TAES International Journal of Artificial Intelligence (IJ-AI)
Vol. 13, No. 1, March 2024, pp. 45~56
ISSN: 2252-8938, DOI: 10.11591/ijai.v13.i1.pp45-56 a 45

Towards a Docker-based architecture for open multi-agent
systems

Gustavo Lameirao de Lima, Marilton Sanchotene de Aguiar
Graduate Program in Computing (PPGC), Federal University of Pelotas (UFPel), Pelotas, Brazil

Article Info ABSTRACT
Article history: In open multi-agent systems (OMAS), heterogeneous agents in different envi-
Received Nov 8. 2022 ronments or models can migrate from one system to another, taking their at-

tributes and knowledge and increasing developing complexity compared to con-
ventional multi-agent systems (MAS). Furthermore, the complexity of opening
may be due to the uncertainties and dynamic behavior that the change of agents
entails, needing to formulate techniques to analyze this complexity and under-
Keywords: stand the system’s global behavior. We used Docker to approach these problems
and make the architecture flexible to handle distinct types of programming lan-
guages and frameworks of agents. This paper presents a Docker-based archi-

Revised Jul 10, 2023
Accepted Aug 2, 2023

Agent-based simulation

Doclfer tecture to aid OMAS development, acting on agent migration between different
Multl-agen.t systems models running in heterogeneous hardware and software scenarios. We present
Open multi-agent systems a simulation scenario with NetLogo’s Open Sugarscape 2 Constant Growback
and JaCaMo’s Gold Miners to verify the proposal’s feasibility.
This is an open access article under the CC BY-SA license.
Corresponding Author:

Gustavo Lameirdo de Lima

Graduate Program in Computing (PPGC), Federal University of Pelotas (UFPel)
Pelotas, Rio Grande do Sul, Brazil

Email: gustavolameirao@inf.ufpel.edu.br

1. INTRODUCTION

Currently, several areas use concepts of artificial intelligence to solve problems, and often the solutions
are based on shallow learning (such as gradient boosting, random forest), deep learning, or heuristics (genetic
algorithms). These solutions perform as the problem is well defined and the dataset is large and centralized [1].
However, there are also dynamic problems with several interacting entities, and it is necessary to use solutions
with decentralized control capable of adapting at runtime [1]. In this context, multi-agent system (MAS) is
another solution in the artificial intelligence field.

These systems are composed of multiple agents, physical or virtual entities with autonomous behavior,
and can act on their own [2], [3]. These agents can perceive the environment in which they are, and through
actuators, they can act in that environment. In MAS, agents can exchange information for different purposes,
aiming to obtain collective knowledge, update beliefs, and optimize strategies.

A specific type of MAS still allows interaction between agents participating in different models, the
open multi-agent systems (OMAS). In OMAS, we analyze heterogeneous agents (with other characteristics)
from different perspectives (inserted in different environments/models) that can migrate from one system to an-
other, taking their attributes and knowledge [4]. The heterogeneity of agents may come from some differences
between the models, such as architecture, objectives, or policies [5].

However, different problems arise when developing applications in OMAS when compared to
MAS [6]. First, there may be implementation problems where agents and models can be created by differ-

Journal homepage: http://ijai.iaescore.com

46 a ISSN: 2252-8938

ent teams, in other programming languages, or even in various platforms/agent architectures. Often conflicts
of objectives may not guarantee that agents will act cooperatively and coordinately [7], [8]. Moreover, there is
still the difficulty generated by the uncertainties and the dynamic behavior that the change of agents entails.

OMAS need to deal with problems not present in closed systems. For example, the migration of agents
between models can occur at runtime, and the motivation for this migration of an agent from one system to
another can be different, usually of the developer’s choice, such as execution failures, self-will, or some trigger.
In addition, conflicts of interest may occur between the new agents when not designed to work in that set [5].
Although the subject has been known for a long time [9], there is still research in the area, as in [10]-[15].

The concept of openness reduction is related to the model’s overload from the perspective of the
possibility of agents entering and exiting the system without changing the design of many components. Thus,
when the greater the degree of openness, the smaller the number of changes to a model to receive or send
agents [4]. In this way, a perfect open system would not need transformations (0 steps) to accommodate new
components, while on the other side, there are systems that would require a complete redesign when new
agents arrive [4]. Therefore, given the context presented, it is necessary to make a research effort to reduce the
complexity of OMAS regarding the cited problems.

In this context, Docker could solve these problems because it is an open-source tool that automates
container application development, adding an application deployment engine to a virtualized container execu-
tion environment. This design creates a lightweight and fast environment that runs code and tests in a single
flow, from development to production. This paper presents a Docker-based model to aid in developing OMAS
and to facilitate the migration of agents between different models that can run in heterogeneous hardware and
software scenarios, different development environments, and tools for MAS or other operating systems.

There are differences between virtual machines and containers because virtual machines are an ab-
straction of physical hardware that transforms one server into multiple servers. The hypervisor, software that
creates and runs the virtual machine, allows multiple machines to run on a single host. Each machine includes
a complete copy of an operating system, the application, required binaries, and libraries. Unfortunately, ma-
chines can also be slow to boot [16]. Unlike virtual machines, containers are an abstraction in the application
layer that binds code and its dependencies together. Multiple containers can run on the same machine shar-
ing the operating system kernel, each running as isolated userspace processes. Container images are more
space-optimized than virtual machines [16].

By implementing specific agent registration and routing modules to define system steps as the criteria
for determining where agents will go, the original models only need to describe how they will send and receive
agents, decreasing transaction complexity within the model. In addition, agents that move between models
will transfer knowledge, carrying their attributes with them. In addition, the use of Docker allows for greater
modularization of the system, where the implementation of each module within a container makes it possible to
run different tools on different operating systems and allows easy code replacement by changing the execution
of the container [17].

