

This work is carried out on a cloud-computing platform, it consists of a master computing node based 

on the map and reduce computing node. The master node is initialized as the 𝑢 for virtual computing workers. 

Each computing worker consists of 𝑥 computing cores. Here let 𝛾ℎ determines the processing time for 

initialization purposes. Then 𝛾𝑙 determines the mean Makespan time for 𝑠 map computing workers. Let us 

assume that 𝛾ℎ depict the mean computing time necessary for 𝑥 computing workers to perform shuffling sorting 

as well as reduce the computation power. Let 𝛾𝑟 depict the mean computing time for 𝑥 computing workers. 

The total computing time of the makespan model is denoted,  

 

∁= 𝛾𝑙 +𝛾ℎ+ 𝛾𝑟 (1) 

 

3.2.  Map-Reduce makespan model optimization 

Here the major work is focused on the optimization of the tasks associated with MapReduce. The 

optimization involved here deals with a set of low-level optimization mechanisms that enhance the speed of 

I/o, the indexes utilized to fingerprint for quick comparisons of the key, and block size tuning it. The 

MapReduce performance is enhanced via efficient I/O disk utilization. By choosing the specific number of 

Map Reducing tasks that are involved by partitioning intermediate data dynamically along the runtime. The 

methods are needless to reduce the cost involved in I/O in MapReduce by using MapReduce indexing 

structures. A scheduling technique proposed here is implemented along a prototype that adapts to a scenario 

that manages the workload performance for hardware awareness to optimize a variety of metrics, which 

involves response time, stretch, and makespan. The Hadoop mechanism is responsible for optimization, which 

is a self-tuning mechanism to adjust the Hadoop configuration used automatically for a MapReduce job for 

using Hadoop clusters maximized. Another cluster optimization approach is responsible for optimization and 

MapReduce task-level parameter optimization on the cloud level. To focus on the desired time for the allocation 

of Map-Reduce jobs to avoid redundant work thereby reducing or saving the processing time.  

There exists another optimization technique for the pipeline. MapReduce pipeline is used to maximize 

the cluster utilization, by incorporating the MapReduce job clustering for slot configuration and task 

submission. These studies involve analysis of various techniques incorporated by the MapReduce frameworks, 

to enhance further improvisation.  

The proposed Hadoop optimization methodology improves the system's performance. There are 

several forms of dynamic memory allocation buffers because memory is utilized at various phases of the 

MapReduce operation. The following equation is used to determine the storage capacity of different buffers,  

 

𝛼𝜃 = ∁↑ − 𝛽𝜌∁
− Α𝜐∁

 (2) 

 

here 𝛼𝜃 determines the cache list, ∁↑ is the maximum memory size determined used for data, 𝛽𝜌𝜏
 is the average 

sum of the list, and Α𝜐∁
 is the total size of the Data pair list. Α𝜐∁

 is the total size of the memory utilized by the 

I/O scheduler for the I/O buffer. The size is given by the Map-tasks as shown in the (3),  

 

𝜂𝜃 = min ( 𝛾𝜌∁
+ 𝑃𝜌∁

, 𝛼𝜃 (3) 

 

here 𝛾𝜌∁
 is the sort capacity (buffer) size, and 𝑃𝜌∁

 is the size of the transmission ability. the proposed algorithm 

here suggests that the scheduler avoids frequent recycling of memory for transmission purposes and then buffer 

collection for controlling memory and accommodating the memory map tasks. When one Map job is initialized 

or completed, this task will shift away.  

 

3.3.  Memory resource optimization model 

The Memory Resource optimization model is designed to improve the model efficiency for the 

Hadoop cache scheduler; the proposed model adopts the scheduler that avoids memory cycling. Map-Reduce 

task is initialized for completion, this is an indexed or un-indexed partition uniformly among the running 

reduce-jobs. During the entire execution process, the memory utilization will vary and the resource 

optimization dynamically. The optimization is based on the size of the previous update. No bottleneck for the 

memory is efficiently utilized, the optimized heap size is less than the updation, and the resource is an 

inadequate and specific area of the capacity/buffer to be processed into the disk conveniently. 

 

3.4.  Cleansing in the I/o optimization for the scheduler 

A performance-enhancing I/O improvement for the Map-Reduce framework that minimizes the disc 

seeks to reach a concurrent computation. The Hadoop-Map Reduce paradigm is optimized to execute the Merge 
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Sort process. Parallel I/O incurs significant disc seek cost. The jobs are conducted independently and must 

interact with one another, reducing I/O performance. To improve I/O speed, sequential overlays for CPU 

execution and disc I/O are implemented. The proposed I/O scheduler is comprised of two components, 

ReadWorker (RW) and Clean Worker (CW), which independently account for reading and write operations. 

