
IAES International Journal of Artificial Intelligence (IJ-AI)

Vol. 13, No. 1, March 2024, pp. 35~44

ISSN: 2252-8938, DOI: 10.11591/ijai.v13.i1.pp35-44  35

Journal homepage: http://ijai.iaescore.com

A survey of predicting software reliability using machine

learning methods

Shahbaa I. Khaleel, Lumia Faiz Salih
Department of Software, College of Computer Science and Mathematics, Mosul University, Mosul, Iraq

Article Info ABSTRACT

Article history:

Received Nov 27, 2022

Revised Feb 9, 2023

Accepted Mar 10, 2023

 In light of technical and technological progress, software has become an

urgent need in every aspect of human life, including the medicine sector and

industrial control. Therefore, it is imperative that the software always works

flawlessly. The information technology sector has witnessed a rapid

expansion in recent years, as software companies can no longer rely only on

cost advantages to stay competitive in the market, but programmers must

provide reliable and high-quality software, and in order to estimate and predict

software reliability using machine learning and deep learning, it was

introduced A brief overview of the important scientific contributions to the

subject of software reliability, and the researchers' findings of highly efficient

methods and techniques for predicting software reliability.

Keywords:

Artificial intelligence

Deep learning

Machine learning

Prediction

Software reliabilty This is an open access article under the CC BY-SA license.

Corresponding Author:

Shahbaa I. Khaleel

Department of Software, College of Computer Science and Mathematics, Mosul University

Mosul, Iraq

Email: shahbaaibrkh@uomosul.edu.iq

1. INTRODUCTION

Companies create smart software to increase software credibility, and thus control failures. Since

software in general has real concerns about reliability and maintainability. Researchers have used a variety of

machine learning algorithms to find controls for variables that have an impact on most programs [1], [2].

Currently, testing methods are important and most important in determining the usability of software

[3]. Software usability is defined as the ability to use the software to its fullest potential without errors within

a predetermined period of time [4]. Various techniques are on hand to generate clever programs. Artificial

neural networks, fuzzy set theory, approximate set theory, and artificial intelligence are all examples of records

retrieval [5]. Some errors formed during error removal and some errors initially present in the data set have the

potential to cause the entire system to fail [6].

According to 𝐴3, the framework shown in Figure 1 of applying program usability, algorithm, and

architecture to the reliable work of software without defects. Intelligent software becomes necessary by

combining machine learning techniques on the defective company dataset to build reliable models in different

dimensions. Based on the early prediction model [7].

Incidents that turn into critical failures as a result of program failure cause financial losses, time losses

and information losses [8]. For this reason, errors are handled correctly at the time of release, and they are

carefully checked throughout the testing and debugging processes using historical data about software failures

to determine the number of test-related errors. Based on the failure history of the application, the best defect

handling methods m (t) and software density function λ (t) are discovered for software reliability models [9].

Machine learning is imperative to flaw detection. It is used in evaluating software program reliability

to seem to be for refined variations in how nicely a product works in proper use, and it makes uses a variety of

https://creativecommons.org/licenses/by-sa/4.0/

  ISSN: 2252-8938

Int J Artif Intell, Vol. 13, No. 1, March 2024: 35-44

36

machine learning techniques to validate a prediction application [10]. Depending on the variety of processing

layers via which the facts need to pass, the identify "deep" was once given, and deep studying led to the

introduction of neural networks with higher complexity and greater wonderful mastering capabilities, the place

the statistical mannequin is produced as output by means of the deep mastering mannequin after making use

of a step-by-step non-linear transformation. to an input, and these iterations are made by using the model till

the end result is sufficiently accurate [11].

Figure 1. 𝐴3 usability framework for programs

Researchers and software engineers are increasingly integrating deep learning into software

engineering (SE) processes. Deep learning benefits SE experts in three main ways: understanding requirements

from plain language, generating source code, and predicting software errors. Understanding requirements from

plain language is facilitated by deep learning models. These models analyze and extract valuable insights from

textual descriptions, enabling a better comprehension of stakeholder needs and expectations.

Deep learning also aids in generating source code. By training on vast amounts of existing code, deep

learning models learn patterns, structures, and coding conventions. This enables them to generate code snippets

or complete programs based on high-level descriptions or specific requirements, accelerating development

efforts and improving productivity.

Predicting software errors is another area where deep learning excels. By analyzing large datasets of

code, deep learning models identify patterns indicative of potential bugs or vulnerabilities. This proactive

approach allows software engineers to address issues before they become critical problems, enhancing software

quality and reliability.

The integration of deep learning into SE processes offers vast potential for advancement. However, it

is important to remember that deep learning should be seen as a complement to human expertise rather than a

replacement. Domain knowledge, experience, and critical thinking are crucial for ensuring accuracy, reliability,

and ethical considerations in applying deep learning techniques in software engineering. By combining the

power of deep learning with human intelligence, researchers and software engineers can unlock new

possibilities and drive innovation in the SE domain.

The research is organized: The second part clarifies software reliability models, how they are

predicted, and their important role in software engineering. The third part dealt with machine learning and its

important role in predicting software reliability. The fourth part dealt with previous studies and the findings of

researchers in predicting software reliability and using machine learning techniques. As for the fifth part, it

dealt with the conclusions reached by the research by reviewing the work of researchers in this field.

2. SOFTWARE RELIABILITY MODELS

Over the past few decades, many research on software reliability estimation and prediction have been

introduced at conferences, reviewing the improvement of software reliability prediction models is the

fundamental effect of this research. These types are based totally on records accumulated at some stage in the

checking out segment of the program. The majority of the models that will be put ahead are mathematical

features that categorical the relationship between the quantity of blunders observed and the check effort.