This modularization allows, for example, to extend of an initial structure of agent routings between
models by a model that can retrain agents before returning to the simulation models. Finally, modularization
will allow it to add new behaviors to the system that models did not foresee in its conception phase. In general,
the approach aims to advance the generalization of OMAS, simplifying the opening process.

We organized this paper is first, we present related work in section 2. Then, section 3 presents details
of the proposed approach, flow, implementation details, and the schedule of activities. Next, section 4 shows
the results obtained, emphasizing the developed simulation scenario, which is of great importance to verify the
feasibility of the implementation. Finally, section 5 presents the final considerations of the study.

2. RELATED WORK

The first perspective from most of the related work considers OMAS from an architecture/organization
point of view, as in [4], [6], [12], [18]-[23]. These studies differ from the approach of this work, mainly because,
among all OMAS problems, we focus on the openness part, allowing the agents to move between models. The
effects of the conflicts of interest that could come with the agents moving between models are something model-
related, requiring to be resolved by the model using any technique, such as the ones described in this study and
others. Our goal is to provide mechanisms to simplify the agents’ movement between models reducing changes
in the model’s original code. Furthermore, [1], [S], [24]-[26], present similar aspects with some parts of our

Int J Artif Intell, Vol. 13, No. 1, March 2024: 45-56

Int J Artif Intell ISSN: 2252-8938 a 47

approach. We will describe in the following paragraphs the main similarities and differences between those
studies.

Ramirez and Fasli [24] propose a model that uses both NetLogo and Jason agents in an especially
complex model for cognitive agents, a Disaster-Rescue simulation. The approach to bring those two different
architectures of agents, connecting Jason to NetLogo, is to either include part of NetLogo’s internal classes
inside the Jason code or do the opposite, including Jason’s internal classes inside the NetL.ogo code since both
applications use Java code. Even though this study considers a closed multi-agent model (not an open one), it
has some similarities to our study in that they have communication between agents with different architectures.
The main difference is that, in this case, both applications use Java code. We point out a limitation of this
work if some agent programmer wants to use this approach to communicate, for instance, NetLogo, to another
agent platform that uses another language. Our approach creates a platform that runs isolated code (inside
containers) that allows completely different programming environments, allowing the developer to run any
code (Java, Python) through our application programming interface (API) service.

Uez [5] propose a methodology for specifying OMAS. The structure uses two main ideas: the inde-
pendent modeling of each of the dimensions of the system (agent, environment, and organization); and the
specification of edge concepts, providing information at design time that helps include at runtime the elements
of the dimension open. Furthermore, the authors designed elements targeting code for the JaCaMo framework
in the implementation. In addition, the study has two case studies, which allow viewing the results throughout
the development phases. The main difference between this study and our approach is that the programmer
must adapt the model and architecture to the solution. In contrast, our architecture can be adapted to the current
running implementation that the programmer has, just using the I/O mechanisms that the agents must have to
communicate with our solution. Compared to the parameters analyzed in the study, our platform works on
the agent dimension and the implementation phase (the study deals with agent/environment/organization di-
mensions and analysis/project/implementation phases). We deal with the agent dimension because our primary
focus is to transport agents between models, even though it is possible to extend our platform to transport parts
of the environment, like artifacts. On the other hand, we focus the approach on the implementation phase
because we want the programmer only to rebuild part of the model to the platform. In this way, the program-
mer needs to include the mechanisms to communicate with our platform. That way, the primary usage of our
platform is in a model already built (implementation phase).

Perles et al. [1] present the development of a Java-based framework for the development of adaptive
open multi-agent systems. The framework developed by the authors, named AMAK, uses three fundamental
classes based on object-oriented principles: adaptive multi-agent system (AMAS), Agent, and Environment.
Whoever uses the framework must implement these abstract classes, adapting to the model. Furthermore,
the authors use developing a socio-technical environmental system as a case study to bring environmental
well-being. The architecture proposed in this study is mainly diverse from ours because it is almost a new
programming language since the authors compare their results with other agent programming languages (such
as Jade, NetLogo, and GAMA). However, our approach does not require the programmer to remake its model
into something new. Instead, the programmer must insert the code to allow the agents to communicate with the
architecture, which leads to less effort to allow the agents to move between the models.

Pfeifer et al. [26] propose a MAS to monitor and manage container-based distributed systems. Their
system allows users to observe and verify the quality and progress of the application over time, improving
parameters such as quality of service (QoS). This study is unrelated to OMAS but has concepts similar to
those we used in our approach. Furthermore, they encourage the connection between MAS and DevOps, using
DevOps tools such as Docker. The main difference is that we do not use Docker to monitor MAS systems.
Instead, we run our system in a container-based approach on Docker.

Dihling et al. [25] use MAS in the internet of things (IoT) field since both share similarities (dis-
tributed devices, cooperation). They mainly use MAS in IoT to build large-scale and fault-tolerant systems.
They propose a cloud-native multi-agent platform (MAP), named cloneMAP, to use cloud-computing tech-
niques to enable fault-tolerance and scalability. This approach is related to MAS rather than to OMAS. It is
similar to our study using DevOps tools associated with MAS, such as Docker. Still, the study’s primary goal
is not related to openness and allowing agents to move between models. Also, similarly to [1], this study com-
pares results directly to agent programming platforms, such as Java Agent Development Framework (JADE),
which differs from our approach. In our approach, we keep the model similar to before the openness making
changes to insert the mechanisms to allow the model to communicate with our platform.

Towards a Docker-based architecture for open multi-agent systems (Gustavo de Lima)

48 a ISSN: 2252-8938

Table [I] summarizes the similar studies found, indicating if it is focused on the organization aspect
of OMAS, if it uses some DevOps tools, and deal with more than one MAS platform. The aspect of DevOps
is important because it is a way to implement multiple parts of the systems that could run different languages
and OS, making it possible to use all kinds of different MAS tools. The last aspect is how many MAS plat-
forms/tools are being used. This aspect is essential to making the tool max embracing as possible.

