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 Malaysia has many private’s hospitals. Thus, feedback is important to 

improve service quality, becoming reviews for other patients. Reviews use the 

channel service provided on social media, such as Twitter. Nevertheless, 

online reviews are unstructured and enormous in volume, which leads to 

difficulties in comparing private hospitals. In addition, no single websites 

compare private hospitals based on users’ interests, bilingual reviews, and less 

time-consuming. Due to that, this study aims to classify and visualize the 

Twitter sentiment analysis of private hospitals in Malaysia. The scope focuses 

on five factors: 1) administrative procedure, 2) cost, 3) communication,  

4) expertise, and 5) service. Term frequency-inverse document frequency is 

used for text mining, information retrieval techniques, and the Naïve Bayes, a 

machine learning algorithm for the classification. The user can visualize the 

specified state’s private hospitals and compare them with any selected state. 

The system’s functionality and usability have been tested to ensure it meets 

the objectives. Functionality testing proved that the private hospital’s Twitter 

sentiment could be predicted based on the training and testing data as 

intended, with 77.13% and 77.96% accuracy for English and Bahasa Melayu, 

respectively, while the system usability scale based on the usability testing 

resulted in an average final score of 95.42%.  
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1. INTRODUCTION 

Private hospitals in Malaysia contribute high-quality services and patient satisfaction due to the 

industry’s intense competition. Nonetheless, very few studies quantify the service quality of private hospitals 

[1]. As the number of private hospitals increases annually, they must compete to provide the finest care to their 

patients, enhancing their hospital’s reputation [2]. Social media reviews are one of the most efficient ways to 

collect data that can serve as an indicator of the service quality improvement of private hospitals. It may help 

all stakeholders in healthcare [3]. Nonetheless, because social media reviews are unstructured and abundant, 

they may lead to a fairly erroneous result [4].  

Choosing the best private hospital for treatment is vital for every consumer, as no website or 

application can compare users’ preferences, resulting in unhappiness with the selection process. The centre 

website is a voice for national resilience and the strengthening of centrist thought in Malaysia. It has only 

compared the service prices for public and private hospitals in Malaysia [5]. There was no mention of a specific 

https://creativecommons.org/licenses/by-sa/4.0/
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hospital providing the service. Plan-do-check-act (PDCA), 5S, Kaizen, Control charts, and root cause analysis 

(RCA) are a few of the quality methodologies utilized by hospitals to achieve high-quality performance and 

boost patient satisfaction in recent years [6]. Zakaria and Wahab [7] conducted a study using descriptive and 

inferential analysis, and a questionnaire was utilized to analyse consumer perceptions, satisfaction, and 

behavioural intentions. Because it does not directly compare private hospitals, it is impossible to choose based 

on preferences, and it is a time-consuming comparison, the generalizability of these results is limited. For 

example, a study by [8] only focuses on hospital performance in Pakistan, and a study by [9] focuses on the 

India Institute Medical with no specific algorithm used.  

Social media has become one of the essential venues for global communication and information 

gathering in the modern global economy. According to Dixon [10], worldwide social media users reached 4.2 

billion in January 2021. Moreover, social media provides a platform where individuals may search for 

information, exchange ideas, and even virtually display their personal and professional lives [11]. Twitter is a 

popular social networking platform among active Internet users, particularly young people aged 25 to 34. 

Tweets allow users to communicate their thoughts and ideas with others. Kemp [12] stated that in 2021, Twitter 

would have approximately 397 million monetizable active usage and 187 million daily users. This large number 

of users suggests that Twitter is also a platform where users receive and share information. 

Numerous sectors actively utilize online reviews because they influence consumer decisions. 

However, online reviews are limited because they are predominantly displayed in English [13]. Because 

Bahasa Malaysia is the most widely used language in Malaysia, it might have a negative impact on the outcome 

of decisions. In another significant study, Antonio et al. [14] discovered that analysis based on many languages 

produced more accurate results. It presents an opportunity for private hospitals to attract more patients. 