The test effort can be calculated using the number of operable test cases, execution time, or calendar

time [12]. Models can be used to predict the reliability of the software as properly as the range of defects (or

remaining defects) that are no longer detected. Thus, models can assist determine when to end trying out and

releasing software. Estimating software reliability is based totally on the primary assumption that as checking

out continues greater and greater defects are found. As a result, reliability improves and the variety of defects

closing decreases. Hence these models are recognized as software reliability growth models (SRGM) [13].

Non-homogeneous Poisson process (NHPP) models are the most extensively used class of software

reliability boom models. As software checking out progresses, NHPP models seem for a heterogeneous method

(Poisson) model that excellent matches the error detection sample and use this model to estimate application

reliability or residual errors. There is a parameter that represents the predicted complete quantity of software

blunders in the majority of these models [14].

Int J Artif Intell ISSN: 2252-8938 

A survey of predicting software reliability using machine learning methods (Shahbaa I. Khaleel)

37

Heterogeneous Poisson system models and stochastic system models are the two fundamental classes

into which software reliability increase models fall. These two sorts of fashions are extra frequent and

frequently used than NHPP models. NHPP models are additionally labeled in accordance to a variety of factors.

Figure 2 affords a classification of software reliability increase models [15], [16]. The most important one.

− Test voltage measurement is categorized into models based on the amount of test cases and test duration.

− Exponential and S-shape models, depending on the reliability or average value of the m (t) function.

− Models with perfect correction and those without are based on different types of correction assumptions.

Figure 2. Software reliability growth models according to SRGMs [15]

3. MACHINE LEARNING

Neural systems have seen a rush of abundance in the past couple of years and is commonly

interconnected across an uncommon array of issue spaces, in disciplines as diverse as finance, solution, design,

topography, and materials science. It all started in 1943 when McCulloch and Bates proved that neurons can

have two states and that these states can depend on a certain ceiling value. Where they showed for the first time

a simulated neuron. Since then, many updated and newer models have been released. The revelation gave

McCulloch and Pitt a foothold for intelligent machines [17].

Artificial neural network (ANN) works similarly to a human brain. The probability is that at some

point, all people will be the same. Each individual may have made the same judgments in each of the cases.

Human nerves may cause one or both of them to react similarly in certain situations, which can be the

distinguishing element behind a wide range of human differences [18] .

By using machine learning to study data reliability prediction. the methods of artificial intelligince

had been studied and employed in software engineering. And that was once carried out thru the usage of the

particle swarm optimization (PSO) and crow swarm optimization (CSO) in producing most suitable check

instances of the software written with C language in an automated way due to the fact that permits the agency

which develops the software to keep time and expenses as properly as making sure the check technique quality,

which is estimated via 50% of the product cost [19].

Also using bees swarm to appointment, it to serve software engineering. And that used to be carried

out thru the usage of artificial bee’s colony algorithm in resolution of check instances for the software written

in C++ language in a computerized way because to allow the business enterprise which develops the software

to store time, effort and charges that required for trying out section and regression checking out activity, which

is continually evaluated through 50% of the product cost [20]. The estimating in software is used to estimate

some necessary and future traits of the software project, such as estimating the developed task effort, and that

failure in the application is by and large due to incorrect venture administration practices [21].

Assuming there is a topological network connected by arrows pointing in the right direction. These

arrows represent a connection between two neurons and show the direction of information flow. There is a

weight for each link, which is an integer representing the signal difference between the two neurons. The

structure of the neural network is shown in Figure 3.

Figure 3. The structure of the neural network

  ISSN: 2252-8938

Int J Artif Intell, Vol. 13, No. 1, March 2024: 35-44

38

4. DEEP LEARNING

Deep learning methods have recently made significant strides in enhancing research workloads in the

field of software engineering. Table 1 provides an overview of the most commonly used deep techniques in

this context. Among the widely adopted models are deep belief networks (DBNs), recurrent neural networks

(RNNs), convolutional neural networks (CNNs), and long short-term memory (LSTM). These models have

proven effective in a range of software engineering tasks, showcasing the versatility and applicability of deep

learning in the field.

Table 1. Combined machine learning and deep learning methods to predict software flaws
Researcher Techniques Definition Advantages Drawbacks

Wang et al., 2022 [3] RNN RNNs are so named due to the fact

they persistently entire the

identical venture for each thing in a
sequence, with the consequences

relying on before calculations.

Processing input of any

duration is possible.

Model size does not
increase with input size.

Information from the

past is considered during
computation.

Sluggish calculation.

Accessing knowledge

from the past might be
challenging.

Cannot take into account

any potential future
changes to the state

Khoshgoftaar

et al. 2002 [22]

LSTM An RNN mannequin regarded as a

lengthy non permanent
reminiscence (LSTM) community

makes use of "forget" gates to get
round the vanishing gradient issue.

Retaining knowledge for

a very long time.

Training takes longer.

More memory is needed
to train.

Dam et al. 2018 [23] CNN CNNs are a type of deep neural

network; at least one of their
layer’s substitutes convolutions for

standard matrix multiplication.

Without any human

oversight, it
automatically recognizes

the crucial

characteristics.

need more training data.

High computational cost

Wang et al. 2012 [24] Stacked

auto-

encoder

The output of each hidden layer is

related to the enter of the

subsequent hidden layer in a
stacked auto encoder, which is a

neural community made up of

various layers of sparse auto

encoders.

Possibility of using

transfer learning by using

pre-trained layers from
another model.

Learning can be enabled

without labelled inputs.

costly to train in terms of

computation

incredibly illogical.
The underlying

mathematics is more

difficult.

prone to overfitting,

however regularization

can reduce this
Kamei et al. 2013 [25] DBN DBN is a probabilistic,

unsupervised deep learning

algorithm.

Only a tiny labelled

dataset is required.