Table 1. Summarization of related work

Work Year Organization-related DevOps Tools MAS Platforms

4] 2013 Yes - Single
el 2010 Yes - Single
(18] 1996 Yes - Single
[19] 2006 Yes - Single
[20] 2012 Yes - Single
211 2003 Yes - Single
[22] 2009 Yes - Single
23] 2021 Yes - Single
[12] 2020 Yes - Single

[24] 2017 Other - Multiple
151 2018 Other - Single
251 2021 Other Docker and Kubernetes Single
[26] 2021 Other Docker Single
[2018 Other - Single

Our Approach 2022 Other Docker Multiple

From the 15 studies analyzed, the main focus of 9 of them is to deal with organizational problems
that come with the openness from OMAS. Of the other 6, 3 are language dependent, not allowing the usage of
MAS/OMAS tools that runs in a different development/usage environment, as another tool that uses another
language. Lastly, besides ours, only one study deals with more than one MAS platform. This study is only
MAS, not OMAS-related, so it does not deal with the problem of transporting agents between models. Also,
this study connects two MAS platforms that run in the same language (Java), not considering other tools that
might use other languages.

In conclusion, our approach contributes to the state-of-art in how the programmer will use the plat-
forms. For example, some studies propose new approaches that require the programmer to rebuild their models
according to the proposes. In our architecture, the programmers would not have to change their entire model.
Instead, they will add the structures needed to their models to communicate with our architecture, allowing an
easier transition from a closed MAS to an open MAS. Another related work already used container/cloud-based
approaches related to the MAS system, showing that this approach is promising. Also, some studies have tested
the communication between NetLogo and Jason agents.

3. THE PROPOSED APPROACH

Our approach aims to develop an environment that facilitates the development of OMAS using Docker
[17] as a basis, allowing the migration of agents between models that can run in heterogeneous scenarios.
The structure allows code to run inside containers that contain the same operation structure where they were
developed, avoiding problems like programs that run in the development stage but in the production stage have
problems. In our approach, each image is generated based on a description file, called DockerFile, containing
information on the structures needed in the container, such as the operating system, programming languages,
and code to be executed. In addition, Docker has an image bank, the Docker Hub Container Image Library,
which contains the images frequently used by developers, extending the approach’s applicability.

The containers are responsible for executing each essential block of the architecture structure. There-
fore, they can be easily replaced or added, making the architecture more modularized and adaptable to new
scenarios not foreseen in the conception, making it more robust. We also deal with security concerns, such as
creating separate virtual networks so that each container has a partial view of the system, limiting access to
sensitive code. Finally, our approach can use online platforms such as Amazon’s (AWS Docker) to run code
in the cloud due entire structure being developed based on Docker, which enables high application portability,
expanding the universe of applications in the architecture.

Int J Artif Intell, Vol. 13, No. 1, March 2024: 45-56

Int J Artif Intell ISSN: 2252-8938 a 49

The Figure|[T|presents a general description of the proposed architecture in a block diagram format. In
the Docker-compose block, we have the generation of images and services based on the docker-compose.yaml
file and the Dockerfile of each service. Each Dockerfile contains the sequence of instructions needed to assemble
the image with all the requirements that each service needs. Then, based on the images, Docker-compose uses
the parameters of each service (container name, exposed ports, network, volumes, command/file to be executed)
and builds them. Finally, when we define all services on the Docker-compose, they can be executed using just
one command.

Containers

™ T2 Tn

M1 M2 Mn

Docker-
compose

Logs

Register API Router
DBMS DB Interface

Figure 1. Organization of the proposed architecture

The blocks M, Ms, ..., M,, represent the containers responsible for running the models. In the
main configuration file, the designer can define a parameter auto run. When we set this parameter to True, the
models are executed automatically when the container is mounted. If it is False, we must start execution of
the templates by a trigger container (T, Ta, ..., Ty). It is necessary to implement communications within
the models’ architecture, such as triggers and functions of how agents enter/exit the model. So far, there are
containers ready to support NetLogo (Java container) and JaCaMo (Java via Gradle) models (see Section[4.] for
more information).

Ty, Ts, ..., T, are execution trigger containers, responsible for sending a message to the models
to start their execution. We use these containers when necessary to implement a more robust logic to start
executing the models. For example, they can run codes that read a sensor, wait for measurement, or run a
certain model only when agents are assigned.

The application programming interface (API) block is the container responsible for managing access
to the database. This container acts as an intermediary when any system part must write, read, update, or delete
information from the database. Currently, the API is implemented in Python, using the Flask framework [27].
All the methods are accessible via HTTP, using JavaScript Object Notation (JSON) format on every message,
as a standard for APIs.

The database (DB) block represents the container responsible for the database where we store, for each
model, all agent arrival/departure information to be accessed by other containers that may need this information.
It is important to note that we do not implement business rules in the DB. Also, this container is responsible
for carrying out database operations (read, write, update, and delete). How containers must manipulate the
information before or after involving the database is their responsibility, which will only pass the final command
to this one.

The database management system (DBMS) block represents the container that facilitates access to the
DB. It provides a Web interface (by default exposed to the host machine) that can import/export structured query
language (SQL) content/files and view the information in real-time. This container can help with debugging
and making logs of the application. Also, the DBMS must be chosen according to the DB because they must
be compatible.

Towards a Docker-based architecture for open multi-agent systems (Gustavo de Lima)

50 a ISSN: 2252-8938

The register block is a container responsible for managing all agents on the platform. Every agent
must have an identification to be used by the architecture, so the first insertion requests for new agents coming
from any model containers need a unique identification. So, the Register is responsible for generating a unique
identification for every agent, then forwarding them back to the environments.

The router block is the model responsible for receiving all agents that left a given model, analyzing
and judging which model to send the agent. This step specifies the agent’s entry and exit protocols from
different containers/models. This block is an essential part of the proposal because models delegate to Router
the distribution task of the agents among the models. When the simulation environment does not share (or only
partially) information about the world, the Router can handle several problems related to the absence of this
information. Judgment can occur differently, such as analyzing the most promising agents, machine learning
codes, and executing a new MAS model that retrains agents. In the simulation scenario, there are two judgment
options that the Router can make of the list of agents to be processed: i) randomly chooses the agent and the
target model (random mode); and ii) process agents in a single queue, considering all models, and randomly
defines the destination model (general sequential mode).

