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ABSTRACT

Cuneiform has been a widely used writing system in one of the human his-
tory phases. Although there are millions of tablets, have been excavated today,
only around 100,000 tablets have been read. The difficulty in translating also
increased if the tablet has damaged areas resulting in some of its characters be-
come fragmented and hard to read. This paper investigates the possibility of
reading fragmented cuneiform characters from Noto Sans Cuneiform font based
on convolutional neural network (CNN). The dataset is built on extracted 921
characters from the font. These characters are then intentionally being dam-
aged with specific patterns, resulting set of fragmented characters ready to be
trained. The model produced by this training phase then being used to read the
unseen fragmented pattern of cuneiform sets. The model also being tested for
reading normal characters set. From the simulation, 83.86% accuracy of reading
fragmented characters are obtained. Interestingly, 96.42% accuracy is obtained
while the model is being tested for reading normal characters.
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1. INTRODUCTION
The damaged area of excavated cuneiform tablets raised problems in interpreting the old text. It

decreases the overall contents in regards to understanding the text due to the vanishing sentences. To preserve
the information as much as possible, if a fragment of a character remains, the full form of a character can be
conjectured based on the remaining fragment. Guessing what the character next is quite challenging, but it is not
impossible. Cuneiform is a writing system developed in 3500-3000 BC by the Sumerians in the Mesopotamian
city of Uruk, or what is now known as Iraq [1]-[3]. Cuneiform became the writing system used in several
languages of the Mesopotamian civilization, such as Sumerian, Akkadian, and Hittite [2], [4], [5]. Although
this letter was used as writing system in several Mesopotamian civilizations, the way to read it was different.
For example, even though Sumerians and Akkadians used cuneiform, the way to read each letter was different
because of the differences in the language of each civilization [6]-[8]. The reader may realize that the readings
are trivial, the same character does not guarantee the same reading in the other part of the sentence. Instead,
the reading depends on character or the words that may follow [9].

According to the Unicode character encoding standard, cuneiform is divided into three blocks of the
number of letters in the Sumero-Akkadian script. The first block covers the most basic cuneiform charac-
ters, starting from U+12000 to U+123FF. The second block starts from U+12400 to U+1247F that includes
cuneiform numbers and punctuation. Lastly, the third block starts from U+12480 to U+1254F, including addi-
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tional cuneiform characters dating from the early dynastic period [8]. This paper only used the first block, until
U+12398, as the main training source, because the basic characters are assigned effectively until this area.

It has been recorded that archaeologists have excavated and found around 0.5-2 million cuneiform
tablets, of which 30,000-100,000 have existed and were successfully read by researchers. In comparison, 1.9
million cuneiform tablets still need to be read [10], [11]. It will be beneficial if we could make automation
cuneiform character recognition. We have the technology to do this; we did not implement it yet to Cuneiform
character and set it according to its characteristics.

Convolutional neural network (CNN) is one of the technologies used widely in image classification.
It can be used to face recognition with 99.63% accuracy [12]. It also can recognize disease on the plant until
99.53% accuracy [13]. It is also used to implement optical character recognition. It reaches 98.96% accuracy
for recognizing Chinese uppercase characters in the application of the internet of things [14]. In the previous
research, cuneiform character recognition reaches 91% accuracy for its classification using polygon approxi-
mation for 350 cuneiform dataset symbols [15]. This study investigates the possibility of reading fragmented
or full form cuneiform characters based on trained CNN models with pure fragmented characters only as its
training source.

2. METHOD
2.1. CNN

CNN is a unique type of neural network that differs from other types of neural networks. It is
specifically designed for feature extraction from images using a systematic extraction process based on multi-
convolution [16]-[18]. Compared to regular neural networks, CNN is more efficient in image recognition since
only image features are processed in hidden layers, rather than millions of rows of data as in regular NNs.
CNN is renowned for its high level of image classification, with up to 99% accuracy in recognizing plant dis-
eases through leaf imagery [13]. Moreover, it can extract abstract features such as physical effects simulated in
videos [19].

Convolution is a fundamental technique used in image processing for feature extraction, which in-
volves using a small matrix to apply operations such as blurring, line detection, and image sharpening [20]. In
CNN, an image undergoes multiple convolution processes, resulting in the extraction of specific features that
are then classified using a regular NN. The architecture of CNN is illustrated in Figure 1.