It offers a remedy for the
vanishing gradient issue.

It fails to take into

account the structural

data of programs.

Kumar et al. 2021 [26]

Mou et al. 2015 [27]

Logistic

regression

Using LR, one can describe data

and explain how one dependent
binary variable relates to other

independent variables.

Easy to implement

 Very efficient to train

It is unable to mix

features to produce new
features.

Only when input

features and output
labels have a linear

relationship does it

function well.
Wang et al. 2018 [28] Support

vector

machine

(SVM)

A supervised learning model is an

SVM. It can be applied to tasks

involving regression and

classification.

It provides superior

prediction results by

using alternative kernel

functions.

lower computing power

Not appropriate for

many software metrics

Manjula and Florence,
2018 [29]

Tong et al. 2017 [30]

Decision
tree

DT is a decision-support tool that
employs a model of decisions and

potential outcomes that resembles

a tree.

Predictive models using
tree-based algorithms are

more accurate, stable,

and comprehensible.

Making a decision tree is
difficult.

One of the areas where these deep learning techniques have shown promise is in understanding

requirements from plain language. By leveraging DBNs, RNNs, CNNs, and LSTM models, researchers and

software engineering experts can analyze textual descriptions and extract meaningful insights to comprehend

stakeholder needs and expectations more effectively. This ability to interpret plain language requirements using

deep learning methods can greatly improve the accuracy and understanding of project specifications.

Furthermore, these deep learning models have also been successfully applied to generating source code.

Through training on vast amounts of existing code, DBNs, RNNs, CNNs, and LSTM models can learn patterns,

structures, and coding conventions. This enables them to generate code snippets or even complete programs

Int J Artif Intell ISSN: 2252-8938 

A survey of predicting software reliability using machine learning methods (Shahbaa I. Khaleel)

39

based on high-level descriptions or specific requirements. The use of deep learning in code generation has the

potential to significantly speed up the development process and boost overall productivity for software

engineers.

Traditional neural network models start with random selection of the initial value of the weights. So

software flaws cause feature selection to be unstable. By employing a greedy approach, the deep neural network

model is able to capture the subtle and reliable aspects of software flaws. Second, traditional neural network

models usually make it easier to obtain the local optimal solution. But by using the greedy algorithm, the deep

neural network model can find the best overall answer. Compared with previous methods, it can also detect features

from software errors more accurately. As a result, the deep neural network model outperforms the regular neural

network models in terms of prediction accuracy [31].

5. PREVIOUS STUDIES

RNNs have gained significant popularity in addressing problems associated with sequential data.

These networks have found extensive application in various domains, including natural language processing,

speech recognition, and time series analysis, among others. RNNs excel in handling data sequences due to their

ability to retain memory and capture temporal dependencies.

Bai et al. [32] has developed a software prediction model based totally on networks (Markov

Bayesian), and a technique is proposed to remedy the community model. The researchers assumed that the

modern quantity of defects in the application was once normal. This is by and large due to the truth that the

regular distribution has many fascinating properties, such as the linear stability, the usage of the (AdaBoosting)

algorithm and an accuracy of 82.3%.

Hu et al. presented RNNs to describe the interaction between software bug detection and debugging.

comparisons with feedforward neural networks and analytical models have been developed. thus, researchers

have reached a maximum accuracy of 94.62% [33]. Costa et al. presented a method based totally on genetic

programming. The use of enhancement methods to enhance overall performance has additionally been

proposed. Experiments had been carried out with reliability primarily based on time and take a look at coverage

[34].

The result in [35] selected several different forms of SRGM to obtain the self-combining model a self-

combination model (ASCM), the second selects several candidate SRGMs to obtain the multiple synthesis

model AMCM, and each form of SGRM has been studied, and the results show that ASCM is fairly effective

and applicable to improve the estimation and prediction of the performance of the corresponding original

SRGM without adding any other factors and assumptions. A multi-combinational model (AMCM) is effective

and applicable, and also produces better estimation and prediction ability than the neural network-based

combinatorial model with an accuracy of 79.63% [35]. Kotaiah and Khan [36] presented a various machine

learning strategies or methods to examine software reliability. These methods are, fuzzy method, fuzzy neural

strategie, genetic algorithm, Bayesian classification approach, SVM approach, and the self-organization

method.

Zhang et al. [37] presented main disadvantages of software reliability models based on the basic PSO-

SVM evaluation and software reliability prediction properties, some enhaneced PSO-SVM metrics have been

proposed. The simulation consequences confirmed that in contrast to the classical models, the accelerated

model has higher prediction accuracy, higher generalization ability, much less dependence on the range of

samples, and it is greater relevant to predict software program reliability through measuring the unit size, which

represents the quantity of line codes and the variety of errors, which represents the variety of module defects,

and an accuracy of 97.98% was once reached.

The word in [38] describing the inference and statistical prediction of software reliability in the

presence of variable information. The Bayesian method was once developed the use of Gaussian strategies and

the local occupancy grid map (LOGM) algorithm to estimate the wide variety of application errors over specific

time intervals. When the application is assumed to have modified after every time duration and application

metrics facts is handy after every update.

Also, Amin et al. [39] presented a well-established method to predicting software reliability primarily

based on autoregressive integrated moving average (ARIMA) for time sequence as a choice answer to tackle

SRGM constraints and supply extra correct dependable prediction. Using real-life datasets on application

failures, the accuracy of the proposed strategy used to be evaluated and in contrast to existing, famous

approaches. This contrast confirmed that the proposed strategy carried out higher than different ARIMA-based

approaches, used to be steady in overall performance and used to be much less high-priced than the SVR

approach. An accuracy of 78.80% was once reached.

