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 Deep learning has shown outstanding performance in object detection tasks 

with unmanned aerial vehicles (UAVs), which involve the fine-tuning 

technique to improve performance by transferring features from pre-trained 

models to specific tasks. However, despite the immense popularity of fine-

tuning, no works focused on to study of the precise fine-tuning effects of 

object detection tasks with UAVs. In this research, we conduct an 

experimental analysis of each existing fine-tuning strategy to answer which is 

the best procedure for transferring features with fine-tuning techniques. We 

also proposed a partial half fine-tuning strategy which we divided into two 

techniques: first half fine-tuning (First half F-T) and final half fine-tuning 

(Final half F-T). We use the VisDrone dataset for the training and validation 

process. Here we show that the partial half fine-tuning: Final half F-T can 

outperform other fine-tuning techniques and are also better than one of the 

state-of-the-art methods by a difference of 19.7% from the best results of 

previous studies. 
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1. INTRODUCTION 

Object detection on intelligent machines integrated with drones and cameras or unmanned aerial 

vehicles (UAVs) has been many applied to help various real-life domains, such as military [1], forest fire 

detection [2], agriculture [3], security [4], [5], and urban surveillance [6]. That demands researchers in the field 

of object detection to be able to analyze images obtained from UAVs. Currently, numerous research has 

focused on deep learning [7] to overcome various object detection challenges, particularly in UAVs [8]. 

Deep learning advances are due to the availability of large-scale data, computing power such as 

graphics processing unit (GPU), and continuous research. Since deep convolutional neural network (deep 

CNN) has proposed by [9], deep learning methods have outperformed traditional machine learning in the 

imageNet large scale visual recognition challenge (ILSVRC) 2010 challenge [10]. These results also encourage 

many proposed other architecture such as visual geometry group (VGG) [11], GoogLeNet [12], and residual 

networks (ResNets) [13], [14], cross stage partial network (CSPNet) [15], efficientNet [16] which are widely 

used as backbone for feature extraction in classification and object detection tasks. In the object detection task, 

region-based convolutional neural network (R-CNN) is the first deep learning-based object detection method 

[17] that has outperformed other traditional detectors such as deformable parts model (DPM) [18] and SegDPM 

[19] in the challenge PASCAL visual object classes (PASCAL VOC) 2010 [20]. Other popular methods, such 

as the two-stage detector: Fast R-CNN [21], faster R-CNN [22], and the one-stage detector: you only look once 

(YOLO) [23]–[28], retinaNet [29], single shot multibox detector (SSD) [30] which have demonstrated strong 

https://creativecommons.org/licenses/by-sa/4.0/
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detection performance on the general object, such as Microsoft common objects in context (COCO) [31], 

PASCAL VOC, and imageNet. But those methods average it has poor performance when detecting small 

objects, which is the characteristic of the data captured by the UAVs. Therefore requires the right adjustment 

strategy in the model architecture or the right training strategy for object detection tasks in the UAVs. Much 

of the research recently has been proposed to overcome the challenge of object detection in UAVs. Such [32] 

used a deformable convolutional layer [33] in the last three stages of ResNet50, which also adopted a cascade 

architecture and augmentation data to improve model performance when detecting small and dense objects. 

[34] proposed RRNet with adaptive resampling as an augmentation technique followed by a regression module 

to improve bounding box prediction accuracy. The current work also involves transformer architecture which 

many use in natural language processing tasks [35]. Such as [36] that replaced the YOLOv5 detection layer 

with the detection of transformers, and [37] proposed a ViT-YOLO that combined multi-head self-attention 

[38] in the original CSP-Darknet backbone YOLOv4-P7 [27], bidirectional feature pyramid network (BiFPN) 

[39], and YOLOv3 as head detection layers. ViT-YOLO obtained an mean average precision (mAP) of 39.41% 

and was one of the top results in the dataset VisDrone2021-Det 2021 challenge [40]. The results not be 

separated by the availability of annotated data, which has become the key to the training process and 

benchmark. However, problems arise if the amount of annotated data is insufficient for the training process. It 

can easily be overfitting during the training process. Therefore also have an impact on the performance of the 

object detection method. While in practical situations, availability annotated data generally is difficult to obtain. 