The interface block is a container that receives agent movement information through the system and
generates reports exposed and formatted to view metrics of the architecture’s execution. In the current im-
plementation, this container has an Apache Webserver running PHP (Hypertext Preprocessor) code that reads
all information from agents that have already gone through the Router and generates a report with all agents,
attributes, and the path they took. The general form of the report is through a front-end (hypertext markup
language (HTML)), cascading style sheet (CSS), and JS (JavaScript) code)), which the host can access by
exposing the port that apache runs on port 80 (by default).

Each tuple contains all essential attributes for every agent interaction so far. In the end, it presented the
longest path taken by agents. Notably, a search option exists to filter the results by any of the columns. Also,
it is possible to filter results by agent, model, and whether the tuple has been processed by the model/router.
Finally, each agent already processed by the Gold Miners model (JaCaMo container) has a .as! file (AgentSpeak
Language) containing relevant information to the model. So, on this interface, the user can check the .asl to see
its content.

Finally, the logs block is not a container but a module responsible for generating logs of the outputs of
each container in the system. We can obtain several types of logs from the simulation, such as regular docker
logs (via docker log command), DB tuples via SQL export, and prints on txt files (using terminal operators
when running the container on docker-compose), for example. In addition, some structures have particular log
types, such as JaCaMo’s default log generator (based on Java’s logging API). These logs can assist in debugging
tasks or generating data for execution analysis.

4. RESULTS

In the proposed simulation scenario, we built containers to support two different development tools
for MAS: NetLogo [28] and JaCaMo [29]. We choose two models from each tool’s documentation: NetLogo’s
Open Sugarscape 2 Constant Growback [30] and JaCaMo’s Gold Miners [31], with adaptations. We used
three model containers, running two isolated copies of Open Sugarscape and one of Gold Miners. The main
objective of this simulation scenario is to validate the approach feasibility, allowing agents to move between
models freely, even though the two tools use different agent architectures.

4.1. The open sugarscape model’s adaptations in NetLogo

The Open Sugarscape model is a simulation used in artificial societies, simulating a population with
limited resources where we represent each agent with an ant that, to survive, must move around the environment
in search of sugar. Each ant is born with an amount of sugar (from 5 to 25), metabolism (from 1 to 4), and
vision (from 1 to 6). Metabolism defines how much energy the ant loses when moving. If the ant’s energy
reaches zero, it dies and leaves the model. Vision determines how many distance positions the ant can see
sugar from its initial position. Figure 2] illustrates the NetLogo interface simulating the original model.

In Figure 2] we can view the environment, input parameters, and some metrics. For example, it is
possible to configure the number of agents at startup and the buttons to start, execute, and pause the code on
the left. In the center, we can see the environment. The red dots represent the agents, while the others represent
the sugar inserted into the environment, ranging from yellow to white, respectively, from more to less intensity.
Finally, graphs represent simulation output metrics, such as population, metabolism, and vision averages.

Int J Artif Intell, Vol. 13, No. 1, March 2024: 45-56

Int J Artif Intell ISSN: 2252-8938 a 51
initial-population 400 A .. .::.;::: [] B e Population " ‘Wealth distribution
. o o \
Delledloml .+« FEESy
visualization | 8 o .: - ' : [] :. e e b
‘nn-wsuahzatiun v" . o s 8
. . L) ... w .“::....:!.’g.. :.. 00 13.8 00 55
DEUgD?ua o0 ' [] =] L] e [] Average vision Average metabolism
. L] . L] ° 6 5
ATEINGy XA " il -
g . -
R I
: -~ :. ’... '.’ L] . . 0 o
. L] L] ' . o 13.8 o 13.8
. y ' * .. L] ' L) .
L] L .
L)'.. :... ..
L]
L

Figure 2. Sample sugar scape model in NetLogo IDE

Figures[3[(a) and3[(b) show, respectively, the source code needed for the NetLogo can receive and send
data from the architecture. Our approach provides functions check_new_agent_on_api and send_agent_to_api to
the user for setting the triggers to send (and what information should be sent) and receive an agent. For this
specific model, when an agent dies (according to the original model, an agent dies when its food becomes zero),
the model sends this agent to the architecture and removes this agent from the simulation.

to check_new_agent_on_api
py:setup py:python

py:run "from db_python_netlogo import receive_agent”

let result py:runresult (word "receive_agent('" ("m1™) "')")

ifelse(length result > @)
[
foreach result
[
X ->
let tuple read-from-string item 1 x

create-turtles 1
[
set
set
set
set
set

agent_id item @ x

sugar random-in-range 5 25
metabolism item 1 tuple
vision item 2 tuple
historic item 2 x

set shape "circle”

move-to one-of patches with [not any? other turtles-here]

set vision-points []
foreach (range 1 (vision + 1)) [n ->
set vision-points sentence vision-points (

list (list @ n) (List n @) (list @ (- n)) (list (- n) ©))

run visualization
print "Agent created”
]
1
]
[
print (“There is no new agent on DB")
1

end

(a)

to send_agent_to_api
py:setup py:python

py:run “from db_python_netlogo import send_function®

;//Example: "send_function('12', '[1 2 3], '1-1')"
let updated_histori
ifelse (historic

[

set updated_historic 1

[

set updated_historic (word "" (histeric) "-1")
let
set
set
set

tuple []

tuple lput sugar tuple
tuple lput metabolism tuple
tuple lput vision tuple

let result py:runresult (word
“send_function('" (agent_id) "', '"

)

tuple "'

print("Agent sent?")
print(result)
end

(b)

, " (updated_historic) "')"

Figure 3. NetLogo functions responsible for (a) receiving and (b) sending agents between the architecture and
the NetLogo model

We made another adjustment when the agent returned to the simulation; instead of using his last
information about food, we generated this parameter randomly, while the other parameters were the same as
the last simulation. We made that adjustment because of the way that the original simulation works. If the agent
leaves the simulation when its food is zero, and we use that same information again when the agent returns, it
would cause a loop because the agent would get to the simulation with zero food and die again.

