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 The user experience can be greatly improved by using learning models that 

have been trained using data from mobile devices and other internet of 

things (IoT) devices. Numerous efforts have been made to implement 

federated learning (FL) algorithms in order to facilitate the success of 

machine learning models. Researchers have been working on various 

privacy-preserving methodologies, such as deep neural networks (DNN), 

support vector machines (SVM), logistic regression, and gradient boosted 
decision trees, to support a wider range of machine learning models. The 

capacity for computing and storage has increased over time, emphasizing the 

growing significance of data mining in engineering. Artificial intelligence 

and machine learning have recently achieved remarkable progress. We 
carried out research on data poisoning attacks in the FL system and proposed 

defence technique using uniform manifold approximation and projection 

(UMAP). We compare the efficiency by using UMAP, principal component 

analysis (PCA), Kernel principal component analysis (KPCA) and k-mean 
clustering algorithm. We make clear in the paper that UMAP performs better 

than PCA, KPCA and k-mean, and gives excellent performance in detection 

and mitigating against data-poisoning attacks.  
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1. INTRODUCTION 

Data is usually sensitive to privacy and is very large, or both, which may make it impossible to 

access to the data centre and conduct training while using traditional methods [1]. In federated learning (FL), 

several clients collaborate to train a model under the control of a single server while maintaining 

decentralized access to the training data [2]. However, due to the sensitive nature of the data, there are risks 

and responsibilities associated with storing it in a centralized location [3], [4]. A new paradigm known as FL 

has enormous potential for improving edge computing capabilities in modern distributed networks [5]. FL 

has a lot of potential but also presents some special difficulties in real-world situations [2]. Systemic 

heterogeneity [6], communication effectiveness [2], [7] privacy issues [2], and more recently on fairness and 

resilience throughout the network of clients [7] have been the main topics of current studies. Massive, 

decentralized networks have stochastic heterogeneity of client’s data as a defining feature [8]. Innovations in 

implementation of machine learning (ML) models have considerably improved acceptance of this technology 

in several real-world systems that transform practically all industries in recent years [9], in fields like 

computer vision [10], healthcare [11], finance [12], marketing [13], smart manufacturing [13], transportation 

[6], agriculture [14], education [6], and natural language processing (NLP) [6]. The vast amounts of 
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structured, semi-structured, and unstructured data that are regularly produced by people, companies, and 

machines, such data gathering and storing big data can be costly and time-consuming [15]. The amount of 

data being produced is increasing exponentially, and this presents a challenge for organizations to manage 

and store the data effectively. Various sources and storing it in a centralized location such as a data center. 

The data is then pre-processed and used to train the artificial intelligence (AI) model using different 

algorithms like supervised, unsupervised or reinforcement learning. The desired activity, such as image 

recognition or NLP, is subsequently carried out using the trained model that has been set up. 

In 2017, McMahan et al. used the term "Federated learning" [2]. FL has gained popularity as a 

machine learning (ML) techniqu [9] due to its inherent speed, more efficient, and offers more data privacy 

than classical machine learning [11]. However, if poisoning is not addressed quickly, it can seriously affect 

FL systems and result in inaccurate predictions [16]. Clients in FL learn models locally using local training 

data, and they subsequently send model changes to a central aggregator who integrates them into a global 

model [17]. The next training cycle then propagates the global model back to the clients. Since the training is 

carried out simultaneously for numerous clients, FL provides efficiency and scalability [2]. FL specifically 

enhances confidentiality by allowing users to save their training data locally [2]. Despite its advantages, FL 

has been shown to be vulnerable to attacks known as "poisoning" [9], in which the attacker changes the local 

models of a subset of federated clients in order to make harmful updates to the global model [16]. Poisoning 

attempts that solely aim to negatively impact the performance of the global model can be stopped by 

monitoring the performance of uploaded models [8]. The inference attack and the poisoning attack are the 

two basic categories of attacks in FL. Where poisoning attack is further divided into data poisoning and 

model poisoning [18]. In FL, data poisoning refers to a malicious client using corrupted data for the training 

model [19]. Model poisoning is when an attacker tries to change the local model's parameters, which then 

affect the global model's parameters. 

FL, also known as collaborative learning, is a decentralized methodology for training machine learning 

models. Unlike traditional approaches that involve transferring data from client devices to global servers, FL 

leverages the raw data available on edge devices to train the model locally. This approach enhances data privacy 

by eliminating the need for data transmission to central servers. FL resolves the data privacy problems by 

insisting that users only disclose the model parameters—not the actual data [8]. Thus, a global data model is 

created, where decisions are made using the parameters that each participant submits to a server. However, FL 

is threatened in a number of ways, including data poisoning [20]. Data poisoning seeks to degrade the final 

learning model's quality, resulting in misclassification. The data features or labels are intentionally changed in 

this attack scenario by adverse or hacked clients [21], [22]. The easiest and most effective method to flip the 

label of each training data point is the label-flipping attack, which will be addressed in the next section. 

