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 In light of technical and technological progress, software has become an 

urgent need in every aspect of human life, including the medicine sector and 

industrial control. Therefore, it is imperative that the software always works 

flawlessly. The information technology sector has witnessed a rapid 

expansion in recent years, as software companies can no longer rely only on 

cost advantages to stay competitive in the market, but programmers must 

provide reliable and high-quality software, and in order to estimate and predict 

software reliability using machine learning and deep learning, it was 

introduced A brief overview of the important scientific contributions to the 

subject of software reliability, and the researchers' findings of highly efficient 

methods and techniques for predicting software reliability.  
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1. INTRODUCTION 

Companies create smart software to increase software credibility, and thus control failures. Since 

software in general has real concerns about reliability and maintainability. Researchers have used a variety of 

machine learning algorithms to find controls for variables that have an impact on most programs [1], [2]. 

Currently, testing methods are important and most important in determining the usability of software 

[3]. Software usability is defined as the ability to use the software to its fullest potential without errors within 

a predetermined period of time [4]. Various techniques are on hand to generate clever programs. Artificial 

neural networks, fuzzy set theory, approximate set theory, and artificial intelligence are all examples of records 

retrieval [5]. Some errors formed during error removal and some errors initially present in the data set have the 

potential to cause the entire system to fail [6]. 

According to 𝐴3, the framework shown in Figure 1 of applying program usability, algorithm, and 

architecture to the reliable work of software without defects. Intelligent software becomes necessary by 

combining machine learning techniques on the defective company dataset to build reliable models in different 

dimensions. Based on the early prediction model [7]. 

Incidents that turn into critical failures as a result of program failure cause financial losses, time losses 

and information losses [8]. For this reason, errors are handled correctly at the time of release, and they are 

carefully checked throughout the testing and debugging processes using historical data about software failures 

to determine the number of test-related errors. Based on the failure history of the application, the best defect 

handling methods m (t) and software density function λ (t) are discovered for software reliability models [9]. 

Machine learning is imperative to flaw detection. It is used in evaluating software program reliability 

to seem to be for refined variations in how nicely a product works in proper use, and it makes uses a variety of 

https://creativecommons.org/licenses/by-sa/4.0/
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machine learning techniques to validate a prediction application [10]. Depending on the variety of processing 

layers via which the facts need to pass, the identify "deep" was once given, and deep studying led to the 

introduction of neural networks with higher complexity and greater wonderful mastering capabilities, the place 

the statistical mannequin is produced as output by means of the deep mastering mannequin after making use 

of a step-by-step non-linear transformation. to an input, and these iterations are made by using the model till 

the end result is sufficiently accurate [11]. 
 

 

 
 

Figure 1. 𝐴3 usability framework for programs 
 

 

Researchers and software engineers are increasingly integrating deep learning into software 

engineering (SE) processes. Deep learning benefits SE experts in three main ways: understanding requirements 

from plain language, generating source code, and predicting software errors. Understanding requirements from 

plain language is facilitated by deep learning models. These models analyze and extract valuable insights from 

textual descriptions, enabling a better comprehension of stakeholder needs and expectations. 

Deep learning also aids in generating source code. By training on vast amounts of existing code, deep 

learning models learn patterns, structures, and coding conventions. This enables them to generate code snippets 

or complete programs based on high-level descriptions or specific requirements, accelerating development 

efforts and improving productivity. 

Predicting software errors is another area where deep learning excels. By analyzing large datasets of 

code, deep learning models identify patterns indicative of potential bugs or vulnerabilities. This proactive 

approach allows software engineers to address issues before they become critical problems, enhancing software 

quality and reliability. 

The integration of deep learning into SE processes offers vast potential for advancement. However, it 

is important to remember that deep learning should be seen as a complement to human expertise rather than a 

replacement. Domain knowledge, experience, and critical thinking are crucial for ensuring accuracy, reliability, 

and ethical considerations in applying deep learning techniques in software engineering. By combining the 

power of deep learning with human intelligence, researchers and software engineers can unlock new 

possibilities and drive innovation in the SE domain. 