The only two attributes added on the NetLogo agents are agent_id and historic. We used agent_id to
check the agent’s unique id for the architecture, while the regular id is used just for the NetLogo’s simulation.
The attribute historic shows the path of what models the agents went through.

Towards a Docker-based architecture for open multi-agent systems (Gustavo de Lima)

52 a ISSN: 2252-8938

The only dependency required is Py NetLogo’s extension to adapt any NetLogo model to our platform.
We need this extension to send/receive information from the API through Python code. We have small functions
to do so, and all the programmer has to do is include those functions and use them whenever the model needs to
send/receive information about the agents. We have examples of how to adapt and use our functions on GitHub.

4.2. The Gold Miners model’s adaptations in JaCaMo

Figure [] illustrates the JaCaMo interface simulating the Gold Miners model. This model simulates
a set of agents representing miners whose role is to navigate the environment. For example, when an agent
finds a gold node, it stops his current objective, gets the gold, and brings it back to the central deposit. In the
Figure, it is possible to see the representation of the agents (blue dots), the deposit (box with X in the center),
the environmental barriers (positions not accessible to the agents, black boxes), the gold nodes (yellow boxes),
the positions already visited by agents (white boxes) as well as those not accessed (gray boxes).

0006 Mining World

Click on the cells to add new pieces of gold.

(mouse at: 34,21)

Collected golds: 0/12

Figure 4. Gold Miners running on JaCaMo graphical user interface (GUI)

An excerpt of the source code (Java and ASL) needed for the JaCaMo can send and receive data from
the architecture is shown in Figure [5] Figures [5[a) and [5[b) show the Java code for receiving and deleting
agents. Figures [5[c) and [5[d) show the ASL code for checking for new agents and removing excluded agents
from the architecture. The architecture presents two agents for sending/receiving information: killer_agent and
check_new_agents. The killer_agent waits for an agent’s message to be removed from the simulation. When it
happens, this agent saves all the agent’s information in a .as/ file (that will be used when this agent reenters the
simulation) and then removes the agent from the simulation.

The check_new_agents job is to check if an agent is waiting to enter the current model. If so, the agent
is inserted into the model. This agent uses Java and AgentSpeak Language (ASL) code to communicate with
the API and insert the agent into the simulation. We can also adapt this code to insert extra initial information to
the agent, like beliefs, goals, or focus on Cartago artifacts. When the model includes an agent in the simulation,
check_new_agents verifies if there is a .asl! file with the agent id, that is, that the new agent has already been on
the model. If the file exists, the model creates the agent with its previous information (using the previous .as/
file). If not, the model creates the agent with a fresh new .as! file used as a template.

Int J Artif Intell, Vol. 13, No. 1, March 2024: 45-56

Int J Artif Intell ISSN: 2252-8938 a 53

tuple_agent_id valueOf(args[@])

out.println(sugar) tuple_data valueOf(args[3])
out.println(metabolism) valueOf(args[4]) valueOf(args[5])
out.println(vision) tuple_path valueOf(args[1])
h valueOf(args[1]).replace()
bels agent_id A A
bels = bels ch + agent_path + ch out pr‘J_ntln(tuple_agent_id)
bels = bels sugar metabolism vision out.println(tuple_data)
out.println(bels) out.println(tuple_path)
s
s.addoption(bels) (rs.killAgent(tuple_agent_id DA
s.addOption(out.println(tuple_agent_id)
)
{ posturl host
asl_file_name agent_id json_obj 0
Json_obj.put(tuple_agent_id)
(exists(get(asl_file_name))){ json_obj.put(tuple_data)
asl_file_name Json_obj.put(tuple_path)
}
httpClient create().build()
out.println(asl_file_name) post (posturl)
postingString (json_obj.toString())
rs.createAgent(agent_id, asl_file_name s, ts.getAg()) post.setEntity(postingString)
rs.startAgent(agent_id) post.setHeader()
out.println() response = httpClient.execute(post)
} catch (e) { } {
e.printStackTrace() out.println()
¥)
(a) (b)
+lcheck_new_agent : true +kill(Ve, V1, X, Be, B1, B2) : true
<= <- .print("I've received a message to kill agent ",X);
.print(“"Checking and creating agent if it exists on API"); .print("Killing agent ",X);
mylib.check_new_agent; mylib.my_delete_ag(Vve, V1, X, Be, Bl, B2);
.wait(1000); .wait(2eee);
Icheck_new_agent. .print("This agent has being removed from the simulation: ",X).
(© (d)

Figure 5. Java and ASL functions inserted into JaCaMo code to provide the functions responsible for
(a) receiving, (b) deleting, (c) checking, and (d) removing agents from/to the architecture

In the current adaptation of the original model, we use only one miner agent, along with the architec-
ture’s agents (check_new_agents and killer_agent) and the leader agent. So, when the agent joins the simulation,
it takes control of the miner agent. This agent navigates through the map, brings back his old information (about
previous simulations), navigates through the map, gets gold, brings it back to the depot, and then leaves the
simulation (sends a message to the killer_agent to be removed from the simulation). Finally, when the agent
leaves the simulation, the model checks the next agent that will join the simulation and takes control of the
miner agent so the simulation can continue its execution.

Some adaptations are needed to adapt any JaCaMo model to our platform. First, if the project is not
already running via Gradle (which is the default option), we need to adapt the model to do so. The steps
required to achieve this goal are presented in JaCaMo’s GitHub documentation. After, we need to include two
libraries on the build Gradle file: JSON-simple (to deal with JSON-format information) and HTTP client (to
deal with HTTP requests). The last step is to include the killer/checker agents (with their ASL files) who deal
with the API. With these steps done, the model is ready to communicate with the API. Now, the programmer
can use the system’s functions to send and receive agents between the API and the model. We have examples
of how to adapt and use our functions on GitHub.