Therefore, FL needs a defense mechanism to provide resilience in order to stop such data poisoning attempts. 

When there are I clients, each client i possesses its own dataset D_i= (x_1, x_k), and each data point x_k 

comprises a set of features f_i and a corresponding class label c_i∈ C, where C represents the set of all possible 

class values. Then, to compute the loss function L, federated averaging runs over {𝑤𝑡
𝑖}𝑖=1

𝐼 where {𝑤𝑡
𝑖  = ∇𝑙𝑖 

(𝑤𝑡) and finally, the updated global model parameter is calculated as,  
 

𝑤𝑡+1 ←  𝑤𝑡 − η ∇(𝑙𝑤𝑡)  
 

where 𝑤𝑡 represents the previous global model parameter, η denotes the learning rate ∇l(𝑤𝑡) is determined by,  
 

𝛻𝑙(𝑤𝑡) =  ∑
𝑛𝑖

𝑛
𝑤𝑡

𝑖𝐾
𝑘=1   

 

where 𝑛𝑖 denotes the size of each individual dataset 𝐷𝑖 and K represents the number of benign clients 

selected. However, to ensure the integrity of the aggregated global model, an additional identification method 

is required to identify and address malicious clients. 

The label flipping attack in machine learning [23] is widely recognized as one of the most prevalent 

data poisoning attacks. This malicious technique involves flipping or altering the labels of training data, 

resulting in a degradation of the model's classification performance [24], [25]. An instance of this attack 

could be witnessed in the Canadian Institute for Advanced Research (CIFAR-10), where the label-flipping 

attack intentionally misclassifies airplanes as birds [22]. The absence of a centralized curator for data analysis 

poses a significant risk of data poisoning to the FL system [26]. 

We initiated an investigation into the feasibility of label flipping attacks on poison FL systems. Our 

approach relies on utilizing dimensionality reduction algorithms to identify malicious updates based on 

specific characteristics exhibited by malicious parameters [27]. However, given the large number of 

parameters in deep neural networks (DNN), manually checking for harmful parameter updates can be 

challenging [27]. To address this, we propose an automated strategy using uniform manifold approximation 



Int J Artif Intell  ISSN: 2252-8938  

 

Defending against label-flipping attacks in federated learning systems using uniform … (Deepak Upreti) 

461 

and projection (UMAP) for dimension reduction to locate and filter out parameters sent by malicious updates, 

as demonstrated in our study [11]. Within the FL system, the aggregator possesses the capability to detect 

and identify participants involved in malicious activities [16]. After being recognized, the aggregator has the 

option to put these participants on a blacklist or decline their contributions for future rounds [11]. 
 

 

2. METHOD AND STRATEGY 

We know that label-flipping attacks on FL systems are quite effective and that a dimensionality 

method might be used as a defense mechanism based on prior research. We have developed a better method 

that combines dimensionality reduction with clustering strategies in order to advance previous research. For 

dimensionality reduction, we employed the UMAP technique [28]. UMAP proves to be a robust nonlinear 

dimensionality reduction method when compared to other techniques like t-distributed stochastic neighbor 

embedding (t-SNE) [29] and other clustering methods, UMAP is a strong nonlinear dimensionality reduction 

technique. UMAP assumes that the data points are evenly spread out across the manifold, which is 

determined by the Riemannian metric on the manifold [28]. Additionally, UMAP provides faster processing 

speeds compared to alternative techniques for reducing dimensionality, including principal component 

analysis (PCA) and t-SNE [29]. 

The experiments conducted involved varying the rate of malicious client presence (m) within the range 

of 10 to 30%. The results indicate that as the malicious percentage (m) increases, there is a decline in the test 

accuracy of the global model. Even a small increase in m leads to decreases in both the global model's test 

accuracy and the source-class recall, with the latter experiencing a more significant drop. For instance, in the 

scenario with a malicious percentage of 40%, the global model's test accuracy for CIFAR-10 decreases to 76% 

compared to 78% in the non-poisoned model case. Similarly, the source-class recall drops to approximately 0%. 