The research is organized: The second part clarifies software reliability models, how they are 

predicted, and their important role in software engineering. The third part dealt with machine learning and its 

important role in predicting software reliability. The fourth part dealt with previous studies and the findings of 

researchers in predicting software reliability and using machine learning techniques. As for the fifth part, it 

dealt with the conclusions reached by the research by reviewing the work of researchers in this field. 

 

 

2. SOFTWARE RELIABILITY MODELS 

Over the past few decades, many research on software reliability estimation and prediction have been 

introduced at conferences, reviewing the improvement of software reliability prediction models is the 

fundamental effect of this research. These types are based totally on records accumulated at some stage in the 

checking out segment of the program. The majority of the models that will be put ahead are mathematical 

features that categorical the relationship between the quantity of blunders observed and the check effort. 

The test effort can be calculated using the number of operable test cases, execution time, or calendar 

time [12]. Models can be used to predict the reliability of the software as properly as the range of defects (or 

remaining defects) that are no longer detected. Thus, models can assist determine when to end trying out and 

releasing software. Estimating software reliability is based totally on the primary assumption that as checking 

out continues greater and greater defects are found. As a result, reliability improves and the variety of defects 

closing decreases. Hence these models are recognized as software reliability growth models (SRGM) [13]. 

Non-homogeneous Poisson process (NHPP) models are the most extensively used class of software 

reliability boom models. As software checking out progresses, NHPP models seem for a heterogeneous method 

(Poisson) model that excellent matches the error detection sample and use this model to estimate application 

reliability or residual errors. There is a parameter that represents the predicted complete quantity of software 

blunders in the majority of these models [14]. 



Int J Artif Intell  ISSN: 2252-8938   

 

A survey of predicting software reliability using machine learning methods (Shahbaa I. Khaleel) 

37 

Heterogeneous Poisson system models and stochastic system models are the two fundamental classes 

into which software reliability increase models fall. These two sorts of fashions are extra frequent and 

frequently used than NHPP models. NHPP models are additionally labeled in accordance to a variety of factors. 

Figure 2 affords a classification of software reliability increase models [15], [16]. The most important one. 

− Test voltage measurement is categorized into models based on the amount of test cases and test duration. 

− Exponential and S-shape models, depending on the reliability or average value of the m (t) function. 

− Models with perfect correction and those without are based on different types of correction assumptions. 
 
 

 
 

Figure 2. Software reliability growth models according to SRGMs [15] 
 

 

3. MACHINE LEARNING 

Neural systems have seen a rush of abundance in the past couple of years and is commonly 

interconnected across an uncommon array of issue spaces, in disciplines as diverse as finance, solution, design, 

topography, and materials science. It all started in 1943 when McCulloch and Bates proved that neurons can 

have two states and that these states can depend on a certain ceiling value. Where they showed for the first time 

a simulated neuron. Since then, many updated and newer models have been released. The revelation gave 

McCulloch and Pitt a foothold for intelligent machines [17]. 

Artificial neural network (ANN) works similarly to a human brain. The probability is that at some 

point, all people will be the same. Each individual may have made the same judgments in each of the cases. 

Human nerves may cause one or both of them to react similarly in certain situations, which can be the 

distinguishing element behind a wide range of human differences [18] . 

By using machine learning to study data reliability prediction. the methods of artificial intelligince 

had been studied and employed in software engineering. And that was once carried out thru the usage of the 

particle swarm optimization (PSO) and crow swarm optimization (CSO) in producing most suitable check 

instances of the software written with C language in an automated way due to the fact that permits the agency 

which develops the software to keep time and expenses as properly as making sure the check technique quality, 

which is estimated via 50% of the product cost [19].  

Also using bees swarm to appointment, it to serve software engineering. And that used to be carried 

out thru the usage of artificial bee’s colony algorithm in resolution of check instances for the software written 

in C++ language in a computerized way because to allow the business enterprise which develops the software 

to store time, effort and charges that required for trying out section and regression checking out activity, which 

is continually evaluated through 50% of the product cost [20]. The estimating in software is used to estimate 

some necessary and future traits of the software project, such as estimating the developed task effort, and that 

failure in the application is by and large due to incorrect venture administration practices [21].  