4.3. The simulation scenario

In the simulation scenario, M; and Ms containers are running simultaneously two replicas of the
Sugar Scape NetLogo model, and the M3 container is running the Gold Miners model, on JaCaMo. All three
models run indefinitely and use the auto-run option when no trigger container starts the simulation. When an
agent dies, the current model is responsible for sending it to the Router (and then to DB via API); it will go
through a process that will decide which models the agent will return.

At the beginning of the execution, instead of creating the agents directly by the model, the models M1
and M, ask the Register container to create the agents so that they receive an identification used in the OMAS.
In the current implementation of the simulation scenario, only the NetLogo models ask for new agents. The
JaCaMo model is receiving and sending agents but not creating them on the initialization, even though it is
possible.

After the initial step of creating and registering all agents, the M;, My and M3 models continue
their execution, along with the Router processing. Whenever an agent leaves any of the models, it goes to
the DB container (via API). Once new information is on the DB, the Router knows that there are new agents
to be processed, so it reads the agents and sends them to a model according to the routing type (by default,
randomly). Both Log or Interface containers can access the flow of this information.

Towards a Docker-based architecture for open multi-agent systems (Gustavo de Lima)

54 O ISSN: 2252-8938

It is essential to point out that most adaptations are not substantial, mischaracterizing the original
models to be adapted to the architecture; instead, they are due because these models need to be prepared to
receive agents from outside, to be able to do so. We have provided a template of the trigger functions to send
and receive information to the architecture. The users must add it to their model, adapt to what information
they want to send or receive, and use the triggers when they want the model to send or receive agents. We
emphasized that this feature is important because we aim to reduce the complexity of the code adaptation. On
the documentation, the user can find all the information needed. Also, those adaptations show that the archi-
tecture allows completely different agent architectures to communicate. For example, NetLogo programming
uses Logo language, while JaCaMo uses ASL on belief, desire, intention (BDI) concepts. Though heteroge-
neous models, the agent carries all its information while moving in the architecture. Thus, it is possible to
adapt information when we create an agent on each model because we included/excluded from the models in
real-time.

We provide videos and tutorials on the GitHub page [32] about the scenarios tested that were essential
to check the architecture’s strengths. With these tests, the platform allowed two MAS models, coming from
the original documentation of each platform (NetLogo and JaCaMo), becoming from a closed to an open MAS
execution with few extra steps. Furthermore, we could familiarly implement the original models. Instead, we
had to insert the codes and the agents necessary to communicate with our platform. Finally, it is essential to
point out that both platforms have access to all information from the agent. For example, JaCaMo’s model
could access any attribute from the NetLogo’s agent (sugar, metabolism, and vision) to make something useful
in the simulation. The opposite is true: NetLogo has access to the .as! file of every agent, making it possible to
use some information, like a belief, for something useful in the simulation. The data exchange and the openness
with feel steps are two key contributions of our work.

Both scenarios use similar parameters. The main difference is that one scenario runs both models
inside Docker. In contrast, the other scenario runs JaCaMo outside Docker (but still communicates with the
platform) to be able to use a GUI. When running JaCaMo outside of Docker, the API container must expose a
port to establish communication with the host machine.

In the scenarios, after downloading the platform from documentation (available on GitHub), the pro-
grammer starts the simulation with the command docker-compose up -d. This command will tell Docker to
download and build all images and containers necessary, according to the docker-compose.yml file. After ev-
erything is set and running, all container logs are accessible via Docker Desktop or Docker command line
interface (CLI). While CLI is a Command Line Interface, Docker Desktop is a GUI that allows the user to
check what is happening inside containers, run commands on containers, and so on. In addition, each container
shows logs and information about itself. For instance, in the API container, it is possible to check all the re-
quests that the API receives and processes, while in the JaCaMo container, the user can check all alive agents,
minds, artifacts, and so on. Besides the Docker logs, the DBMS and Interface blocks are accessible via the
browser (address on docker-file), allowing users to access all agents’ navigation through the models and their
parameter values.

5. CONCLUSION

This paper presented a proposal of architecture to assist the development of OMAS. Similar work to
this proposal was summarized and discussed. Then, we introduced the proposed approach, methodology, and
implementation details. Finally, we showed the results obtained, emphasizing the case of the study developed
in the architecture prototype, which is of great importance to verify the feasibility of the implementation. Our
approach presents an environment that facilitates the development of OMAS using Docker. This architecture
allows the migration of agents between models that can run in heterogeneous scenarios. Furthermore, the
structure provides code to run inside containers that contain the same operation structure where they were
developed, avoiding problems like programs that run in the development stage but in the production stage have
issues. In addition, the architecture acts as the union step between models. Docker allows models to be executed
in different scenarios on various platforms, using distinct development languages that run on multiple operating
systems. In the presented simulation scenario, we used containers running NetLogo’s Open Sugarscape 2
Constant Growback and JaCaMo’s Gold Miners with minor adaptations to validate the approach feasibility.
The prototype presented allowed agents to move freely between models, sharing all agent information with
respective models and reducing the complexity of the code adaptation, demonstrating that it is sufficient but

Int J Artif Intell, Vol. 13, No. 1, March 2024: 45-56

Int J Artif Intell ISSN: 2252-8938 a 55

straightforward to understand the proposed approach better. The migration of agents between models occurs
at runtime. The motivation for this migration of an agent from one system to another can be different, usually
of the developer’s choice, such as execution failures, self-will, or some trigger. In addition, we can deal with
conflicts of interest between the new agents when designed to work outside of that model. In future work,
we want to explore new triggers that make agents switch models, such as geographic boundaries and parallel
models. Geographic boundaries are models where, when the agent reaches the edge of the environment, it
passes to the other model. Parallel models are models where the same agent participates in more than one model
simultaneously, but each model evolutes particular attributes of the agent. Also, even though the platform runs
on a local machine, several platforms (i.e., Amazon’s AWS Docker) allow the entire structure being developed
based on Docker to run in the cloud, enabling application portability and expanding the universe of applications
in the architecture. Finally, the architecture implementation supports two relevant agent platforms, NetLogo
and JaCaMo. However, we want to go further and support other agent platforms, such as JADE (Java-based)
or Mesa (Python-based).