These findings demonstrate that even a small fraction of manipulated participants can have a significant impact 

on the accuracy of the global model. The vulnerability to label-poisoning attacks varies between the CIFAR-10 

and Fashion Modified National Institute of Standards and Technology (Fashion-MNIST) datasets, with 

Fashion-MNIST being more sensitive compared to CIFAR-10 [23]. Surprisingly, the experiment shows that the 

attacker doesn't always require knowledge about the most susceptible source or target category. Furthermore, 

the effectiveness of the attack is not solely dependent on the misclassification rate of the non-poisoned model. 

Ultimately, removing malicious participation can help converge the system towards high-utility outcomes.  
 

Algorithm 1: Enhancing the resilience of FL through UMAP-based model updates. 

updating the model_function (X, n, d, min-dist, n-epochs 𝑤𝑡) 

1: v ← ∅ 

2: each round t = 1, 2, ….do 

3: 𝑤𝑡 ← previous_global_model_parameters 

4: ## executed for each client locally 

5: for each client i= 1, 2,…I do 

6: 𝑤𝑡
𝑖 ← ∇l(𝑤𝑡) 

7: u ← {𝑤𝑡
𝑖}𝑖=1

𝐼  

8: u’ ← standardize(u) 

9: u’’ ← UMAP (u’, n, d, min-dist, n-epochs 

10: Plot (u’’) 
 

Algorithm 1 demonstrates the updates made to our robust model using FL with UMAP. UMAP is a 

recently introduced technique for manifold learning. Its purpose is to accurately capture local structures while 

effectively integrating global structure [28]. UMAP is generally a straightforward algorithm that requires 

several parameters. The parameters required for the algorithm consist of the following: the neighborhood size 

(n) used for approximating local metrics, the desired dimension (d) of the reduced space, min-dist (a 

parameter governing the layout), and the number of epochs (n epochs) that determine the level of 

optimization applied. To construct the fuzzy simplicial set local to a given point x, the algorithm involves 

identifying its n nearest neighbors, establishing the appropriate normalized distance on the manifold, and then 

converting the finite metric space into a simplicial set using the FinSing functor. In this case, the conversion 

is accomplished through an exponential function of the negative distance. To ensure a consistent cardinality 

for the fuzzy set of 1-simplices, we utilize a smoothed version of the k-nearest neighbors-distance algorithm. 

Rather than directly utilizing the distance to the nth nearest neighbor for normalization, we opt for log2 (n) 

based on empirical experiments. In spectral embedding, we analyze the weighted graph formed by the 1-

skeleton of the overall fuzzy topological representation. We then apply traditional spectral techniques to the 

symmetric normalized Laplacian of the graph. Algorithm 2 outlines the procedure for conducting the 

optimization process, which involves the utilization of stochastic gradient descent [28]. 
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Algorithm 2: UMAP (X, n, d, min-dist, n-epochs) 

Input: 

1: X: the data set to have its dimension reduced 

2: n: the neighborhood size to use for local metric approximation 

3: d: the the dimension of the target reduced space 

4: min-dist: an algorithmic parameter controlling the layout 

5: n-epochs: controlling the amount of optimization work to perform 

6: #construct the relevant weighted graph 

7: for all x ∈ X do 

8: fs-set[x] ← Local Fuzzy Simplicial Set (X, x, n) 

9. top ←  𝑈𝑥∈𝑋 

10. # perform optimizations of the graph layout 

11. Y ← Spectral Embedding (top-rep, d) 

12. Y ← optimize Embedding (top-rep, Y, min-dist, n-epochs) 

13. RETURN Y 
 

 

3. EVALUATION, ANALYSIS AND RESULTS 

We employed the PyTorch library to implement our attack and defense strategies within the FL 

environment. By default, our setup consisted of 100 participants (N), a central aggregator and one participant 

per round, k=5. In our experiment, we focused on targeted data poisoning in FL, specifically aiming to flip 

labels. We flipped a label l to l', where l belongs to the set of possible labels (L), and l' is a different label 

from l within L. L represents the total count of categories in the classification task. To distribute the entire 

training dataset equally among participants, we assumed that each participant randomly received a different 

portion of the training data. We conducted FL tests for a total of R = 200 rounds. 

For our experiments, we utilized the CIFAR-10 and Fashion-MNIST datasets. CIFAR-10 is a 

commonly used image collection for training machine learning and computer vision algorithms. It consists of 10 

classes representing airplanes, cars, birds, cats, deer, dogs, frogs, horses, ships, and trucks [30]. Fashion-

MNIST, on the other hand, contains 60,000 training items and 10,000 testing items. It encompasses 10 different 

classes representing T-shirt/top, trouser, pullover, dress, coat, sandal, shirt, sneaker, bag, and ankle boot [30]. 