Zhao et al. [40] suggested positive feed back sipport vector machine (PF-SVR) scheme, the proposed

scheme defines the parameters of the SVR model using the full sample data while dynamically adjusting the

parameters, and when additional reliability data is received, the parameters of the SVR model are updated using

  ISSN: 2252-8938

Int J Artif Intell, Vol. 13, No. 1, March 2024: 35-44

40

special equations that include the SVR training model. PF-SVR method provides Improved prediction

performance compared to normal SVR performance due to parameter modification. PF-SVR can capture

changes in reliability trends by updating adaptive parameters, which makes it convenient for software reliability

testing. The MSE scale was used to predict the accuracy of the algorithm and the results were 1.1848, 0.4318

respectively.

While Tyagi and Sharma [41] developed a new component-based software systems (CBSS)

mannequin that explains the use of the pathway. Where it has been established that the proposed mannequin

the usage of ant colony optimization (ACO) works higher than different models, the reliability of the utility

can be estimated by using measuring the time and the opportunity of error. This model gives heuristic

component dependency graphs (HCDGs), which assist to estimate CBSS reliability. The HCDGs provide

higher reliability estimates than different contemporary techniques with an accuracy of 65.78%.

Roy [42] used some algorithms based on different mathematical approaches such as: fuzzy set theory,

different approaches based on time series, wave packet transmission function, which can accurately predict the

occurrence of different frequently occurring web errors. The predictive accuracy of the proposed methods is

better than a number of current and widely used methods. Moreover, the proposed methods are free from all

kinds of unrealistic assumptions such as: the number of errors in the system is limited; Once an error is detected,

it is completely removed, the total number of errors detected is proportional to the test time.

While Bhuyan et al. [43] used method for predicting software program reliability the use of fuzzy

min-max algorithm mixed with recurrent neural technique. An empirical proof has been introduced displaying

that the max-min fuzzy algorithm with recurrent method using backpropagation learning offers a correct result.

Software reliability prediction has been used to enhance application system manage and acquire excessive

software reliability.

Software reliability prediction models proposed by many researchers, where they found some

shortcomings as explained in [44]. It has been found that deep learning models are very useful in predicting

software errors. RNN-based learning models give better results. Odification in [45] studied the J-M model, the

concept of the learn about was once to generalize the proposed risk fee equation by way of including a new

structure parameter. The new customary risk ratio method is very bendy to accommodate all varieties of time-

dependent conduct. can provide a range of SRGMs that can be used with much less effort and time in any

methods decision study.

The two researchers Tamura and Yamada in [46] have proposed a method for selecting the optimal

program reliability model based on deep learning. Many numerical examples of software reliability assessment

are presented in actual software projects. Where the optimum release time and the expected total cost of the

program were discussed in terms of model selection based on deep learning, the proposed method based on

deep learning showed a better potential than that based on neural network.

While Xu et al. [47] used an approach multi-layered heterogeneous dynamic particle swarm

optimization-back propagation (MHPSO-BP) for software reliability prediction that is based on a more

effective multi-layer heterogeneous PSO neural network BP. This approach uses an attractor to optimize the

pace replace equation for the particle and sets the demography of the particle swarm to a hierarchical structure.

The particle swarm technique has been optimized, and the statistics interaction between particles has been

improved. Then, the optimised PSO was once applied to raise the neural network weight and threshold BP

during the experiment, the software reliability prediction test was run using dataset from the NASA metrics

data program (NASAMDP). The results showed that the suggested method has better prediction performance

overall than the typical neural for back propagation via 92%.

While Wang [48] analyzed the necessities for prediction of software program reliability mannequin

and contrast system, describing the standard shape of the system, the precise unit features and database design.

Where JavaScript, HyperText Markup Language (HTML) and different applied sciences have been used to

whole the diagram of the software reliability contrast machine and evaluation of the hierarchical shape of

training and essential software packages. And the check consequences exhibit that the software reliability

predictive machine can meet the commercial enterprise requirements, and with an accuracy of 94.01%.

The researchers Pattnaik and Ray [49] discussed the reliability of existing software, estimation models

at different stages of the software development process, and metrics used for software reliability at different

levels ie, code level and architectural level. Various models have been represented for reliability analysis. Most

of them are derived analytically from assumptions. The limitations of prediction models as well as architectural

models are also discussed. The effect of failure data on software reliability prediction has been observed, and

it has been analytically observed that the exponential distribution plays an important role in reliability since it

has a constant failure rate. Finally, some familiar tools for measuring the expectation and estimation of software

reliability are discussed.

While Barack and Huang [50] studied cellular utility reliability evaluation and prediction the usage of

frequent software reliability increase models SRGMs, the four software reliability models are used to consider

Int J Artif Intell ISSN: 2252-8938 

A survey of predicting software reliability using machine learning methods (Shahbaa I. Khaleel)

41

the reliability of an open supply cellular utility through examining computer virus reports. Experiments have

validated that it is viable to use SRGM with fault records got from error reviews to consider and predict

software program reliability in cell applications. The consequences of the find out about allow software

program builders and testers to evaluate and predict the reliability of cellular software program functions.

The researchers Sahu and Srivastava [51] have studied a number of already developed reliability

growth models (RGM) and used them at different stages of development respectively. This was found in the

study that there is no reliable prediction model that can be used during the software development process. The

researchers provide suggestions for developers to develop and describe a reliable prediction model that can be

used with every stage of development.

Also, Gandhi et al. [52] presented a high quality algorithm that can be used to predict the reliability

of the program. The proposed algorithm is applied the usage of a hybrid strategy referred to as neuro-fuzzy

inference system and it has additionally been utilized to the take a look at data. After checking out and coaching

real-time records with reliability prediction in phrases of imply relative error and suggest absolute relative error

as 0.0060 and 0.0121 respectively. The consequences exhibit that the proposed algorithm predicts captivating

outcomes in phrases of the absolute imply relative error as properly as the imply relative error in contrast to

different current models that justify the dependable prediction of the proposed model. Thus, this new

technological know-how goals to make this model as easy as viable to enhance software reliability.