Assuming there is a topological network connected by arrows pointing in the right direction. These 

arrows represent a connection between two neurons and show the direction of information flow. There is a 

weight for each link, which is an integer representing the signal difference between the two neurons. The 

structure of the neural network is shown in Figure 3. 
 
 

 
 

Figure 3. The structure of the neural network 
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4. DEEP LEARNING 

Deep learning methods have recently made significant strides in enhancing research workloads in the 

field of software engineering. Table 1 provides an overview of the most commonly used deep techniques in 

this context. Among the widely adopted models are deep belief networks (DBNs), recurrent neural networks 

(RNNs), convolutional neural networks (CNNs), and long short-term memory (LSTM). These models have 

proven effective in a range of software engineering tasks, showcasing the versatility and applicability of deep 

learning in the field. 

 

 

Table 1. Combined machine learning and deep learning methods to predict software flaws 
Researcher Techniques Definition Advantages Drawbacks 

Wang et al., 2022 [3] RNN RNNs are so named due to the fact 

they persistently entire the 

identical venture for each thing in a 
sequence, with the consequences 

relying on before calculations. 

Processing input of any 

duration is possible. 

Model size does not 
increase with input size. 

Information from the 

past is considered during 
computation. 

Sluggish calculation. 

Accessing knowledge 

from the past might be 
challenging. 

Cannot take into account 

any potential future 
changes to the state 

Khoshgoftaar  

et al. 2002 [22] 

LSTM An RNN mannequin regarded as a 

lengthy non permanent 
reminiscence (LSTM) community 

makes use of "forget" gates to get 
round the vanishing gradient issue. 

Retaining knowledge for 

a very long time. 

Training takes longer. 

More memory is needed 
to train. 

Dam et al. 2018 [23] CNN CNNs are a type of deep neural 

network; at least one of their 
layer’s substitutes convolutions for 

standard matrix multiplication. 

Without any human 

oversight, it 
automatically recognizes 

the crucial 

characteristics. 

need more training data. 

High computational cost 

Wang et al. 2012 [24] Stacked 

auto-

encoder 

The output of each hidden layer is 

related to the enter of the 

subsequent hidden layer in a 
stacked auto encoder, which is a 

neural community made up of 

various layers of sparse auto 

encoders. 

Possibility of using 

transfer learning by using 

pre-trained layers from 
another model. 

Learning can be enabled 

without labelled inputs. 

costly to train in terms of 

computation 

incredibly illogical. 
The underlying 

mathematics is more 

difficult. 

prone to overfitting, 

however regularization 

can reduce this 
Kamei et al. 2013 [25] DBN DBN is a probabilistic, 

unsupervised deep learning 

algorithm. 

Only a tiny labelled 

dataset is required. 

It offers a remedy for the 
vanishing gradient issue. 

It fails to take into 

account the structural 

data of programs. 

Kumar et al. 2021 [26] 

Mou et al. 2015 [27] 

Logistic 

regression 

Using LR, one can describe data 

and explain how one dependent 
binary variable relates to other 

independent variables. 

Easy to implement 

 Very efficient to train 

It is unable to mix 

features to produce new 
features. 

Only when input 

features and output 
labels have a linear 

relationship does it 

function well. 
Wang et al. 2018 [28] Support 

vector 

machine 

(SVM) 

A supervised learning model is an 

SVM. It can be applied to tasks 

involving regression and 

classification. 

It provides superior 

prediction results by 

using alternative kernel 

functions. 

lower computing power 

Not appropriate for 

many software metrics 

Manjula and Florence, 
2018 [29] 

Tong et al. 2017 [30] 

Decision 
tree 

DT is a decision-support tool that 
employs a model of decisions and 

potential outcomes that resembles 

a tree. 

Predictive models using 
tree-based algorithms are 

more accurate, stable, 

and comprehensible. 

Making a decision tree is 
difficult. 

 

 

One of the areas where these deep learning techniques have shown promise is in understanding 

requirements from plain language. By leveraging DBNs, RNNs, CNNs, and LSTM models, researchers and 

software engineering experts can analyze textual descriptions and extract meaningful insights to comprehend 

stakeholder needs and expectations more effectively. This ability to interpret plain language requirements using 

deep learning methods can greatly improve the accuracy and understanding of project specifications. 