For the Fashion-MNIST experiment, we employed a configuration that consisted of two convolutional layers 

incorporating batch normalization, two max-pooling layers, and a single fully connected layer. 

To tackle CIFAR-10, we utilized a network architecture comprising six convolutional layers with 

batch normalization, followed by two fully connected dense layers and a softmax layer. To simulate attacks, 

we assigned a total of N participants, out of which a certain percentage (m%) were designated as malicious 

clients. At the beginning of each experiment, N * m participants were randomly selected as malicious, while 

the remaining participants were considered honest. To guarantee the accuracy of the experiment, we 

considered the potential impact of selecting participants with malicious intent. We conducted each 

experiment multiple times (ten times in total) and determined the final result by calculating the average 

outcome. In the CIFAR-10 dataset, we performed tests where we replaced dogs with cats, airplanes with 

birds, and automobiles with trucks. Similarly, for the Fashion-MNIST dataset, we conducted experiments by 

substituting shirts with t-shirts, trousers with dresses, and coats with shirts. 

Our study aimed to apply the label flipping technique to both the CIFAR-10 and Fashion-MNIST 

datasets. We presented the outcomes in a table, considering four distinct scenarios. In the first scenario, we 

utilized PCA as the method to reduce dimensionality. In the second scenario, we employed kernel principal 

component analysis (KPCA) as the defense algorithm. The third scenario involved combining KPCA with  

k-means as a defense strategy. Lastly, in the fourth scenario, we used UMAP as a defense mechanism against 

adversarial attacks on the database. The experimental data we gathered demonstrated the effectiveness of 

employing PCA, KPCA, KPCA+K-means, and UMAP in distinguishing between malicious and genuine 

updates delivered by adversaries. 
 

 

4. EXPERIMENTAL RESULTS 

Our UMAP approach outperforms PCA and KPCA in terms of accuracy. Figure 1 presents the 

accuracy and recall metrics corresponding to the CIFAR-10 and Fashion-MNIST datasets. The CIFAR-10 

and Fashion-MNIST datasets exhibit accuracy levels between 72% and 79%, while the presence of malicious 

values varies from 0% to 50%. The figure indicates that as the number of malicious users increases, the 

accuracy decreases. Initially, the decline is consistent, but once the percentage of malicious individuals 

exceeds 10%, the decline becomes more prominent for both datasets. When the malicious rate reaches 40% 
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to 50%, the accuracy remains at a minimal level. Similarly, when the FL system surpasses 10%, the recall 

results from the source show a significant decline, reaching zero. 

Table 1 presents the recall of the source and the overall accuracy of a global model using different 

defense strategies on CIFAR-10. These strategies include PCA, KPCA, KPCA + Kmean, and UMAP. 

Similarly, Table 2 provides the corresponding results for Fashion-MNIST. The tables provide clear evidence 

that using PCA results in a negligible reduction in accuracy until the number of malicious participants 

reaches 10%. However, beyond 30%, there is a slight decline in accuracy. In contrast, when KPCA is used 

instead of PCA, both tables indicate that the accuracy decline is less pronounced. With KPCA, the accuracy 

remains unaffected until the fraction of malicious participants exceeds 20%, while with PCA, the accuracy 

starts to decrease once the percentage surpasses 4% for both CIFAR-10 and Fashion-MNIST. Likewise, 

when considering the combination of KPCA and K-mean (KPCA+K-mean), the accuracy experiences a 

significant drop when the malicious percentage reaches 40%. 
 

 

 

 
 

Figure 1. Accuracy and recall of global model against CIFAR-10 & Fashion-MNIST attacks with m% adversaries 
 

 

Table 1. The source recall and global model accuracy can be evaluated using different defense strategies, 

including PCA, KPCA, KPCA combined with K-means, and UMAP in CIFAR-10 
PCA KPCA KPCA + K-mean UMAP 

Malicious Accuracy Recall Malicious Accuracy ReCall Malicious Accuracy ReCall Malicious Accuracy ReCall 

0% 78.2 69.9 0% 78.4 71 0% 78.4 71 0% 78.4 73 

2% 78.1 69.9 2% 78.3 70 2% 78.3 70 2% 78.3 72 

4% 78 69.8 4% 78.2 69.8 4% 78.2 69 4% 78.2 71 

10% 77.5 67 10% 78 66 10% 78 67 10% 78.1 69 

20% 77.4 62 20% 77.8 64 20% 77.8 64 20% 78 66 

30% 76.8 53.1 30% 77.3 59 30% 77.3 60 30% 77.9 62 

40% 76.1 44.1 40% 76.8 52 40% 76.8 53 40% 77.8 55 

50% 76 29 50% 75.5 43 50% 75.7 45 50% 77.7 47 

 