ACKNOWLEDGEMENTS

This study was financed in part by the Coordenacdo de Aperfeicoamento de Pessoal de Nivel Superior
— Brasil (CAPES) - Finance Code 001.

REFERENCES

[1] A.Perles, F. Crasnier, and J.-P. Georgé, “Amak - a framework for developing robust and open adaptive multi-agent systems,” in Pro-
ceedings of International Conference on Practical Applications of Agents and Multi-Agent Systems — Highlights of Practical Appli-
cations of Agents, Multi-Agent Systems, and Complexity: The PAAMS Collection, J. Bajo, J. M. Corchado, E. M. Navarro Martinez,
E. Osaba Icedo, P. Mathieu, P. Hoffa-Dabrowska, E. del Val, S. Giroux, A. J. Castro, N. Sanchez-Pi, V. Julidn, R. A. Silveira,
A. Fernandez, R. Unland, and R. Fuentes-Ferndndez, Eds., Cham: Springer International Publishing, 2018, pp. 468—479, doi:
10.1007/978-3-319-94779-2_40.

[2] V. R. Lesser, “Cooperative multiagent systems: A personal view of the state of the art,” IEEE Transactions on knowledge and data
engineering, vol. 11, no. 1, pp. 133-142, 1999, doi: 10.1109/69.755622.

[3] M. Woolridge and M. J. Wooldridge, Introduction to multiagent systems. EUA: John Wiley & Sons, Inc., 2001, doi:
10.5555/1695886.

[4] W.Jamroga, A. Meski, and M. Szreter, “Modularity and openness in modeling multi-agent systems,” Electronic Proceedings in
Theoretical Computer Science, vol. 119, pp. 224-239, Jul. 2013, doi: 10.4204/eptcs.119.19.

[51 D. M. Uez, “Open aeolus: um método para especificacdo de sistemas multiagentes abertos,” Ph.D. thesis, Automa-
tion and Systems Engineering, Federal University of Santa Catarina, Floriandpolis, Brazil, 2018, [Online]. Available:
https://repositorio.ufsc.br/handle/123456789/205584.

[6] F Dalpiaz, A. K. Chopra, P. Giorgini, and J. Mylopoulos, “Adaptation in open systems: Giving interaction its rightful place,” in
Proceedings of the Conceptual Modeling — ER 2010, J. Parsons, M. Saeki, P. Shoval, C. Woo, and Y. Wand, Eds., Berlin, Heidelberg:
Springer, 2010, pp. 31-45, doi: 10.1007/978-3-642-16373-9_3.

[7]1 T.D.Huynh, N. R. Jennings, and N. Shadbolt, “Developing an integrated trust and reputation model for open multi-agent systems,”
Autonomous Agents and Multi-Agent Systems, vol. 13, pp. 119-154, 2004, doi: 10.1007/s10458-005-6825-4.

[8] S. Kaffille and G. Wirtz, “Modeling the static aspects of trust for open mas,” in 2006 International Conference on Computational
Intelligence for Modelling Control and Automation and International Conference on Intelligent Agents Web Technologies and In-
ternational Commerce (CIMCA’06), 2006, pp. 186—186, doi: 10.1109/CIMCA.2006.150.

[91 R. M. van Ejjk, F. S. de Boer, W. Van Der Hoek, and J.-J. C. Meyer, “Open multi-agent systems: Agent communication and
integration,” in Proceedings of the International Workshop on Agent Theories, Architectures, and Languages, 1999, pp. 218-232,
doi: 10.1007/10719619_16.

[10] J. M. Hendrickx and S. Martin, “Open multi-agent systems: Gossiping with deterministic arrivals and departures,” in Proceed-
ings of the 54th Annual Allerton Conference on Communication, Control, and Computing (Allerton), 2016, pp. 1094-1101, doi:
10.1109/ALLERTON.2016.7852357.

[11] M. Franceschelli and P. Frasca, “Proportional dynamic consensus in open multi-agent systems,” in Proceedings of the IEEE Con-
ference on Decision and Control (CDC), 2018, pp. 900-905, doi: 10.1109/CDC.2018.8619639.

[12] Z.Houhamdi and B. Athamena, “‘Collaborative team construction in open multi-agents system,” in Proceedings of the 21st Interna-
tional Arab Conference on Information Technology (ACIT), 2020, pp. 1-7, doi: 10.1109/ACIT50332.2020.9300116.

[13] S. Noh and J. Park, “System design for automation in multi-agent-based manufacturing systems,” in Proceedings of 20th Interna-
tional Conference on Control, Automation and Systems (ICCAS), 2020, pp. 986-990, doi: 10.23919/ICCAS50221.2020.9268357.

[14] W.Jiang, Y. Chen, and T. Charalambous, “Consensus of general linear multi-agent systems with heterogeneous input and commu-
nication delays,” IEEE Control Systems Letters, vol. 5, no. 3, pp. 851-856, 2021, doi: 10.1109/LCSYS.2020.3006452.

[15] M. Franceschelli and P. Frasca, “Stability of open multiagent systems and applications to dynamic consensus,” I[EEE Transactions
on Automatic Control, vol. 66, no. 5, pp. 2326-2331, 2021, doi: 10.1109/TAC.2020.3009364.

[16] C. Anderson, “Docker [software engineering],” leee Software, vol. 32, no. 3, pp. 102—3, 2015.

[17] J. Turnbull, The Docker Book: Containerization Is the New Virtualization, Melbourne, Australia: James Turnbull, 2014.