The current popular solution is to use a fine-tuning technique [41]. Fine-tuning is a common technique 

that takes advantage of the pre-trained model on large-scale data. Then transferred its features to new tasks 

with fewer data. This technique has been evident to increase the generalization of the model and avoid 

overfitting [42]–[47]. Such as has been done [17], [21]–[23], [29], [30] in general object detection tasks and 

[34], [36], [37], [48] in object detection tasks with UAVs. However, despite the immense popularity of fine-

tuning techniques, no research focuses to studies the precise fine-tuning effects for object detection tasks with 

UAVs. Several reasons: i) the current work uses fine-tuning techniques without focus observing the impact of 

the transferred features or building an efficient fine-tuning strategy. ii) the differences in data sizes along with 

features are crucial to consider in the fine-tuning process. For example, the COCO [31] dataset and VisDrone 

[40] dataset have differences, as described in Figure 1(a) VisDrone which dominated by small objects, while 

in Figure 1(b) COCO dataset is dominated by general objects. The differences in the characteristics of these 

features can have impacted the performance of the fine-tuning technique, and very important to investigate 

which is the best fine-tuning strategy in object detection tasks with UAVs. 

 

 

 
Small Object Density Different Illumination 

(a) 

 
General Object 

(b) 

 

Figure 1. Image from dataset, (a) VisDrone dataset and (b) COCO dataset 

 

 

In this study, we conduct experimental analysis on every existing fine-tuning approach, such as 

common fine-tuning (Common F-T) and frozen fine-tuning (Frozen F-T). We also propose a partial half fine-

tuning strategy which consists of two techniques: first half fine-tuning (First Half F-T) and final half fine-

tuning (Final half F-T). The first half F-T freezes the first half layer in the target network backbone, and the 

Final half F-T freezes the final half layer. The remaining layers are not frozen or randomly initialized during 

the training process for the target-task. In the evaluation process, we compared the partial half fine-tuning 

strategy with Frozen F-T, Common F-T, traditional training (Traditional-T), and one of the state-of-the-art 

methods of object detection tasks with UAVs. The main contributions of this paper are, 
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– We propose a partial half fine-tuning strategy: First half F-T and Final half F-T as a fine-tuning strategy 

for object detection with UAVs. (Section 2) 

– We show the experimental results to answer where is the best procedure for transferring features  

from the base-task to the target-task, whether Common F-T, Frozen F-T, or partial half fine-tuning. 

(Sections 3.4.1-3.4.2) 

– We show that partial half fine-tuning can outperform one of the state-of-the-art methods in object 

detection tasks with UAVs. (Section 3.4.3). 

 

 

2. RESEARCH METHOD 

In this section, we set up several fine-tuning procedures along with a partial half fine-tuning strategy 

to transfer a set of learned features in base-task and use them for target-task, as shown in Figure 2. That consists 

of three concepts: base-task, target-task, and transfer or fine-tuning. In base-task is shown in Figure 2(a): given 

the base-dataset 𝐵𝑑𝑎𝑡𝑎𝑠𝑒𝑡 , which is trained with the base-network 𝐵𝑛𝑒𝑡𝑤𝑜𝑟𝑘  to complete the base-task 𝐵𝑡𝑎𝑠𝑘. In 

target-task is shown in Figures 2(b)-2(e): given a target-dataset 𝑇𝑑𝑎𝑡𝑎𝑠𝑒𝑡 to be trained with target-network 

𝑇𝑛𝑒𝑡𝑤𝑜𝑟𝑘  for the target-task 𝑇𝑡𝑎𝑠𝑘. Then in the fine-tuning process, is do transfer features in the form of weight 

parameter 𝐵𝑛𝑒𝑡𝑤𝑜𝑟𝑘  from the pre-trained model to improve 𝑇𝑛𝑒𝑡𝑤𝑜𝑟𝑘  performance on new task 𝑇𝑡𝑎𝑠𝑘. Where 

𝐵𝑑𝑎𝑡𝑎𝑠𝑒𝑡 ≠ 𝑇𝑑𝑎𝑡𝑎𝑠𝑒𝑡  or 𝐵𝑡𝑎𝑠𝑘 ≠ 𝑇𝑡𝑎𝑠𝑘 

 

 

 
 

Figure 2. Fine-tuning strategy, (a) The base model in base-task uses a pre-trained model, (b) Common F-T, 

(c) Frozen F-T, (d) First half F-T, and (e) Final half F-T 
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In 𝐵𝑛𝑒𝑡𝑤𝑜𝑟𝑘  we leverage pre-trained YOLOv5 [49] on 𝐵𝑑𝑎𝑡𝑎𝑠𝑒𝑡  COCO [31] in 𝐵𝑡𝑎𝑠𝑘 . The total layers 

in the backbone YOLOv5 are 10 blocks which we denote as 𝐵0−9. Then a fine-tuning process is carried out to 