Furthermore, these deep learning models have also been successfully applied to generating source code. 

Through training on vast amounts of existing code, DBNs, RNNs, CNNs, and LSTM models can learn patterns, 

structures, and coding conventions. This enables them to generate code snippets or even complete programs 
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based on high-level descriptions or specific requirements. The use of deep learning in code generation has the 

potential to significantly speed up the development process and boost overall productivity for software 

engineers.  

Traditional neural network models start with random selection of the initial value of the weights. So 

software flaws cause feature selection to be unstable. By employing a greedy approach, the deep neural network 

model is able to capture the subtle and reliable aspects of software flaws. Second, traditional neural network 

models usually make it easier to obtain the local optimal solution. But by using the greedy algorithm, the deep 

neural network model can find the best overall answer. Compared with previous methods, it can also detect features 

from software errors more accurately. As a result, the deep neural network model outperforms the regular neural 

network models in terms of prediction accuracy [31]. 

 

 

5. PREVIOUS STUDIES 

RNNs have gained significant popularity in addressing problems associated with sequential data. 

These networks have found extensive application in various domains, including natural language processing, 

speech recognition, and time series analysis, among others. RNNs excel in handling data sequences due to their 

ability to retain memory and capture temporal dependencies.  

Bai et al. [32] has developed a software prediction model based totally on networks (Markov 

Bayesian), and a technique is proposed to remedy the community model. The researchers assumed that the 

modern quantity of defects in the application was once normal. This is by and large due to the truth that the 

regular distribution has many fascinating properties, such as the linear stability, the usage of the (AdaBoosting) 

algorithm and an accuracy of 82.3%.  

Hu et al. presented RNNs to describe the interaction between software bug detection and debugging. 

comparisons with feedforward neural networks and analytical models have been developed. thus, researchers 

have reached a maximum accuracy of 94.62% [33]. Costa et al. presented a method based totally on genetic 

programming. The use of enhancement methods to enhance overall performance has additionally been 

proposed. Experiments had been carried out with reliability primarily based on time and take a look at coverage 

[34].  

The result in [35] selected several different forms of SRGM to obtain the self-combining model a self-

combination model (ASCM), the second selects several candidate SRGMs to obtain the multiple synthesis 

model AMCM, and each form of SGRM has been studied, and the results show that ASCM is fairly effective 

and applicable to improve the estimation and prediction of the performance of the corresponding original 

SRGM without adding any other factors and assumptions. A multi-combinational model (AMCM) is effective 

and applicable, and also produces better estimation and prediction ability than the neural network-based 

combinatorial model with an accuracy of 79.63% [35]. Kotaiah and Khan [36] presented a various machine 

learning strategies or methods to examine software reliability. These methods are, fuzzy method, fuzzy neural 

strategie, genetic algorithm, Bayesian classification approach, SVM approach, and the self-organization 

method. 

Zhang et al. [37] presented main disadvantages of software reliability models based on the basic PSO-

SVM evaluation and software reliability prediction properties, some enhaneced PSO-SVM metrics have been 

proposed. The simulation consequences confirmed that in contrast to the classical models, the accelerated 

model has higher prediction accuracy, higher generalization ability, much less dependence on the range of 

samples, and it is greater relevant to predict software program reliability through measuring the unit size, which 

represents the quantity of line codes and the variety of errors, which represents the variety of module defects, 

and an accuracy of 97.98% was once reached. 

The word in [38] describing the inference and statistical prediction of software reliability in the 

presence of variable information. The Bayesian method was once developed the use of Gaussian strategies and 

the local occupancy grid map (LOGM) algorithm to estimate the wide variety of application errors over specific 

time intervals. When the application is assumed to have modified after every time duration and application 

metrics facts is handy after every update. 