Kushwah and Sharma [53] by examining the nature of the labour in the software process, researchers

explored the prediction of software failure. The research found that the software program dependability

prediction models put forth by numerous researchers had some flaws and didn't work in all test conditions.

Additionally, assessing the trustworthiness of software programes is no longer an actual science. Soft

computing techniques including neural networks, fuzzy logic, genetic algorithms, genetic programming, swarm

intelligence, and bayesian networks, among others, are of utmost significance. While the use of modern light

computing techniques in software for dependability modelling is stressed.

While San et al. [54] presented a new technique for software program reliability modeling known as

deep projects software reliability growth model deep cross-project software reliability growth model and this

approach is a cross-project forecasting approach that makes use of the elements of previous tasks records via

challenge similarity. Specifically, the proposed technique applies block-based mission resolution of coaching

and modeling statistics supply by using a deep mastering method. Experimental find out about outcomes that

encompass 15 actual E-Seikatsu datasets and eleven open supply software program datasets exhibit that DC-

SRGM can greater precisely describe the reliability of ongoing improvement tasks than the contemporary

traditional SRGM and LSTM models.

Ali et al. [55] presented a reliability prediction mannequin that enhances scalability by using

introducing an algorithmic mechanism TypeScript state machine. In addition, the proposed method helps

modeling the nature of concurrent functions by way of adapting the formal statistical distribution in the

direction of the situation set. The proposed method was once evaluated the use of sensor-based case studies.

The experimental outcomes confirmed the effectiveness of the proposed method from the factor of view of

lowering the computational price in contrast to comparable models. This discount is the most important

parameter to enhance scalability. In addition, the introduced work can allow gadget builders to be aware of the

load their device will be dependable with the aid of watching the reliability fee in many running situations.

After reviewing these studies, they are summarized in Table 2 (see in Appendix). It shows the database

used, whether it was previously stored data or real-time data. To mentioning the scale used to determine the

quality and accuracy of the technology used to predict the reliability of the software.

Table 2 provides evidence that the utilization of machine learning techniques yields satisfactory

accuracy when assessing the reliability of software programs. The high accuracy rates achieved can be

attributed to the quality of the technology employed, regardless of whether the database is extensive or of

moderate size. This implies that machine learning algorithms have the capability to effectively determine the

reliability of programs, regardless of the scale of the database being analyzed.

6. CONCLUSION

Using deep learning is the best solution for ensuring software reliability, according to previous

discussions. Ensuring software reliability has become a serious concern due to the increasing size and

complexity of the current software. Anticipating potential code defects in software applications can be

considered a useful way to increase software reliability since it can significantly reduce software maintenance

work. A flaw prediction framework that uses deep learning algorithms to automatically generate features from

source code while preserving semantic and structural information has the greatest promise. Moreover, our

survey confirms the feasibility of deep learning methods for programming and its important role in using it to

predict software reliability.

  ISSN: 2252-8938

Int J Artif Intell, Vol. 13, No. 1, March 2024: 35-44

42

APPENDIX

Table 2. Summarizes the relevant works
Researchers Algorithm Dataset Metric Percentage

Wang et al. 2018 [28] AdaBoosting ASCM Accuracy 82.3%

Hu et al. 2007 [33] Genetic Algorithm Real-time command and control application

consisting of 21,700 assembly instructions

Accuracy 67.24%

Flight dynamic application consisting of

10,000 lines of code

Accuracy 80.00%

Flight dynamic application consisting of
22,500 lines of code

Accuracy 89.61%

Flight dynamic application consisting of

38,500 lines of code

Accuracy 94.62%

Costa et al. 2007 [34] Markov chain Monte

Carlo

Real dataset Accuracy -

Li et al. 2011 [35] SVM with Genetic
Algorithm

SVR dataset Accuracy 79.63%

Kotaiah and Khan, 2012

[36]

SVR Sys1

Sys3

Accuracy -

Zhang et al. 2013 [37] PSO-SVM

PSO-LSSVM

BP

collected during testing phase Accuracy 85.5%

89.46%

97.98%
Amin et al. 2013 [39] SRGMs Sys40 Accuracy 78.80%

Graves 2013 [56] LSTM Hutter prize Accuracy 79.64%

Zhao et al. 2013 [40] SVR actual error data MSE 1.1848
PF-SVR actual error data MSE 0.4318

Tyagi and Sharma [41] Ant Colony

Optimization Relaibility

collected during testing phase 65.78%

Cho et al. 2014 [57] RNN UNK Accuracy 92.01%

Tian and Noore 2015

[58]

GA John Musa Accuracy 98.57%

Roy 2015 [42] fuzzy forecasting HTTP logs Accuracy 95.2%

Bhuyan et al. 2016 [43] Max-min - AE 3.0019

Al Turk and Alsolami,
2016 [45]

Software Reliability
Growth Models

JM - -

Tamura and Yamada,

2016 [46]

Neural network Actual dataset Accuracy 67%

Deep Learning Actual dataset Accuracy 83%
Xu et al. 2017 [47] MHPSO-BP JM1 Accuracy 92.00%

Wang et al. 2018 [48] JM Space consists of 9564 lines of C code Accuracy 69.84%

GO Accuracy 85.99%
MBN Accuracy 94.01%

Pattnaik and Ray, 2020

[49]

SRGMs available failure data Accuracy 98.6%

Barack and Huang, 2020

[50]

SRGMs - Accuracy 98.6%

Sahu and Srivastava,
2020 [51]

RGM Many online datasets - -

Gandhi et al. 2020 [52] Neuro-Fuzzy Inference

System

- MRE 0.0121

San et al. 2021 [54] DC-SRGM online datasets AE 0.110

LSTM online datasets AE 0.146
Logistic online datasets AE 0.220

Ali et al. 2022 [55] s-TS + FSMS - Failure

Propability

0.01

ACKNOWLEDGEMENTS

Authors would like to thank the University of Mosul in Iraq for providing moral support.