 

Table 2. The source recall and global model accuracy can be evaluated using different defense strategies, 

including PCA, KPCA, KPCA combined with K-means, and UMAP in Fashion MNIST 
PCA KPCA KPCA + K-mean UMAP 

Malicious Accuracy Recall Malicious Accuracy ReCall Malicious Accuracy ReCall Malicious Accuracy ReCall 

0% 91.3 88 0% 91.3 88 0% 91.3 88 0% 91.3 88 

2% 91.2 87.8 2% 91.2 87.8 2% 91.2 87.8 2% 91.2 87.8 

4% 91 87.6 4% 91 87.6 4% 91 87.6 4% 91 87.6 

10% 90.6 79 10% 90.7 80 10% 90.9 80 10% 90.9 80.5 

20% 89.9 71 20% 90.2 72 20% 90.3 73 20% 90.7 74.1 

30% 89.1 65 30% 89.8 68 30% 90 69 30% 90.5 70.5 

40% 88.7 57 40% 89 63 40% 89.1 64 40% 89.8 65.2 

50% 88.6 58 50% 88.7 58 50% 88.8 59 50% 89.5 60.3 



                ISSN: 2252-8938 

Int J Artif Intell, Vol. 13, No. 1, March 2024: 459-466 

464 

In Tables 1 and 2, the rightmost column displays the results obtained using UMAP, which 

demonstrates superior performance compared to other dimension reduction techniques. UMAP is a powerful 

tool with several advantages over t-SNE and similar methods. It is fast and scalable, capable of projecting 

high-dimensional datasets, such as the 784-dimensional, 70,000-point MNIST dataset, in under 3 minutes, 

while the implementation of scikit-t-SNE takes longer [29]. As the number of data points increases, UMAP 

proves to be more time-efficient compared to t-SNE. Additionally, UMAP effectively preserves the overall 

structure of the data due to its strong theoretical foundations, which allow it to balance local and global 

structures effectively. As a result, UMAP is highly effective for visualizing high-dimensional data, thanks to 

its speed, preservation of global structure, and easily interpretable parameters. It is clear that UMAP 

outperforms other methods in protecting against data poisoning attacks. Therefore, UMAP significantly 

enhances the clustering results in FL and makes it more resilient against data poisoning attacks. 

Figures 2 and 3 exhibit the performance of the proposed defensive algorithm and compare it with a 

previously suggested method [30]. The results of the PCA defense method are shown in the top row, with 

varying levels of malicious percentages (m) at 10%, 20%, 25%, and 30%. Similarly, the second row 

illustrates the implementation of the KPCA defense method, while the third row demonstrates the utilization 

of the UMAP method. In Figures 2 and 3, malicious updates are represented by the color red, while updates 

from honest participants are depicted in green. The figures clearly highlight the distinctions between 

malicious and honest updates and demonstrate the effectiveness of the different algorithms in differentiating 

between them. Comparing the three rows, it becomes apparent that UMAP outperforms PCA and KPCA in 

effectively distinguishing between malicious and honest updates. Thus, incorporating UMAP into the defense 

algorithm yields superior results and represents a more favorable approach. 
 

 

 
 

Figure 2. The proposed algorithm's clustering outcomes in distinguishing between malicious local updates 

and benign updates (CIFAR-10) 
 

 

 
 

Figure 3. The proposed algorithm's clustering outcomes in distinguishing between malicious local updates 

and benign updates (Fashion-MNIST) 
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5. CONCLUSION 

This research paper focuses on identifying and mitigating data poisoning threats in FL through the 

application of dimensionality reduction techniques. Among various techniques considered, including PCA, 

KPCA, and KPCA+K-mean, UMAP emerges as the most effective choice. The proposed protection technique 

leverages dimensionality reduction algorithms, such as UMAP, to detect malicious attempts in the FL system. 

By analyzing the specific characteristics of malicious parameters, UMAP can automatically identify and filter 

out harmful parameter updates, alleviating the need for manual inspection, especially in DNNs with numerous 

parameters. The study demonstrates that the FL system's aggregator can employ UMAP to locate and isolate 

malicious participants. Once identified, the aggregator has the option to blacklist these participants or reject 

their updates in subsequent rounds. The experimental results validate the effectiveness of UMAP in mitigating 

poisoning attacks within the FL system. Looking ahead, the researchers aim to extend their investigations by 

conducting experimental research on backdoor attacks. Additionally, they plan to explore and analyze the fools 

gold algorithm as a means to further minimize vulnerabilities in FL systems. 
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