Both RW and CW necessitate the multi-buffering request capability. Each tool capacity includes a selection 

that RW and CW employ to reorganize the read/write operations. I/O operation in this suggested paradigm 

comprises both active and passive I/O. Active I/O receives input from the Hadoop distributed file system and 

writes the output to the Hadoop file system. In the flow chart given in Figure 2, a selection is established for 

each task-based framework by the scheduler to accommodate the request based on their selectivity based on 

class. High-priority requests are satisfied first as each request per block instance; however, requests with the 

same similarity are satisfied in the round-robin manner. Here an interleaved I/O performs a read request similar 

to that of the Clean Worker.  

The Merge Sort operation mainly focuses on the data stored in the memory, however, the Hadoop 

Map-Reduce model is also known as the external sort, since the sorting algorithm functions on the data 

embedded in the disks. The I/O and the CPU-bound operations are interleaved for implementations. Once the 

buffer is stored with lots of data, the CPU is responsible for blocking and waiting. For multi-capacity that is 

responsible for non-blocking. Figure 2 shows the flowchart depicting the I/O optimization of the scheduler.  

 

 

 
 

Figure 2. Flowchart depicting the I/O optimization of the scheduler 

 

 

4. RESULTS AND ANALYSIS 

To investigate scalability, both the proposed and current model system frameworks are installed on 

the Azure HDInsight cloud platform with many computational nodes in mind. Identical virtual computing 

employees are evaluated for both the proposed paradigm and the current approach. Consideration is given to a 

Microsoft Azure A3 virtual computing worker. Each A3 virtual computing node consists of 4 processor cores, 

7GB RAM, and 120GB of local storage. For both the proposed and current Hadoop models, a cluster of four 

worker nodes from an A3 virtual computing instance is evaluated. Windows Server 2012 R2 is the operating 

system for the master nodes. The hourly cost of computation for each virtual computer node is $0.296.  

 

𝐵𝑙𝑘_𝑠𝑖𝑧𝑒 =
𝐷_𝑠𝑖𝑧𝑒

𝐵𝑙𝑘_𝑠𝑖𝑧𝑒
 (4) 

 

where 𝐵𝑙𝑘_𝑠𝑖𝑧𝑒 is the default data block size and D size is the volume of data to be uploaded to HDFS 

(by default it is 64MB). Each block is given a compression ratio before being put into the HDFS to make it 

smaller. When a MapReduce job reads data from HDFS, the cost to read a single data block is 𝐻𝐷𝐹𝑆𝑅𝐶𝑡. The 

cost of reading all data from HDFS is known as 𝐼𝑂𝑊𝐶𝑡, and it is calculated as (5). The price of writing a single 

data block to HDFS is known as 𝐻𝐷𝐹𝑆𝑊𝐶𝑡, The cost of writing any data, whether the output of a MapReduce 

process or raw data, is known as 𝐼𝑂𝑊𝐶𝑡 and is calculated as (6).  
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𝐼𝑂𝑅𝐶𝑡 = 𝑁𝑂𝐵𝑙𝑘 ∗ 𝐻𝐷𝐹𝑆𝑅𝐶𝑡 (5) 
 

𝐼𝑂𝑊𝐶𝑡 = 𝑁𝑂𝐵𝑙𝑘 ∗ 𝐻𝐷𝐹𝑆𝑊𝐶𝑡 (6) 
 

The aforementioned computations clearly show that the total costs of reading and writing from HDFS 

depend on the number of blocks or the data size. Therefore, by reducing the amount of data, we may reduce 

the costs of these processes, which will enhance Hadoop's performance. Additionally, the quantity of blocks 

required for each Hadoop operation is inversely correlated with the cost. For instance, 𝐶𝑃𝑈𝐶𝑜𝑚𝑝𝐶𝑜𝑠𝑡𝑅 is used 

to calculate the CPU cost of reading.  
 

𝐶𝑃𝑈𝐶𝑜𝑚𝑝𝐶𝑜𝑠𝑡𝑅 = 𝑁𝑂𝐵𝑙𝑘 ∗ 𝐼𝑛𝑈𝑛𝑐𝐶𝑃𝑈𝐶𝑜𝑚𝑝𝐶𝑜𝑠𝑡 + 𝐼𝑛𝑝𝑀𝑎𝑝𝑃𝑎𝑖𝑟 ∗ 𝑀𝑎𝑝𝐶𝑃𝑈𝐶𝑜𝑚𝑝𝐶𝑜𝑠𝑡 (7) 
 

𝑀𝑎𝑝𝐶𝑃𝑈𝐶𝑜𝑚𝑝𝐶𝑜𝑠𝑡 is the cost of mapping one pair, and 𝐼𝑛𝑝𝑀𝑎𝑝𝑃𝑎𝑖𝑟 is the total number of pairs 

involved in the mapping process.  