𝑇𝑛𝑒𝑡𝑤𝑜𝑟𝑘  by training it to 𝑇𝑑𝑎𝑡𝑎𝑠𝑒𝑡  VisDrone [41] to complete the 𝑇𝑡𝑎𝑠𝑘 object detection on the UAVs. The 

details of each fine-tuning strategy, including the spatial half fine-tuning: First half F-T, and Final half F-T that 

we propose illustrated in Figure 2. With the following details, 

– Common fine-tuning (Common F-T): transfer feature 𝐵𝑛𝑒𝑡𝑤𝑜𝑟𝑘  from pre-trained model to 𝑇𝑛𝑒𝑡𝑤𝑜𝑟𝑘  with 

condition parameter feature 𝐵0−9 on 𝑇𝑛𝑒𝑡𝑤𝑜𝑟𝑘  initialized randomly when trained with 𝑇𝑑𝑎𝑡𝑎𝑠𝑒𝑡  in specific 

𝑇𝑡𝑎𝑠𝑘. The details of the illustration are explained in Figure 2(b). 

– Frozen fine-tuning (Frozen F-T): transfers feature 𝐵𝑛𝑒𝑡𝑤𝑜𝑟𝑘  from pre-trained model to 𝑇𝑛𝑒𝑡𝑤𝑜𝑟𝑘  with 

condition 𝐵0−9 on 𝑇𝑛𝑒𝑡𝑤𝑜𝑟𝑘  frozen, meaning that there is no process of changing parameters in 𝑇𝑛𝑒𝑡𝑤𝑜𝑟𝑘  

during training process with 𝑇𝑑𝑎𝑡𝑎𝑠𝑒𝑡  for 𝑇𝑡𝑎𝑠𝑘. The details of the illustration are explained in Figure 2(c). 

– First half fine-tuning (First half F-T): transfers feature 𝐵𝑛𝑒𝑡𝑤𝑜𝑟𝑘  from pre-trained model to 𝑇𝑛𝑒𝑡𝑤𝑜𝑟𝑘  with 

condition 𝐵0−4 on 𝑇𝑛𝑒𝑡𝑤𝑜𝑟𝑘  frozen. Then 𝐵5−9 initialized randomly, meaning that during the training 

process on 𝑇𝑑𝑎𝑡𝑎𝑠𝑒𝑡 on 𝑇𝑡𝑎𝑠𝑘 there was no process of changing the parameters of 𝑇𝑛𝑒𝑡𝑤𝑜𝑟𝑘  on 𝐵0−4. 

However, in 𝐵5−9 there are changes during the training process. The details of the illustration are 

explained in Figure 2(d). 

– Final half fine-tuning (Final half F-T): is the opposite of First half F-T, in Final half F-T transfer feature 

𝐵𝑛𝑒𝑡𝑤𝑜𝑟𝑘  from pre-trained model to 𝑇𝑛𝑒𝑡𝑤𝑜𝑟𝑘  with condition 𝐵5−9 on 𝑇𝑛𝑒𝑡𝑤𝑜𝑟𝑘  in frozen, and 𝐵0−4 

initialized randomly, where during the training process with 𝑇𝑑𝑎𝑡𝑎𝑠𝑒𝑡  on 𝑇𝑡𝑎𝑠𝑘 parameter changes to 

𝑇𝑛𝑒𝑡𝑤𝑜𝑟𝑘  only occur in 𝐵0−4. The details of the illustration are explained in Figure 2(e). 

 

 

3. EXPERIMENTAL 

3.1.  Dataset 

To validate the effectiveness of the fine-tuning strategy, we used the dataset VisDrone2019-Det [50]. 

The VisDrone2019-Det dataset is the same as VisDrone2021-Det [40]. The dataset consists of ten object 

categories: (pedestrian, person, bicycle, car, van, truck, tricycle, awning-tricycle, bus, and motorcycle) with a 

total number of 10,209 images, 6,471 for training, 548 for validation, and 3,190 for testing. For all the fine-

tuning techniques in this research, we train that on the VisDrone training set and evaluate them with a validation 

set. 

 

3.2.  Evaluation metrics 

For the evaluation process of each fine-tuning strategy, we used several relevant parameters [51]. 