Therefore, this study entails the development of a web-based dashboard to visualize the performance 

of private hospitals in Malaysia based on Twitter sentiment analysis (SA) from January 2021 to December 

2021. The retrieved tweets only address the public’s perception of Malaysian private hospitals regarding the 

administrative procedure, communication, cost, expertise, and service. The scope of the study includes 146 

private hospitals in all 14 Malaysian states. The collected tweets reflect public sentiment regarding reviews of 

private hospitals in Malaysia based on the following five factors: administrative procedure, communication, 

cost, expertise, and service. 

We have compared the existing machine learning algorithm such as artificial neural network, random 

forest, support vector machine, Naïve Bayes and K-nearest neighbour in order to identify the best technique. 

We chose and applied Naïve Bayes (NB), a straightforward learning technique based on Bayes’ rule and the 

strong assumption that the attributes of a class are conditionally independent [15]. NB is among the most 

successful and efficient inductive learning algorithms for machine learning and data mining [16]. The NB 

classifier was used to evaluate the model using an algorithm to classify the dataset. The model applies the 

training set’s labeled data to the dataset to classify it. 

Data visualization is a crucial instrument for getting valuable information. It should depict data with 

charts and graphs and convey them intuitively [17]. This study utilized four visualization techniques: a line 

chart, a bar chart, a pie chart, and word clouds, since the extracted data from Twitter is more effective in 

displaying. Consequently, it is easier to identify large data sets’ trends, patterns, and outliers. This study would 

consolidate all data into a more comprehensible visual format to facilitate user comprehension. The data is 

visualized using Plotly, Python’s open-source interactive graphics tool. The model is created utilizing English 

and Bahasa Malaysia datasets to analyse sentiment in both languages. The outcomes can be used to increase 

client satisfaction and retain them. Thus, consumers will pursue prospective new markets and resolve customer 

issues more effectively. The paper structure is as follows: The first section is an introduction followed by the 

research methods in section 2. Section 3 focuses on the findings and discusses their accuracy, functionality, 

and usability. Finally, section 4 concludes the analysis by quickly noting possible future improvements. 

 

 

2. RESEARCH METHOD 

2.1.  System design 

System design is defined as implementing a system’s product development concepts. Developing 

design diagrams facilitates the design process. It included the use case diagram, flowchart, and user interface. 

 

2.2.  Back-end development 

The research design depicted in Figure 1 is the overall web-based dashboard development. The 

method of the study was divided into 4 sections for elaboration. During system development, the back end, 

often known as server-side development code, is the data access layer. The system’s back end is written in 

Python, from data preparation to model deployment. Important back-end tasks for training and testing data 

include data collection, pre-processing, NB classification model development, and model deployment. 
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Figure 1. Flow diagram of research design 

 

 

2.2.1. Data collection 

Text classification for both Malay and English are performed using machine learning algorithms. The 

data source for the English model is taken from the website [18]. It contains 800,000 positive and negative data 

points. Meanwhile, data sources to train the Malay model are taken from [19]. The gathered neutral data for 

the English model is Malay conversion using onlinedoctranslator.com, which translates using Google Translate 

containing the additional neutral data for the Malay model. The English model has 1,614,640 data for training 

and testing, whereas the Malay model contains 531,679 data. The English and Malay datasets are utilized to 

determine whether the sentiment data is in English or Malay. 

The data for the 14 states, Johor, Perlis, Terengganu, Malacca, Kelantan, Pahang, Sabah, Sarawak, 

Negeri Sembilan, Kedah, Perak, Penang, Wilayah Persekutuan, and Selangor are taken using real-world data 

from Twitter. The tweets were scrapped between January 1 and December 31, 2021 using Twint, where there 

is no case sensitivity for terms. The scraped tweets are then saved as comma separated values (CSV) files. The 

gathered data is manually analysed from the scraped data to eliminate empty cells from the tweet column. 

Table 1 shows the comparison of results for the private hospitals in Malaysia with 4,689 raw data in English 

and Malay collected, with 3,717 total positive mentions, 43 neutral mentions and 926 negative mentions. The 

raw data includes 36 variables, such as the tweet ID, username, tweet date, tweet content, language, and tweet 

link. The CSV file is read using the Pandas package. 