Figure 1. CNN architecture

2.2. Architecture
There are various types of hidden layers, such as the convolution layer (C), the sub-sampling layer

(S), the flatten layer (F), and the dense layer (D). This paper exploites mostly the first four types of hidden
layer. The first type of hidden layer is responsible for convolution, the second is responsible for local averages
or local maximum for sub-sampling and resolution reduction, while the third and the fourth acts as a traditional
multi-layered perceptron classifier.

No standard requires these layers to be arranged to form a particular architecture. The architecture
arrangement could be C8-M2-C16-M2-F, or C8-C8-M2-C8-C8-M2-F, or C8-C8-C8-M2-C16-C16-C16-M2,
or sany possible sequences. The composition and parameters of each layer will be examined in this study,
ranging from 3 to 4 convolution layers stacked similar with LeNet architecture [21], together with pretrained
architecture such as visual geometry group 16 (VGG16) [22] and ResNet-RS50 [23]. Since we are trying to
read Cuneiform characters, thus we need at least 921 nodes in this output layer.
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2.3. Cuneiform character complexity
In order to prepare a reasonable number of nodes during the classification process, the overall

Cuneiform character complexity needs to be analyzed. Cuneiform characters have a much higher number
of strokes compared to the Latin alphabet. If the scaled image feed into the CNN pipelines is too small, the
aliasing effect will be higher. Due to its black and white nature of the image, if Pm×n is the matrix of certain
Cuneiform character, then in order to capture full complexity of a character, the edges should be evaluated
horizontally and vertically altogether by substracting its own shifted matrix. Thus, the maximum edges of a
character, for {i, j ∈ N | 1 ≤ i < m, 1 ≤ j ≤ n}, can be defined as follows.

m =
⌈
max

(
max
i∈m

n−1∑
j=1

|pi,j − pi,j+1|

 ,max
j∈n

(
m−1∑
i=1

|pi,j − pi+1,j |

))⌉
(1)

As a result, the following Table 1 contains the most complex characters. Based on this table, it can
be seen that the most complex characters based on the number of strokes, is called as "Cuneiform Sign an Plus
Naga Squared" with unicode U+12031. This character has maximum 46 lines alternately within one characters.

Table 1. List of detected most complicated characters
Rank Unicode Character

1st U+12031

2nd U+1228E

3rd U+1216C

This most complex Cuneiform character can be divided into 23 stroke parts, or into 11.5 part since
these strokes are mostly repeatable more than twice. If all directions from horizontal or vertical part are taken
into account, total we need at least 133 parts to cover this characters. As the result, the number of nodes needed
during the classification process before reaching 921 conclusion nodes, are at least 133 nodes within fully
connected layers. In this paper, the number is recommended to be increased to 160 nodes for diversification.

3. THE MODELS
There are 3 kind of schemes conducted in this experiment. The first scheme, model A, aims to dis-

tinguish whether a character is a fragmented character or an unfragmented character. Thus, two classes are
needed in order to train model A, which are ’fragmented characters’ and ’unfragmented characters’. This func-
tion similar to automatic faulty diagnosis [24], [25]. Let’s take a look at Figure 2. The first third fragment
models consist of fragmented triangular characters. The second, third fragment models consist of half-block
fragmented characters, and the last third fragment models consist of quarter block fragmented characters. These
are the fragmented character models used in this paper. The dataset can be found at [26].

Figure 2. Training pattern

First, 921 different characters with Unicode code from U+12000 to U+12398 are produced for ’un-
fragmented characters’ class and ’fragmented characters’ class. The ’unfragmented characters’ class is being
prepared without further operation. However, within ’fragmented characters’ class, each character is being ap-
plied crop function among one of these 12 fragmented character models randomly. Thus, we have 921 images
for each class. Next stage, each class member is separated into two more groups, ’training’ and ’testing’ set,
with ratio 70:30, resulting in 645 characters of training class and 276 characters of each testing class.
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The second scheme, model B, aims to guess Cuneiform characters from its fragmented character. This
training dataset consists of 921 different classes representing 921 cuneiform characters. Inside the training
dataset, each character class is divided into 12 different fragment models. No unfragmented characters are
being trained in this model. Then inside the testing dataset, each character class is divided into 15 distinct
fragmented models as can be seen at Figures 3(a) to 3(d), each of them differs their style with their former
training model, resulting 921×15 characters are being prepared for testing the model.

(a) (b)

(c) (d)

Figure 3. 2nd scheme, B model tests (a) B1: half triangle, (b) B2: rectangle,
(c) B3: quarter triangle, and (d) B4: middle

The third scheme with the same model B aims to read Cuneiform characters in its full shape. This
third scheme validation is easier than the previous scheme. Full unfragmented cuneiform characters are needed
to test model B. Table 2 shows the summary of each scheme.