Also, Amin et al. [39] presented a well-established method to predicting software reliability primarily 

based on autoregressive integrated moving average (ARIMA) for time sequence as a choice answer to tackle 

SRGM constraints and supply extra correct dependable prediction. Using real-life datasets on application 

failures, the accuracy of the proposed strategy used to be evaluated and in contrast to existing, famous 

approaches. This contrast confirmed that the proposed strategy carried out higher than different ARIMA-based 

approaches, used to be steady in overall performance and used to be much less high-priced than the SVR 

approach. An accuracy of 78.80% was once reached. 

Zhao et al. [40] suggested positive feed back sipport vector machine (PF-SVR) scheme, the proposed 

scheme defines the parameters of the SVR model using the full sample data while dynamically adjusting the 

parameters, and when additional reliability data is received, the parameters of the SVR model are updated using 
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special equations that include the SVR training model. PF-SVR method provides Improved prediction 

performance compared to normal SVR performance due to parameter modification. PF-SVR can capture 

changes in reliability trends by updating adaptive parameters, which makes it convenient for software reliability 

testing. The MSE scale was used to predict the accuracy of the algorithm and the results were 1.1848, 0.4318 

respectively. 

While Tyagi and Sharma [41] developed a new component-based software systems (CBSS) 

mannequin that explains the use of the pathway. Where it has been established that the proposed mannequin 

the usage of ant colony optimization (ACO) works higher than different models, the reliability of the utility 

can be estimated by using measuring the time and the opportunity of error. This model gives heuristic 

component dependency graphs (HCDGs), which assist to estimate CBSS reliability. The HCDGs provide 

higher reliability estimates than different contemporary techniques with an accuracy of 65.78%. 

Roy [42] used some algorithms based on different mathematical approaches such as: fuzzy set theory, 

different approaches based on time series, wave packet transmission function, which can accurately predict the 

occurrence of different frequently occurring web errors. The predictive accuracy of the proposed methods is 

better than a number of current and widely used methods. Moreover, the proposed methods are free from all 

kinds of unrealistic assumptions such as: the number of errors in the system is limited; Once an error is detected, 

it is completely removed, the total number of errors detected is proportional to the test time. 

While Bhuyan et al. [43] used method for predicting software program reliability the use of fuzzy 

min-max algorithm mixed with recurrent neural technique. An empirical proof has been introduced displaying 

that the max-min fuzzy algorithm with recurrent method using backpropagation learning offers a correct result. 

Software reliability prediction has been used to enhance application system manage and acquire excessive 

software reliability. 

Software reliability prediction models proposed by many researchers, where they found some 

shortcomings as explained in [44]. It has been found that deep learning models are very useful in predicting 

software errors. RNN-based learning models give better results. Odification in [45] studied the J-M model, the 

concept of the learn about was once to generalize the proposed risk fee equation by way of including a new 

structure parameter. The new customary risk ratio method is very bendy to accommodate all varieties of time-

dependent conduct. can provide a range of SRGMs that can be used with much less effort and time in any 

methods decision study. 

The two researchers Tamura and Yamada in [46] have proposed a method for selecting the optimal 

program reliability model based on deep learning. Many numerical examples of software reliability assessment 

are presented in actual software projects. Where the optimum release time and the expected total cost of the 

program were discussed in terms of model selection based on deep learning, the proposed method based on 

deep learning showed a better potential than that based on neural network. 

While Xu et al. [47] used an approach multi-layered heterogeneous dynamic particle swarm 

optimization-back propagation (MHPSO-BP) for software reliability prediction that is based on a more 

effective multi-layer heterogeneous PSO neural network BP. This approach uses an attractor to optimize the 

pace replace equation for the particle and sets the demography of the particle swarm to a hierarchical structure. 

The particle swarm technique has been optimized, and the statistics interaction between particles has been 

improved. Then, the optimised PSO was once applied to raise the neural network weight and threshold BP 

during the experiment, the software reliability prediction test was run using dataset from the NASA metrics 

data program (NASAMDP). The results showed that the suggested method has better prediction performance 

overall than the typical neural for back propagation via 92%. 

While Wang [48] analyzed the necessities for prediction of software program reliability mannequin 

and contrast system, describing the standard shape of the system, the precise unit features and database design. 