 

2.2.2. Data pre-processing 

Before encoding, text pre-processing is carried out to clean up the data [20]. Preparing data for use by 

eliminating and discarding extraneous text that does not add value to the model and instead decreases its quality 

is a technique known as text pre-processing [21], [22]. Natural language toolkit (NLTK) and ‘re’ are the two 

Python packages used for text pre-processing. Only three columns are available for the final dataset: data, 

username, and tweet. We remove the unneeded columns. The dataset’s text is cleaned by changing all 

characters to lowercase to prevent case-sensitive issues during pre-processing. Then, characters such as emojis, 

punctuation, and excessive whitespace were eliminated. The elimination of keywords such as links, hashtags, 

and mentions. In addition, duplicate tweets and null values from the dataset were removed to further minimise 

the data’s dimensionality. 
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Table 1. Comparison of results for state’s private hospitals for combination of both English and Malay 
States Total Mentions Total Positive Mentions Total Neutral Mentions Total Negative Mentions 

Johor 47 20 17 10 
Kedah 16 14 0 2 

Kelantan 2 2 0 0 

Malacca 44 39 0 5 
Negeri Sembilan 76 60 1 15 

Pahang 31 27 0 4 

Penang 356 311 0 45 
Perak 257 249 0 8 

Perlis 28 20 0 8 

Sabah 55 43 0 12 
Sarawak 74 64 0 10 

Selangor 2,201 1,685 18 498 

Terengganu 3 3 0 0 
Wilayah Persekutuan 1,496 1,180 7 309 

Total 4,689 3,717 43 926 

 

 

However, this dataset is still of high dimension. Stop words are removed from the data to reduce 

dimensionality because they add no value. In English, stop words include “the”, “and”, “of”, and “on”. English 

stop words can be found in the NLTK library’s pre-built function. Malay stop words are manually imported 

from [23] for stop word removal in the Malay model. The data was tokenized to form a bag of words, which is 

the process of extracting the words from the remainder of the text. After tokenization, raw text is transformed 

into collections of tokens, each of which is often a single word. In addition, the stem process known as 

lemmatizing was carried out. It is an approach to text normalization that eliminates suffixes. It decreases the 

number of words to diminish the text’s dimension further. After pre-processing, the completed dataset is saved 

to the working directory. 

 

2.2.3. Naïve Bayes classification model 

Naive Bayes (NB) classifier evaluates the model, which categorises the dataset using an algorithm 

[24]. The model takes the pre-labeled data from the training set and applies it to the dataset for classification. 

The probability of an event is determined by the NB theorem utilising the probabilistic joint distribution of 

previous occurrences [25]. In this research, the model is helped to understand the context of positive, neutral, 

and negative phrases using a pre-labelled training dataset. 

The text representation is a structured representation of a collection of expressions and words that 

counts how many times the phrase “Bag of Words” appears (BOW) [26]. It entailed extracting features from 

the tokens of words obtained and transforming them into a vector that a machine learning model could learn. 

This technique includes counting the term frequency, inverse document frequency, and normalising the vectors 

to unit length, where all steps from the bag of words (BOW). Term frequency-inverse document frequency 

(TF-IDF) is a statistical measure that determines how essential a word is in a document when the first two 

phases of BOW are combined [27], [28]. The TF-IDF weight is the weight used in information retrieval and 

text mining. Term frequency (TF) assessed the frequency of phrase occurrence in a single document was using, 

while the significance level was determined using inverse document frequency (IDF). 

Cross-validation utilises the training data to guarantee that the model does not overfit the data [29], 

[30]. Several hyperparameter configurations are investigated to divide the model into pieces randomly. The 

model includes eight evaluated parameter configurations and 10 KFold validations. As a result, the model was 

trained and evaluated 80 times. The data is separated into training and testing datasets with an 80:20 split for 

both English and Malay models. Implementation in the real world is the next step in evaluating the model’s 

performance. It is evaluated using the test holdout dataset. The evaluation yielded a classification report and a 

confusion matrix as performance measures. Examining the accuracy measure, confusion matrix, and 

classification report data. The data is delivered through the Twitter application programming interface (API) 

for sentiment predictions before the data visualisation process begins, and the model’s effectiveness is assessed. 

 

2.2.4. Model deployment 

Model deployment is the process of deploying a machine-learning model for practical usage. 