REFERENCES
[1] N. Gupta, A. Rana, and S. Gupta, “Fitness for solving SMCP using evolutionary algorithm,” IOP Conference Series: Materials

Science and Engineering, vol. 1099, no. 1, p. 012041, Mar. 2021, doi: 10.1088/1757-899x/1099/1/012041.

[2] L. L. Silva, M. T. Valente, A. M. De Maia, and N. Anquetil, “Developers’ perception of co-change patterns: An empirical study,”
in 2015 IEEE 31st International Conference on Software Maintenance and Evolution, ICSME 2015 - Proceedings, Sep. 2015,

pp. 21–30, doi: 10.1109/ICSM.2015.7332448.

[3] J. Wang, C. Zhang, and J. Yang, “Software reliability model of open source software based on the decreasing trend of fault
introduction,” PLoS ONE, vol. 17, no. 5 May, p. e0267171, May 2022, doi: 10.1371/journal.pone.0267171.

[4] R. Arora and A. G. Aggarwal, “Testing effort based software reliability assessment incorporating FRF and change point,” Yugoslav

Journal of Operations Research, vol. 30, no. 2, pp. 271–286, 2020, doi: 10.2298/YJOR190315022A.

[5] N. K. Kahlon, K. K. Chahal, and S. B. Narang, “Managing QoS degradation of component web services in a dynamic environment,”

Int J Artif Intell ISSN: 2252-8938 

A survey of predicting software reliability using machine learning methods (Shahbaa I. Khaleel)

43

International Journal on Semantic Web and Information Systems, vol. 14, no. 2, pp. 162–190, Apr. 2018,
doi: 10.4018/IJSWIS.2018040108.

[6] K. L. Peng and C. Y. Huang, “Reliability analysis of on-demand service-based software systems considering failure dependencies,”

IEEE Transactions on Services Computing, vol. 10, no. 3, pp. 423–435, May 2017, doi: 10.1109/TSC.2015.2473843.
[7] M. Banga, A. Bansal, and A. Singh, “Implementation of machine learning techniques in software reliability: A framework,” in 2019

International Conference on Automation, Computational and Technology Management, ICACTM 2019, Apr. 2019, pp. 241–245,

doi: 10.1109/ICACTM.2019.8776830.
[8] M. Yan, Y. Fang, D. Lo, X. Xia, and X. Zhang, “File-level defect prediction: Unsupervised vs. Supervised models,” in International

Symposium on Empirical Software Engineering and Measurement, Nov. 2017, vol. 2017-Novem, pp. 344–353,

doi: 10.1109/ESEM.2017.48.
[9] D. Rodriguez, I. Herraiz, R. Harrison, J. Dolado, and J. C. Riquelme, “Preliminary comparison of techniques for dealing with

imbalance in software defect prediction,” May 2014, doi: 10.1145/2601248.2601294.

[10] R. B. Bahaweres, F. Agustian, I. Hermadi, A. I. Suroso, and Y. Arkeman, “Software defect prediction using neural network based
smote,” in International Conference on Electrical Engineering, Computer Science and Informatics (EECSI), Oct. 2020, vol. 2020-

October, pp. 71–76, doi: 10.23919/EECSI50503.2020.9251874.

[11] L. Qiao, X. Li, Q. Umer, and P. Guo, “Deep learning based software defect prediction,” Neurocomputing, vol. 385, pp. 100–110,
Apr. 2020, doi: 10.1016/j.neucom.2019.11.067.

[12] G. Gayathry and R. Thirumalai Selvi, “Classification of software reliability models to improve the reliability of software,” Indian

Journal of Science and Technology, vol. 8, no. 29, Nov. 2015, doi: 10.17485/ijst/2015/v8i29/85287.
[13] P. K. Kapur, S. Anand, K. Yadav, and J. Singh, “A unified scheme for developing software reliability growth models using

stochastic differential equations,” International Journal of Operational Research, vol. 15, no. 1, pp. 48–63, 2012,

doi: 10.1504/IJOR.2012.048291.
[14] J. Iqbal, “Analysis of some software reliability growth models with learning effects,” International Journal of Mathematical

Sciences and Computing, vol. 2, no. 3, pp. 58–70, Jul. 2016, doi: 10.5815/ijmsc.2016.03.06.

[15] B. John, “A brief review of software reliability prediction models,” International Journal for Research in Applied Science and
Engineering Technology, vol. V, no. IV, pp. 990–997, Apr. 2017, doi: 10.22214/ijraset.2017.4180.

[16] R. B. Karaomer, “Comparison of non-homogeneous poisson process software reliability models in web applications,” AJIT-e Online

Academic Journal of Information Technology, pp. 7–28, Aug. 2016, doi: 10.5824/1309-1581.2016.3.001.x.
[17] G. K. Mohan, N. Yoshitha, M. L. N. Lavanya, and A. K. Priya, “Assessment and analysis of software reliability using machine

learning techniques,” International Journal of Engineering & Technology, vol. 7, no. 2.32, p. 201, May 2018,

doi: 10.14419/ijet.v7i2.32.15567.
[18] S. Omri and C. Sinz, “Machine learning techniques for software quality assurance: A survey,” Computer Science > Software

Engineering, 2021, doi: 10.48550/arXiv.2104.14056.