 

4.1.  Computation cost evaluation of the proposed model over the existing model in a public cloud 

environment 

In Table 1, for computing read, write, and computation cost performance evaluation of the proposed 

model over a current model for conducting sequence alignment, this study considers the genomic sequence 

derived from the baker yeast database (Saccharomyces genome database (SGD), 2015) [26], [27] and shown 

in Table 1. Furthermore, Experiments are undertaken for each of the scenarios listed in Table 1, and the read, 

write, and computational costs to align genomic sequence are depicted in Figures 3, 4, and 5, respectively. As 

query sequence length rises, the cost of writing, reading, and calculating (analyzing) increases as well. Overall, 

the suggested model reduced reading, writing, and calculation costs by an average of 36.85%, 35.48%, and 

32.97% in comparison to the old system in the Azure HDInsight public cloud environment. The total result 

achieved on the cloud platform indicates that the proposed model can efficiently align genomic sequences with 

low read, write, and compute costs, hence decreasing the overall cost of service delivery and optimizing 

resource utilization. Figure 4 presents the comparison of genomic sequence alignment reading cost on a public 

platform; to evaluate the CRP-MR model two distinctive data of 0.5 million and 1 million are considered. For 

0.5 million data, the existing model costs 0.03971 whereas the proposed model costs 0.0271. Similarly, for 1 

million data, the existing model cost is 0.1219 whereas the proposed model cost is 0.07071.  

 

 

Table 1. Gene sequence considered for experiment analysis 
Reference genome sequence Sequence length Query genome sequence Sequence length 

Saccharomyces cerevisiae 

S288c chromosome XII 

1001933 bp Saccharomyces cerevisiae 

S288c chromosome V_BK006939.2 

576874 base 

pair 
Saccharomyces cerevisiae 

S288c chromosome XII 
1001933 bp 

Saccharomyces cerevisiae 

S288c chromosome XVI_BK006949.2 

948066 base 

pair 

 

 

 
 

Figure 3. Genomic sequence alignment read cost considering multiple computing workers on a public cloud 

platform 
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Figure 4 presents the writing cost comparison of genomic sequence alignment considering the 0.5m 

and 1.0 million data. Moreover, In the vase of 0.5M data, the existing model requires the cost of 0.01456 and 

the proposed model requires 0.010175. Similarly, in the case of 1 million, the existing model requires a cost of 

0.02240 and the proposed model requires a cost of 0.01325. Figure 5 presents the computation cost comparison 

of genomic sequence alignment considering the Genomic sequence length of 0.5 million and 1.0 million. In 

the case of 0.5M length, the computation cost of the existing model is 0.0189 and the computation cost of the 

proposed model is 0.0135. Similarly, for 1.0 million computations, the cost of the existing model is 0.028 and 

the computation cost of CRP-MR is 0.0167.  

 

 

 
 

Figure 4 Genomic sequence alignment write cost considering multiple computing workers on a public cloud 

platform 

 

 

 
 

Figure 5 Genomic sequence alignment computation cost considering multiple computing workers on a public 

cloud platform 

 

 

4.2.  Comparative analysis 

Table 2 shows the comparative analysis in terms of the percentage of improvisation over the existing 

model considering three operations Reading, writing, and Computation for sequence lengths of 0.5 and 10. 

Considering the reading operation, CRP-MR achieves improvisation of 31.67% and 42.00% respectively for 

both sequence lengths. Furthermore, considering the writing cost, CRP-MR achieves improvisation of 30.34% 

and 40.90% respectively for both sequence lengths. At last, considering computation operation, CRP-MR 

achieves improvisation of 40.90% and 37.80% for sequence length.  
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Table 2. Improvisation of CRP-MR over the existing model 
Parameters Existing model Proposed model 

Genomic Sequence Length 0.5 1.0 
Reading cost 31.67% 42.00% 

Writing cost 30.34% 40.90% 

Computation cost 40.90% 37.80% 

 

 

5. CONCLUSION 

The HMR system has a number of flaws, including buffer concurrency between operations and 

intensive disc read searches. As a result, incurs I/O overhead and increases execution time. Further, the HMR 

scheduler does not consider performance aspects such as memory requirement and multi-core environment for 

linear scaling affecting performance and considers homogenous map execution time assuming homogenously 

dispersed data that makes it costly. This research introduces the CRP-MR model for a cost-effective model 

with two integrated approaches i.e. memory resource utilization and minimizing input/output overhead.CRP-

MR is evaluated considering genomic sequence derived from the baker yeast database (Saccharomyces genome 

database (SGD) CRP-MR achieves improvisation of 31.67% and 42.00% respectively for both sequence 

lengths. Furthermore, considering the writing cost, CRP-MR achieves improvisation of 30.34% and 40.90% 

respectively for both sequence lengths. At last, considering computation operation, CRP-MR achieves 

improvisation of 40.90% and 37.80% for sequence length. Future work includes designing a forecasting model 

for accurately predicting incoming tasks for utilizing resources more efficiently and meeting SLA (Service 

Level Agreement) for supporting diverse application deadline requirements. 
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