[18] Y. Demazeau and A. R. Costa, “Populations and organizations in open multi-agent systems,” in Proceedings of the Ist National
Symposium on Parallel and Distributed AI (PDAI’96), 1996, pp. 1-13.

Towards a Docker-based architecture for open multi-agent systems (Gustavo de Lima)

56

a ISSN: 2252-8938

[19]

[20]

[21]

[22]
[23]
[24]
[25]

[26]

[27]
[28]
[29]
[30]
[31]

[32]

J. Gonzalez-Palacios and M. Luck, “Towards compliance of agents in open multi-agent systems,” in Proceedings of the International
Workshop on Software Engineering for Large-Scale Multi-agent Systems, Shanghai, China: Springer, 2006, pp. 132-147, doi:
10.1007/978-3-540-73131-3_8.

A. Artikis, “Dynamic specification of open agent systems,” Journal of Logic and Computation, vol. 22, no. 6, pp. 1301-1334, 2011,
doi: 10.1093/logcom/exr018.

S. Paurobally, J. Cunningham, and N. R. Jennings, “Ensuring consistency in the joint beliefs of interacting agents,” in Pro-
ceedings of 2nd International Joint Conference on Autonomous Agents & Multiagent Systems, AAMAS, 2003, pp. 662-669, doi:
10.1145/860575.860682.

M. P. Singh and A. K. Chopra, “Programming multiagent systems without programming agents,” in Proceedings of the International
Workshop on Programming Multi-Agent Systems, 2009, pp. 1-14, doi: 10.1007/978-3-642-14843-9_1.

S. Hattab and W. Lejouad Chaari, “A generic model for representing openness in multi-agent systems,” The Knowledge Engineering
Review, vol. 36, p. €3, 2021, doi: 10.1017/50269888920000429.

W. A. L. Ramirez and M. Fasli, “Integrating netlogo and jason: a disaster-rescue simulation,” in 2017 9th Computer Science and
Electronic Engineering (CEEC), 2017, pp. 213-218, doi: 10.1109/CEEC.2017.8101627.

S. Déhling, L. Razik, and A. Monti, “Enabling scalable and fault-tolerant multi-agent systems by utilizing cloud-native computing,”
Autonomous Agents and Multi-Agent Systems, vol. 35, no. 1, pp. 1-27, 2021, doi: 10.1007/s10458-020-09489-0.

V. Pfeifer, W. F. Passini, W. F. Dorante, I. R. Guilherme, and F. J. Affonso, “A multi-agent approach to monitor and
manage container-based distributed systems,” [EEE Latin America Transactions, vol. 20, no. 1, pp. 82-91, 2021, doi:
10.1109/TLA.2022.9662176.

M. Grinberg, Flask web development: developing web applications with python. Sebastopol, CA, USA: O’Reilly Media, Inc., 2018,
doi: 10.5555/2621997.

S. Tisue and U. Wilensky, “Netlogo: A simple environment for modeling complexity,” in International conference on complex
systems, vol. 21, pp. 16-21, 2004.

O. Boissier, R. H. Bordini, J. F. Hiibner, A. Ricci, and A. Santi, “Multi-agent oriented programming with jacamo,” Science of
Computer Programming, vol. 78, no. 6, pp. 747-761, 2013, doi: 10.1016/j.scico.2011.10.004.

J. M. Epstein and R. L. Axtell, Growing artificial societies: Social Science from the Bottom Up, Cambridge, MA, USA: Bradford
Books, Oct. 1996.

R. H. Bordini, J. F. Hiibner, and D. M. Tralamazza, “Using jason to implement a team of gold miners,” in International Workshop
on Computational Logic in Multi-Agent Systems, 2006, pp. 304-313, doi: 10.1007/978-3-540-69619-3_18.

G. L. de Lima and M. S. de Aguiar, “Architecture’s github page,” 2022, [Online]. Available: https://github.com/
GustavoLLima/open_mas_docker_opt (accessed: October 26, 2022).

BIOGRAPHIES OF AUTHORS

Gustavo Lameirio de Lima | & B | is a Ph.D. student in Computing at the Federal University
of Pelotas - UFPEL. In addition, he is a Master in Computer Engineering at the Federal University
of Rio Grande - FURG (2018), Electronics Technician at the Instituto Federal Sul Rio Grandense -
IFSUL (2013) and Technologist in Internet System Technology at the Instituto Sul Rio Grandense
IFSUL (2013). 2016). He can be contacted at email: gustavolameirao@inf.ufpel.edu.br or gus-
tavolameirao @gmail.com.

Marilton Sanchotene de Aguiar 84 B S Associate Professor at the Federal University of Pelotas
(UFPEL) of the Undergraduate Courses in Computer Science and Engineering and the Graduate
Program in Computing. Director of the Center for Technological Development at the UFPEL. His
research has focused on applications of Artificial Intelligence to educational, environmental, and
health problems. He can be contacted at email: marilton @inf.ufpel.edu.br.

Int J Artif Intell, Vol. 13, No. 1, March 2024: 45-56

https://orcid.org/0000-0001-7662-9540
https://scholar.google.com.br/scholar?hl=pt-BR&as_sdt=0%2C5&q=Gustavo+Lameir%C3%A3o+de+Lima&btnG=
https://www.scopus.com/authid/detail.uri?authorId=57219591990
https://www.webofscience.com/wos/author/record/GRN-8133-2022
https://orcid.org/0000-0002-5247-6022
https://scholar.google.com/citations?user=sq0PLVcAAAAJ&hl=pt-BR
https://www.scopus.com/authid/detail.uri?authorId=7004368480
https://publons.com/wos-op/researcher/1392870/marilton-sanchotene-de-aguiar/

	Introduction
	Related Work
	The Proposed Approach
	Results
	The open sugarscape model's adaptations in NetLogo
	The Gold Miners model's adaptations in JaCaMo
	The simulation scenario

	Conclusion