[19] S. I. Khaleel and A. Al Thanoon, “Design a tool for generating test cases using swarm intelligence,” AL-Rafidain Journal of
Computer Sciences and Mathematics, vol. 10, no. 1, pp. 421–444, Mar. 2013, doi: 10.33899/csmj.2013.163468.

[20] S. I. Khaleel and R. Khaled, “Selection and prioritization of test cases by using bees colony,” AL-Rafidain Journal of Computer

Sciences and Mathematics, vol. 11, no. 1, pp. 179–201, Jul. 2014, doi: 10.33899/csmj.2014.163746.
[21] S. I. Khaleel, “Designing a tool to estimate software projects based on the swarm intelligence,” International Journal of Intelligent

Engineering and Systems, vol. 14, no. 4, pp. 524–538, Aug. 2021, doi: 10.22266/ijies2021.0831.46.

[22] T. M. Khoshgoftaar, E. B. Allen, and J. Deng, “Using regression trees to classify fault-prone software modules,” IEEE Transactions
on Reliability, vol. 51, no. 4, pp. 455–462, Dec. 2002, doi: 10.1109/TR.2002.804488.

[23] H. K. Dam et al., “A deep tree-based model for software defect prediction,” Computer Science > Software Engineering, 2018, doi:

10.48550/arXiv.1802.00921.
[24] J. Wang, B. Shen, and Y. Chen, “Compressed C4.5 models for software defect prediction,” in Proceedings-International Conference

on Quality Software, Aug. 2012, pp. 13–16, doi: 10.1109/QSIC.2012.19.

[25] Y. Kamei et al., “A large-scale empirical study of just-in-time quality assurance,” IEEE Transactions on Software Engineering,
vol. 39, no. 6, pp. 757–773, Jun. 2013, doi: 10.1109/TSE.2012.70.

[26] P. S. Kumar, H. S. Behera, J. Nayak, and B. Naik, “Bootstrap aggregation ensemble learning-based reliable approach for
software defect prediction by using characterized code feature,” Innovations in Systems and Software Engineering, vol. 17, no. 4,

pp. 355–379, May 2021, doi: 10.1007/s11334-021-00399-2.

[27] L. Mou, G. Li, L. Zhang, T. Wang, and Z. Jin, “Convolutional neural networks over tree structures for programming language
processing,” 30th AAAI Conference on Artificial Intelligence, AAAI 2016, vol. 30, no. 1, pp. 1287–1293, Feb. 2016,

doi: 10.1609/aaai.v30i1.10139.

[28] S. Wang, T. Liu, J. Nam, and L. Tan, “Deep semantic feature learning for software defect prediction,” IEEE Transactions on

Software Engineering, vol. 46, no. 12, pp. 1267–1293, Dec. 2020, doi: 10.1109/TSE.2018.2877612.

[29] C. Manjula and L. Florence, “Deep neural network based hybrid approach for software defect prediction using software metrics,”

Cluster Computing, vol. 22, no. S4, pp. 9847–9863, Jan. 2019, doi: 10.1007/s10586-018-1696-z.
[30] H. Tong, B. Liu, and S. Wang, “Software defect prediction using stacked denoising autoencoders and two-stage ensemble learning,”

Information and Software Technology, vol. 96, pp. 94–111, Apr. 2018, doi: 10.1016/j.infsof.2017.11.008.

[31] R. Khan and M. Mahajan, “A review on automatic testing of deep learning systems,” Journal of Xi’an University of Architecture &
Technology, vol. XII, no. Iv, pp. 1822–1832, 2020.

[32] C. G. Bai, Q. P. Hu, M. Xie, and S. H. Ng, “Software failure prediction based on a Markov Bayesian network model,” Journal of

Systems and Software, vol. 74, no. 3, pp. 275–282, Feb. 2005, doi: 10.1016/j.jss.2004.02.028.
[33] Q. P. Hu, M. Xie, S. H. Ng, and G. Levitin, “Robust recurrent neural network modeling for software fault detection and correction

prediction,” Reliability Engineering and System Safety, vol. 92, no. 3, pp. 332–340, Mar. 2007, doi: 10.1016/j.ress.2006.04.007.

[34] E. O. Costa, G. A. de Souza, A. T. R. Pozo, and S. R. Vergilio, “Exploring genetic programming and boosting techniques to model
software reliability,” IEEE Transactions on Reliability, vol. 56, no. 3, pp. 422–434, Sep. 2007, doi: 10.1109/TR.2007.903269.

[35] H. Li, M. Zeng, M. Lu, X. Hu, and Z. Li, “Adaboosting-based dynamic weighted combination of software reliability growth

models,” Quality and Reliability Engineering International, vol. 28, no. 1, pp. 67–84, May 2012, doi: 10.1002/qre.1216.
[36] B. Kotaiah and R. A. Khan, “A survey on software reliability assessment by using different machine learning techniques,”

International Journal of Scientific & Engineering Research, vol. 3, no. 6, pp. 1–7, 2012.

[37] X. Zhang, J. Yang, S. Du, and S. Huang, “A new method on software reliability prediction,” Mathematical Problems in Engineering,
vol. 2013, pp. 1–8, 2013, doi: 10.1155/2013/385372.

[38] N. Torrado, M. P. Wiper, and R. E. Lillo, “Software reliability modeling with software metrics data via gaussian processes,” IEEE

Transactions on Software Engineering, vol. 39, no. 8, pp. 1179–1186, Aug. 2013, doi: 10.1109/TSE.2012.87.

  ISSN: 2252-8938

Int J Artif Intell, Vol. 13, No. 1, March 2024: 35-44

44

[39] A. Amin, L. Grunske, and A. Colman, “An approach to software reliability prediction based on time series modeling,” Journal of

Systems and Software, vol. 86, no. 7, pp. 1923–1932, Jul. 2013, doi: 10.1016/j.jss.2013.03.045.
[40] W. Zhao, T. Tao, Z. Ding, and E. Zio, “A dynamic particle filter-support vector regression method for reliability prediction,”

Reliability Engineering and System Safety, vol. 119, pp. 109–116, Nov. 2013, doi: 10.1016/j.ress.2013.05.021.