Frequently, the phrase refers to making a model accessible via real-time APIs so that information can be 

retrieved in real-time. At the stage of model deployment, the predicted categorized tweets are generated with 

sentiment labels of “0”, “2”, and “4”, which represent negative, neutral, and positive attitudes, respectively. 

Once settled, constructing the prediction of the sentiment using the model classifier on the gathered data and 

evaluating its efficiency, the data is shown using Plotly. Plotly is an open-source Python library for interactive 

graphics. The approach begins with loading the data into Python Pandas data frames. Jupyter Notebook is then 
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used to code the data from the Excel file. Then, charts will be made utilizing the chart studio in online Plotly, 

together with the entered data. Consequently, an interactive visualization tool is designed to depict real-world 

data processing results using the outcome. The suggested method will visualize the text data for private 

hospitals using word cloud visualization. The words will be shown in various colors, with the size of each word 

emphasizing their frequency in the text data. The terminology utilized by private hospital businesses will be 

shown in a cloud for simple viewing. 

 

2.3.  Testing development 

We perform the test after completing the dashboard to ensure the system functions well and can be 

reliable for the users to view. Functionality testing is necessary to guarantee that all system features work 

correctly and that any unusual behaviour is swiftly detected and corrected [31]. Functional testing aims to test 

each system function to ensure that the functional criteria outlined in earlier chapters are met. This test is based 

on constructing test cases drawn from system requirements. Usability testing is performed on a system by a 

group of representative users to determine how accessible it is to use [32]. Users are prompted to evaluate the 

system functionalities while being observed to determine whether users encounter any issues when using the 

system. Some recommendations are provided to help users with usability difficulties. 

 

2.4.  Front-end development 

Front-end web development, also known as client-side development, translates data into a graphical 

interface using HyperText Markup Language, Cascading Style Sheets, and JavaScript to construct a website 

that enables users to view and interact with the data. The Python web application environment consists of data 

visualization tools for generating charts and graphs of sentiment data. The developments involve three 

modules: the dashboard page, each state dashboard and the comparison among the states. 

 

 

3. RESULTS AND DISCUSSION 

3.1.  Accuracy testing 

The simple Python code is used to evaluate the accuracy of the Naïve Bayes classification model. 

Figure 2 depicts the accuracy testing results for the English model of the training dataset. The score for accuracy 

is 77% when expressed as a percentage. This score indicates that the model correctly categorized seven out of 

ten correct responses as “positive”, “neutral”, or “negative”. In the confusion matrix, the “negative” class is 

represented by 0, the “neutral” class by 2, and the “positive” class by 4. 

The accuracy score for the Malay model of the training dataset is depicted in Figure 3. The confusion 

matrix’s accuracy score is expressed in percentage form. It is 77% similar to the English model, indicating that 

the sentiment result is 77% accurate, with the algorithm correctly categorizing seven out of ten right outcomes 

as “positive”, “neutral”, or “negative”. The low accuracy score of 77% for both models result from the small 

amount of neutral sentiment data compared to a large amount of negative and positive sentiment data. 

 

 

  
 

Figure 2. Result of accuracy testing for English 

model 

 

Figure 3. Result of accuracy testing for Malay model 

 

 

3.2.  Overview dashboard visualization 

The web-based “Dashboard” page included visualization of the bar charts for the overall sentiment 

based on factors, pie charts and word clouds for positive, negative, and neutral sentiments. Each of the states 
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has the same dashboard visualization with the details of the hospital name. Also, the comparison between states 

can be visualized. 

 

3.2.1. Overall sentiment analysis 

The system’s dashboard plots and displays the complete data analysis. There were visualized using 

data visualization techniques such as pie charts, bar charts and word cloud for better visions. Figure 4(a) shows 

the overall sentiments in the selected hospitals from the 14 states. Based on the total of 4,689 sentiments, it 

was distributed to 3,463 positive, 1,200 negatives and 26 neutral sentiments. The user may immediately 

compare positive, negative, and neutral sentiments using the pie chart’s total sentiment level and the color 

differences for each, as in Figure 4(b). The dashboard on specific 5 factors classification sentiments is 

visualized in the bar graph in Figure 5. Users may also visualize the total mentions of each private hospital in 

each state for each month.  