Where JavaScript, HyperText Markup Language (HTML) and different applied sciences have been used to 

whole the diagram of the software reliability contrast machine and evaluation of the hierarchical shape of 

training and essential software packages. And the check consequences exhibit that the software reliability 

predictive machine can meet the commercial enterprise requirements, and with an accuracy of 94.01%. 

The researchers Pattnaik and Ray [49] discussed the reliability of existing software, estimation models 

at different stages of the software development process, and metrics used for software reliability at different 

levels ie, code level and architectural level. Various models have been represented for reliability analysis. Most 

of them are derived analytically from assumptions. The limitations of prediction models as well as architectural 

models are also discussed. The effect of failure data on software reliability prediction has been observed, and 

it has been analytically observed that the exponential distribution plays an important role in reliability since it 

has a constant failure rate. Finally, some familiar tools for measuring the expectation and estimation of software 

reliability are discussed. 

While Barack and Huang [50] studied cellular utility reliability evaluation and prediction the usage of 

frequent software reliability increase models SRGMs, the four software reliability models are used to consider 
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the reliability of an open supply cellular utility through examining computer virus reports. Experiments have 

validated that it is viable to use SRGM with fault records got from error reviews to consider and predict 

software program reliability in cell applications. The consequences of the find out about allow software 

program builders and testers to evaluate and predict the reliability of cellular software program functions. 

The researchers Sahu and Srivastava [51] have studied a number of already developed reliability 

growth models (RGM) and used them at different stages of development respectively. This was found in the 

study that there is no reliable prediction model that can be used during the software development process. The 

researchers provide suggestions for developers to develop and describe a reliable prediction model that can be 

used with every stage of development. 

Also, Gandhi et al. [52] presented a high quality algorithm that can be used to predict the reliability 

of the program. The proposed algorithm is applied the usage of a hybrid strategy referred to as neuro-fuzzy 

inference system and it has additionally been utilized to the take a look at data. After checking out and coaching 

real-time records with reliability prediction in phrases of imply relative error and suggest absolute relative error 

as 0.0060 and 0.0121 respectively. The consequences exhibit that the proposed algorithm predicts captivating 

outcomes in phrases of the absolute imply relative error as properly as the imply relative error in contrast to 

different current models that justify the dependable prediction of the proposed model. Thus, this new 

technological know-how goals to make this model as easy as viable to enhance software reliability. 

Kushwah and Sharma [53] by examining the nature of the labour in the software process, researchers 

explored the prediction of software failure. The research found that the software program dependability 

prediction models put forth by numerous researchers had some flaws and didn't work in all test conditions. 

Additionally, assessing the trustworthiness of software programes is no longer an actual science. Soft 

computing techniques including neural networks, fuzzy logic, genetic algorithms, genetic programming, swarm 

intelligence, and bayesian networks, among others, are of utmost significance. While the use of modern light 

computing techniques in software for dependability modelling is stressed. 

While San et al. [54] presented a new technique for software program reliability modeling known as 

deep projects software reliability growth model deep cross-project software reliability growth model and this 

approach is a cross-project forecasting approach that makes use of the elements of previous tasks records via 

challenge similarity. Specifically, the proposed technique applies block-based mission resolution of coaching 

and modeling statistics supply by using a deep mastering method. Experimental find out about outcomes that 

encompass 15 actual E-Seikatsu datasets and eleven open supply software program datasets exhibit that DC-

SRGM can greater precisely describe the reliability of ongoing improvement tasks than the contemporary 

traditional SRGM and LSTM models.  

Ali et al. [55] presented a reliability prediction mannequin that enhances scalability by using 

introducing an algorithmic mechanism TypeScript state machine. In addition, the proposed method helps 

modeling the nature of concurrent functions by way of adapting the formal statistical distribution in the 

direction of the situation set. The proposed method was once evaluated the use of sensor-based case studies. 

The experimental outcomes confirmed the effectiveness of the proposed method from the factor of view of 

lowering the computational price in contrast to comparable models. This discount is the most important 

parameter to enhance scalability. In addition, the introduced work can allow gadget builders to be aware of the 

load their device will be dependable with the aid of watching the reliability fee in many running situations. 

After reviewing these studies, they are summarized in Table 2 (see in Appendix). It shows the database 

used, whether it was previously stored data or real-time data. To mentioning the scale used to determine the 

quality and accuracy of the technology used to predict the reliability of the software.  