[41] K. Tyagi and A. Sharma, “A heuristic model for estimating component-based software system reliability using ant colony
optimization,” World Applied Sciences Journal, vol. 31, no. 11, pp. 1983–1991, 2014.

[42] A. Roy, “Web software reliability analysis using various mathematical approaches,” no. March, 2015.

[43] M. K. Bhuyan, D. P. Mohapatra, and S. Sethi, “Software reliability prediction using fuzzy min-max algorithm and recurrent neural
network approach,” International Journal of Electrical and Computer Engineering, vol. 6, no. 4, pp. 1929–1938, Aug. 2016,

doi: 10.11591/ijece.v6i4.9991.

[44] N. Rastogi, “Survey on software reliability prediction using soft computing,” Int. J. Comput. Eng. Technol., vol. 9, no. 4,
pp. 212–216, 2018.

[45] L. Al turk and E. Alsolami, “Real data application and analysis for evaluating several sub-models of generalized jelinski-moranda

formula,” International Journal of Development Research, vol. 6, no. 10, pp. 9651–9656, 2016.
[46] Y. Tamura and S. Yamada, “Software reliability model selection based on deep learning with application to the optimal release

problem,” Journal of Industrial Engineering and Management Science, vol. 2016, no. 1, pp. 43–58, May 2016,

doi: 10.13052/jiems2446-1822.2016.003.
[47] D. Xu, S. Ji, Y. Meng, and Z. Zhang, “A software reliability prediction algorithm based on MHPSO - BP neural network,” 2017,

doi: 10.2991/gcmce-17.2017.10.

[48] R. Wang, “Research on software reliability model prediction and evaluation system,” MATEC Web of Conferences, vol. 228,
p. 1013, 2018, doi: 10.1051/matecconf/201822801013.

[49] S. C. Pattnaik* and M. Ray, “Software reliability prediction and estimation,” International Journal of Innovative Technology and

Exploring Engineering, vol. 9, no. 8, pp. 855–869, Jun. 2020, doi: 10.35940/ijitee.h6329.069820.
[50] O. Barack and L. Huang, “Assessment and prediction of software reliability in mobile applications,” Journal of Software

Engineering and Applications, vol. 13, no. 09, pp. 179–190, 2020, doi: 10.4236/jsea.2020.139012.
[51] K. Sahu and R. K. Srivastava, “Needs and importance of reliability prediction: An industrial perspective,” Information Sciences

Letters, vol. 9, no. 1, pp. 33–37, Jan. 2020, doi: 10.18576/isl/090105.

[52] P. Gandhi, M. Z. Khan, R. K. Sharma, O. H. Alhazmi, S. Bhatia, and C. Chakraborty, “Software reliability assessment
using hybrid neuro-fuzzy model,” Computer Systems Science and Engineering, vol. 41, no. 3, pp. 891–902, 2022,

doi: 10.32604/csse.2022.019943.

[53] R. S. Parmanand Kushwah, “Soft computing techniques for software reliability,” International Journal of Scientific Engineering
and Research (IJSER) ISSN (Online): 2347-3878 Impact Factor (2020): 6.733, vol. 9, no. 7, pp. 133–140, 2020.

[54] K. K. San, H. Washizaki, Y. Fukazawa, K. Honda, M. Taga, and A. Matsuzaki, “Deep cross-project software reliability growth

model using project similarity-based clustering,” Mathematics, vol. 9, no. 22, 2021, doi: 10.3390/math9222945.
[55] A. Ali et al., “Design-time reliability prediction model for component-based software systems,” Sensors, vol. 22, no. 7, p. 2812,

Apr. 2022, doi: 10.3390/s22072812.

[56] A. Graves, “Generating sequences with recurrent neural networks,” Computer Science > Neural and Evolutionary Computing,
2013, doi: 10.48550/arXiv.1308.0850.

[57] R. Robins-Browne, S. Cianciosi, and J. G. Morris, “Evaluation of different techniques for detection of virulence in Yersinia

enterocolitica,” Journal of Clinical Microbiology, vol. 28, no. 9, p. 2159, Sep. 1990, doi: 10.1128/jcm.28.9.2159-.1990.
[58] L. Tian and A. Noore, “Evolutionary neural network modeling for software cumulative failure time prediction,” Reliability

Engineering and System Safety, vol. 87, no. 1, pp. 45–51, Jan. 2005, doi: 10.1016/j.ress.2004.03.028.

BIOGRAPHIES OF AUTHORS

Shahbaa I. Khaleel was born in Mosul, Nineveh, Iraq, she received the B.S.,

M.Sc. and Ph.D. degrees in computer science from Mosul University, in 1994, 2000 and

2006, respectively, assistant prof. since 2011, and finaly, prof. degree on 2021. From 2000 to

2023, she was taught computer science, software engineering and techniques in the College

of Computer Sciences and Mathematics, University of Mosul. She has research in a field

computer science, software engineering, intelligent technologies. She can be contacted at

shahbaaibrkh@uomosul.edu.iq.

Lumia Faiz was born in Mosul, Nineveh, Iraq, she received the B.S., degree in

software engineering from the Mosul University, in 2007, and she study now Master Degree

in Software Department, College of Computer Science and Mathematics, Mosul University,

Iraq. She can be contacted at email: lumia.21csp2@student.uomosul.edu.iq.

https://orcid.org/0000-0001-8154-0364
https://scholar.google.com/citations?user=h0_V4wEAAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=57221608822
https://orcid.org/0000-0003-3500-3183