 

 

 
 

 

 

(a) (b) 

 

Figure 4. Dashboard for (a) overall sentiments for 14 states and (b) pie chart of the sentiment’s distribution 

 

 

 
 

Figure 5. Dashboard for the specific classification sentiments on the identified 5 factors 

 

 

3.2.2. Visualization sentiment analysis 

Figure 6 visualizes the overall classified sentiments using word cloud visualization. The green color 

word cloud in Figure 6(a) represents the positive sentiment text data such as sedap selalu, dekat and tip top. 

Next, Figure 6(b) denotes the word cloud of negative sentiment data such as Johor, Medina and Gleneagles, as 

frequently mentioned on Twitter. The last Figure 6(c) represents neutral sentiment in blue colors such as dekat, 

swasta and vaksin. Depending on word size, the dataset’s word frequency varies. With increasing dataset size, 

it appears more frequently. 
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(a) (b) (c) 

 

Figure 6. Dashboard for overall classified sentiments using word cloud visualization  

(a) positive sentiments, (b) negative sentiments, and (c) neutral sentiments 

 

 

3.3.  Functionality testing 

To verify that every system feature is functional, testing is necessary to ensure it functions correctly 

and that any abnormal system behavior is quickly recognized and solved. Functional testing aims to verify that 

each system function meets the functional criteria stated in earlier chapters. It is conducted by developing test 

cases based on system requirements. The findings demonstrate that the system performed as intended without 

prompted failures. The visualization provides a readily accessible reporting tool, allowing the user to view and 

comprehend trends and patterns immediately. We succeeded in finishing the dashboard and passing the 

functionality test. 

 

3.4.  Usability testing 

A system is subjected to usability testing by a group of representative users to determine its usability. 

Users are required to evaluate the system’s capabilities while being observed to discover whether they 

encounter any problems. Some suggestions are made to assist users with usability issues. The system usability 

scale (SUS) consists of 10 user-response questions. Figure 7 shows the ten SUS statements’ scores displayed 

in a bar graph, which depicts the scale of the SUS statements based on user rankings. The graph illustrates that 

most users selected items with odd numbers, which are positive claims. It shows that customers are satisfied 

with the system and do not need any technical support to use all of its functions. Users are generally delighted 

with the system. 

 

 

 
 

Figure 7. Bar chart of SUS result 

 

 

The SUS scores’ histogram is depicted in Figure 8. The frequency of users who responded to the SUS 

is shown on the histogram’s y-axis. In addition, the x-axis displays the percentage of the SUS score range. 

According to the histogram, the graph demonstrates a normal distribution with a 90% to 100% range and a 2% 

interval. 11 respondents fall within the peak range between 94% and 96%. Seven respondents are below the 

median value, and twelve are above the median. The 30 responders to the SUS questionnaire had an average 

SUS score of 95.42%. If the SUS score is greater than 85, the system is highly usable; between 70 and 85, it is 
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rated good to outstanding; between 50 and 70, it is competent but has some usability concerns that need to be 

addressed; and below 50, it is termed impractical and inappropriate [33]. With a score above 85%, this web-

based application has been verified to be useful. Most respondents gave positive feedback and said they would 

recommend the product to their friends. 

 

 

 
 

Figure 8. Histogram of SUS result 

 

 

4. CONCLUSION 

Classification and visualization of Malaysia’s Private Hospitals based on Twitter sentiment analysis 

is a web application designed to analyze Twitter users’ perceptions and visualize the SA of private hospitals in 

14 states in Malaysia. The Nave Bayes classification model developed for this project may be used by the user 

on any textual data because it is embedded in the system application. The developed platform and application 

data were able to help anyone to evaluate private hospitals’ performance to make decisions in the future. 

Positive, neutral, and negative classifications were used based on five factors: administrative procedure, 

communication, cost, expertise, and service. Multiple visualizations within the system application make it 

simple for customers to comprehend private hospitals in each Malaysian state. The functionality that enables 

users to watch tweets in real-time from the official Twitter account of private hospitals enables consumers to 

remain current on the most recent information from private hospitals. In order to interpret slang, abbreviations, 

and sarcastic words into meaningful values that help determine the sentiment, future studies need to define 

these terms in dictionaries for different languages.  
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