Table 2 provides evidence that the utilization of machine learning techniques yields satisfactory 

accuracy when assessing the reliability of software programs. The high accuracy rates achieved can be 

attributed to the quality of the technology employed, regardless of whether the database is extensive or of 

moderate size. This implies that machine learning algorithms have the capability to effectively determine the 

reliability of programs, regardless of the scale of the database being analyzed. 

 

 

6. CONCLUSION 

Using deep learning is the best solution for ensuring software reliability, according to previous 

discussions. Ensuring software reliability has become a serious concern due to the increasing size and 

complexity of the current software. Anticipating potential code defects in software applications can be 

considered a useful way to increase software reliability since it can significantly reduce software maintenance 

work. A flaw prediction framework that uses deep learning algorithms to automatically generate features from 

source code while preserving semantic and structural information has the greatest promise. Moreover, our 

survey confirms the feasibility of deep learning methods for programming and its important role in using it to 

predict software reliability.  
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APPENDIX 

 

Table 2. Summarizes the relevant works 
Researchers Algorithm Dataset Metric Percentage 

Wang et al. 2018 [28] AdaBoosting ASCM Accuracy 82.3% 

Hu et al. 2007 [33] Genetic Algorithm Real-time command and control application 

consisting of 21,700 assembly instructions 

Accuracy 67.24% 

Flight dynamic application consisting of 

10,000 lines of code 

Accuracy 80.00% 

Flight dynamic application consisting of 
22,500 lines of code 

Accuracy 89.61% 

Flight dynamic application consisting of 

38,500 lines of code 

Accuracy 94.62% 

Costa et al. 2007 [34] Markov chain Monte 

Carlo 

Real dataset Accuracy - 

Li et al. 2011 [35] SVM with Genetic 
Algorithm 

SVR dataset Accuracy 79.63% 

Kotaiah and Khan, 2012 

[36] 

SVR Sys1 

Sys3 

Accuracy - 

Zhang et al. 2013 [37] PSO-SVM 

PSO-LSSVM 

BP 

collected during testing phase Accuracy 85.5% 

89.46% 

97.98% 
Amin et al. 2013 [39] SRGMs Sys40 Accuracy 78.80% 

Graves 2013 [56] LSTM Hutter prize Accuracy 79.64% 

Zhao et al. 2013 [40] SVR actual error data MSE 1.1848 
PF-SVR actual error data MSE 0.4318 

Tyagi and Sharma [41] Ant Colony 

Optimization Relaibility 

collected during testing phase  65.78% 

Cho et al. 2014 [57] RNN UNK Accuracy 92.01% 

Tian and Noore 2015 

[58] 

GA John Musa Accuracy 98.57% 

Roy 2015 [42] fuzzy forecasting HTTP logs Accuracy 95.2% 

Bhuyan et al. 2016 [43] Max-min - AE 3.0019 

Al Turk and Alsolami, 
2016 [45] 

Software Reliability 
Growth Models 

JM - - 

Tamura and Yamada, 

2016 [46] 

Neural network Actual dataset Accuracy 67% 

Deep Learning Actual dataset Accuracy 83% 
Xu et al. 2017 [47] MHPSO-BP JM1 Accuracy 92.00% 

Wang et al. 2018 [48] JM Space consists of 9564 lines of C code Accuracy 69.84% 

GO Accuracy 85.99% 
MBN Accuracy 94.01% 

Pattnaik and Ray, 2020 

[49] 

SRGMs available failure data Accuracy 98.6% 

Barack and Huang, 2020 

[50] 

SRGMs - Accuracy 98.6% 

Sahu and Srivastava, 
2020 [51] 

RGM Many online datasets - - 

Gandhi et al. 2020 [52] Neuro-Fuzzy Inference 

System 

- MRE 0.0121 

San et al. 2021 [54] DC-SRGM online datasets AE 0.110 

LSTM online datasets AE 0.146 
Logistic online datasets AE 0.220 

Ali et al. 2022 [55] s-TS + FSMS - Failure 

Propability 

0.01 
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