Table 2. Scheme 1, 2, and 3 for training the models
Scheme Model Classes Detail

1 A 2 differentiate whether it is fragmented or not
2 B 921 guess the fragmented reading
3 guess the full shape reading

3.1. Data augmentation
The characters prepared on the dataset are extracted from Noto Sans Cuneiform, a font type devel-

oped by Google. However, the 12 different fragment models used for each character are limited compared to
real Cuneiform characters excavated from sites. As a comparison, the Chinese ancient handwritten characters
database (CASIA-AHCDB) includes over 2.2 million annotated handwritten characters based on 10,350 char-
acter classes with nearly 213 variation samples per character [27]. Offline Japanese handwriting databases have
also been developed with a higher degree of variation and 2.005 variation samples per character class [28]. A
higher number of samples typically leads to better recognition of each class variation [29].

Thus, 12 variations for each character are not good enough, representing the real case scenario. How-
ever, there is exist a technique to enrich the dataset variation called augmentation. [30] intentionally derived
various datasets based on their medical image dataset which, by nature, is hard to obtain. In this research,
further augmentation is performed to obtain various styles and models for each character.

Since curving in clay has fewer of freedom variations than handwriting in the paper, each charac-
ter class is augmented into 100 different styles. There are 5 effects applied on each character augmented in
this preprocessing phase; distortion, rotation, zoom, crop, and resize. Each effect has different spectrum of
variation. The example of this augmentation result can be seen at Figure 4.

Figure 4. Augmentation variation
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3.2. Architecture
The first scheme, called model A, has 3 types with little variation on its fully-connected layer (FCL):

A32, A64, and A128. Table 3 shows the architecture. After flattening, nodes connect to the FCL based on its
model type: A32, A64, and A128 have 32, 64, and 128 nodes in its FCL, respectively. All nodes are combined
into one output node to determine whether the input image is a fragmented cuneiform character. The second
and third schemes use the same model B. Model B is created by selecting the best-performing models from
the configurations in Table 4. These models are trained with the fragmented characters dataset’s training and
validation data. The treatment after training is divided into 2 schemes: Scheme 2 and Scheme 3.

The reason most of the model candidates configurated in C64(5)-S2-C96(5)-S2-C128(5)-S architec-
ture is that to emulate the established Japanese characters recognition architecture based on CNN from [31],
which is configured at model 3 as original architecture. It is because that the Japanese characters have similar
characteristic with Cuneiform characters. Model 5 and 6 are the transfer learned models based on VGG16 and
ResNetRS50 architecture. Full base architecture can be seen at the following Table 5.

Table 3. Model A architecture
Layer w × h × n Filter
Input 32× 32× 1 -

C 30× 30× 32 3× 3

S 15× 15× 32 2× 2

Table 4. The architecture candidates for model B
Model Architecture

1 C64(5)-S2-C96(5)-S2-C128(5)-S5-F-D160
2 C64(5)-S2-C96(5)-S2-C128(5)-S2-F-D160
3 C64(5)-S2-C96(5)-S2-C128(5)-S3-F
4 C64(5)-S2-C96(5)-S2-C128(5)-S3-C160(3)-F
5 VGG16-F
6 ResNetRS50-F

Table 5. Base architecture for model 1, 2, 3, 4
Layer w × h × n Filter
Input 64× 64× 1 -
C1 60× 60× 64 5× 5

S1 30× 30× 64 2× 2

C2 26× 26× 96 5× 5
S2 13× 13× 96 2× 2

C3 9× 9× 128 5× 5

4. SIMULATION RESULT
4.1. Scheme 1

Figure 5(a) is the simulation result for the first scheme. It can be seen that model A32 has the highest
accuracy around 98.73% differentiating fragmented characters and not during its testing phase. Contrarily,
model A64 has the lowest accuracy 98.17% on average among three models.

4.2. Scheme 2
The first thing to do before diving into scheme 2 is to select the best model from 6 candidates as

mentioned before in Table 4. The models are trained with fragmented characters, and then their accuracy,
loss, and accuracy bias are observed. In this paper, the accuracy bias is defined as the distance between training
accuracy and validation accuracy. If the bias is very close to 0, then it can be said that the model experience little
overfitting. Based on Figures 5(b) and 5(c), it can be seen that model 4 has the best performance. The validation
accuracy in reading fragmented characters reachs 83.86%, while its training accuracy reachs 96.67%. Model
4 is the further modification based on original Japanese Characters Recognition at model 3, where another
convolutional layer with 160 filters and 3×3 pixel kernel is added. Thus, model 4 is selected for model B.