Including precision (P), recall (R), average precision (AP), and mean average precision (mAP). We measured 

mAP by setting the threshold value to 0.5 intersections over union (IoU). The details of each parameter are 

explained in (1)-(4), (1) explains P, (2) explains R, (3) explains AP, and (4) explains mAP. 

 

Precision (P) =
TP

TP+FP
 (1) 

 

Recall (R) =
TP

TP+FN
 (2) 

 

AP = ∑ (𝑅𝑛+1 − 𝑅𝑛)𝑛 𝑃(�̃�)�̃�:�̃�≥𝑅𝑛+1

𝑚𝑎𝑚𝑎𝑥𝑠𝑎𝑥  (3) 

 

mAP =
1

N
∑ 𝐴𝑃𝑖

N
i=1  (4) 

 

Based on (1) and (2), where true positive (TP) is the detection correct from the ground truth bounding 

box, false positive (FP) is the object that was detected but misplaced, and false negative (FN) is the ground 

truth of the bounding box not identified. AP is the average value of P and R as shown in (3) 𝑃(�̃�) is the 

measured P at R. Then mAP is the average of AP used to measure all class categories in the dataset and is a 

metric used to measure the accuracy of object detection. As shown in (4) 𝐴𝑃𝑖 is the AP in class 𝑖, and 𝑁 is the 

total number of classes evaluated.  

 

3.3.  Experimental details 

We use the pre-trained model YOLOv5x [49] as a base-task in the COCO dataset [31] same as that 

used in [36]. We transfer features from pre-trained models to each fine-tuning technique: Common F-T, Frozen 

F-T, First half F-T, and Final half F-T. Then we train each that technique to the VisDrone target-dataset [50] 

as an object detection task in UAVs. In the training phase, we use stochastic gradient descent as optimization 
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with momentum 0.9, batch size 16, learning rate 0.01, and training iterations of 50 epochs with 640×640 input. 

The framework for the training and validation process uses PyTorch with a Tesla T4 GPU. 

 

3.4.  Results and discussion 

To reflect the scalability of each fine-tuning strategy. We analyze each fine-tuning approach with an 

input scale of 640×640, and we also involve traditional training (Traditional-T), that shown in (section 3.4.1). 

We analyze the training results with different input scales, shown in (section 3.4.2). In the last, we compare 

the best results in this study with one of the state-of-the-art methods that used the VisDrone validation set as 

the evaluation process and with the same input scale, shown in (section 3.4.3). 

 

3.4.1. Analysis effect fine-tuning strategy 

Table 1 presents the validation results for each fine-tuning strategy with an input scale of 640×640. 

Common F-T can achieve detection mAP accuracy 8.9% greater than Traditional-T. The deferences result of 

8.9% from Traditional-T means Common F-T indicated more increases in generalization of the model than 

Frozen F-T that only increases by 3.5% mAP accuracy compared to Traditional-T. The low improvement from 

Frozen F-T that because the features transferred from the COCO base-task directly adjusted to the VisDrone 

target-task without setting random parameters, and no feature update during the training process to the target-

task. For partial half fine-tuning: Final half F-T can achieve detection mAP accuracy 9.3% greater than 

Traditional-T, 5.8% from Frozen F-T, and at the same time also outperform Common F-T with a deference 

0.4% more height, that results prove Final half F-T is the best strategy for fine-tuning in input scale of 640×640. 

But, the mAP accuracy for the first half F-T result of 5% is slightly lower than the result of Common F-T and 

5.4% lower than the Final half F-T. Base on research conducted by Yosinski et al. [41] that shown a transition 

process when the features of the base-task transferred to the target-task. In our study, the low improvement 

from first half F-T that because the first half layer in the target-network learns general features but is more 

specific to the COCO dataset than to the VisDrone dataset in the target-task. While the Final half F-T proves 

that the last half layer is more common or matches the features of the COCO base task and VisDrone target 

task. The details of the detection from Table 1 described in Table 2. While Figure 3 shows one of the results 

of the visualization of detection with a validation set. 

 

 

Table 1. Evaluation results with VisDrone validation set 
Training Input size Precision Recall mAP_0.5 

Traditional-T 640×640 43.8 33.8 32.8 

Common F-T 640×640 53.3 40.9 41.7 

Frozen F-T 640×640 47 36.8 36.3 
First half F-T 640×640 48.3 36.6 36.7 

Final half F-T 640×640 52.4 41.4 42.1 

 

 

Table 2. Detection results with VisDrone validation set 
Model Pedestrian People Bicycle Car Van Truck Tricycle Awn Bus Motor 

Traditional-T 42.2 33.3 09 73.3 34.9 27.7 17.3 10.1 41 39.4 

Common F-T 49.9 39.1 20.2 78.6 43.1 40.2 28.8 15.7 55.6 46.1 

Frozen F-T 42.8 35.3 12.3 74.6 38.3 34.1 23.5 12.7 49.4 39.5 
First half F-T 42.7 35.5 11.6 75.3 36.8 37.7 23.2 12.7 50.1 41 

Final half F-T 49.9 40.1 19.4 78.6 44 40.1 30.2 15.5 54.8 48.3 

 

 

3.4.2. Analysis on different scale 

To obtain a more in-depth analysis, we evaluated each fine-tuning technique with different input 

scales, namely 416×416, 608×608, 832×832, and 960×960, as described in Table 3. Common F-T outperforms 

the results of Traditional-T, Frozen F-T, First half F-T, and particularly, Final half F-T by a difference of 0.1% 

on 416×416 and 608×608 scales. However, on the 832×832 and 960×960 scales, the final half F-T is superior 

to Traditional-T, Frozen F-T, first half F-T, and especially Common F-T by a difference of 0.5% on both scales. 

These results indicate that the Common F-T is slightly higher than the Final half F-T with a smaller input scale. 

However, based on our experiment, the results of Final half F-T are more robust with higher input scales than 

Common F-T, Traditional-T, Frozen F-T, and First half F-T. 

 

3.4.3. Compare with state-of-the-art 

In this section, we compare our proposed partial half fine-tuning: Final half F-T with one of the state-

of-the-art methods employed by [48]. We only compared it with one previous work because the authors used 

the same input scale and VisDrone validation set for the evaluation process. We focus on the 832×832 scale 
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input because it is the best result from [48]. Such as described in Table 4, the results of Final half F-T are 20.3% 

greater than SlimYOLOv3-SPP3-50 and 19.7% than YOLOv3-SPP3. That result indicates our proposed Final 

half F-T is better than one of the previous studies. 

 

 

  

 
 

Figure 3. Some visualization results from our research 

 

 

Table 3. Validation result at different scales using the VisDrone validation set 
Model Input Precision Recall mAP 0.5 

Traditional-T 416×416 36.6 25.5 24.2 

608×608 42.5 32.6 31.9 

832×832 44.1 38 36.3 

960×960 45 38.1 37.1 

416×416 46.4 31.7 31.9 
Common F-T 608×608 52.7 40.4 41.1 

 832×832 56.6 44.3 45.6 

 960×960 57.7 45.6 46.8 
 416×416 39.4 26.6 25.9 

Frozen F-T 608×608 45.6 35.7 35.3 

 832×832 49.3 40.9 40.4 
 960×960 49.8 43.2 42.5 

 416×416 40.8 26.9 26.7 

First half F-T 608×608 49.1 35.2 35.9 
 832×832 51.9 41.3 41.4 

 960×960 53.1 43.5 43.4 

 416×416 44.6 31.5 31.8 
Final half F-T 608×608 51.6 39.9 41 

 832×832 56.4 44.6 46.1 

 960×960 55.8 46.3 47.3 
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Table 4. Results of comparison with one of the state-of-the-art methods 
Model Input Precision Recall mAP 0.5 

SlimYOLOv3-SPP3-50 832×832 45.9 36 25.8 
YOLOv3-SPP3 832×832 43.5 38 26.4 

Final half F-T 832×832 56.4 44.6 46.1 

 

 

4. CONCLUSION 

In this study, we conduct experimental analysis on every existing fine-tuning approach and propose a 

partial half fine-tuning strategy which consists of two techniques: First half F-T and Final half F-T. In the 

evaluation process, we used the VisDrone validation set. Here we show that the result of Final half F-T can 

achieve detection mAP accuracy 9.3% greater than Traditional-T, 5.8% from Frozen F-T, and 0.4% from 

Common F-T in an input scale of 640×640, and its also more accurate at higher scales, such as in scale 832×832 

and 960×960. Then we compared the final half F-T with one of the state-of-the-art methods, based on the mAP 

IoU 0.5 and the same 832×832 input scale. Here we show that the results of final half F-T are 20.3% greater than 

SlimYOLOv3-SPP3-50 and 19.7% than YOLOv3-SPP3. That means our technique is better than other fine-

tuning techniques and also better than one of the state-of-the-art methods in object detection with UAVs. 
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