After this, 4 different kinds of model tests are conducted to see model B ability to read different
fragmented Cuneiform characters. Each model test has different blocker shapes that will be applied to all 921
Cuneiform characters resulting set of fragmented characters. Table 6 shows the detail of each model test.

The block positions for model B are presented in Figure 3, while the effect of these positions on
reading accuracy is demonstrated in Figure 6. In the case of B1, there are 4 variants of triangle block positioning
as can be seen at Figure 3(a). These 4 patterns block half of overall characters’ shape. It can be seen from
Figure 6(a) that all blockers affects model B’s reading accuracy fluctuatively on all epochs. On average, model
B has the highest accuracy around 6.73% when reading fragmented Cuneiform characters with B pattern, which
the characters are blocked from the lower side. As contrast, model B has the lowest accuracy around 2.5% when
reading fragmented characters with C pattern. This result gives a glimpse idea that somehow the combination
of north west and north east part of the characters are significant part where information lies.
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Let’s see B2 case. There are also 4 variants of rectangular block positioning as can be seen at
Figure 3(b). Two patterns block half of overall characters’ shape and the other two patterns block quarter
of overall characters’ shape. Figure 6(b) shows that on average, model B reads fragmented characters with
highest accuracy around 42.45% on quarter rectangle horizontal pattern. However, half reactangle vertical pat-
tern on average gives the lowest reading accuracy on 1.21%, the lowest even among B1 scheme, where it can
only read 12 characters correctly out from 921 characters.

For the case of B3, it also has 4 variants of triangle blocks just like B1 case. The difference is that
the blockers on B3 case block only quarter of the overall characters’ shape as can be seen at Figure 3(c). The
simulation as can be seen from Figure 6(c) starts showing promising results. All patterns reach convergence at
their 5th epoch. This time, the highest reading accuracy is obtained by A pattern at 94.47% accuracy. It seems
like that in their nearly full shape characters, A pattern which occupies northern, eastern, and southern part of
the characters, exposes the most needed information to identify a character’s identity.

Lastly, B4 case consists of 3 variants of fragmented characters. Those fragments are varied based on
their middle rectangular shape as can be seen at Figure 3(d). Based on Figure 6(d), model B reads exceptionally
well C pattern reaching 61.24% accuracy and model B also reads well B pattern reaching 51.36% accuracy.
Interestingly model B can’t guess the characters properly on A pattern even 75% of its characters’ shape is
revealed from four directions, where it is only able to reach 6.08% accuracy.

(a) (b)

(c)

Figure 5. The overall performances for (a) 1st scheme, classifying fragmented and full shape characters,
(b) 2nd scheme performances’ measurement, and (c) 2nd scheme, performance bias

Table 6. Patterns for model test on reading fragmented characters
Model Test Blocker Type

B1 Half Triangles
B2 Half and Quarter Rectangles
B3 Quarter Triangles
B4 Middle Rectangles
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(a) (b)

(c) (d)

Figure 6. 2nd scheme, B simulation results (a) B1 simulation result, half triangle patterns, (b) B2 simulation
result, rectangle patterns, (c) B3 simulation test, quarter triangle patterns, and

(d) B4 simulation result, middle patterns

4.3. Scheme 3
Lastly, model B is being tested to read Cuneiform character in its full shape. Based on Figure 7, it

can be seen that even the training process on its fragmented shape is quite a struggle, the testing phase shows
exceptionally accurate result for reading full shape cuneiform characters, reaching 96.42%. Thus, model B,
which is built upon fragments of characters, is sufficient to read full shape cuneiform characters. The same
model can be used to read all shapes of Cuneiform characters, whether it is fragmented or not.

Figure 7. 3rd scheme, full shape cuneiform reading accuracy
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5. CONCLUSION
It is actually reasonable to built Cuneiform characters recognition based on fragmented characters

dataset. It has advantages for being able to read fragmented and full form cuneiform characters at the same
time, thus saving time to train the model. The simple model based on 1 convolution layer with 32 filters is able
to differentiate between fragmented and full form cuneiform characters with accuracy reaching 98.73%. It is
also can be noted that 4 layers convolution layers reaches 83.86% validation accuracy in reading fragmented
Cuneiform characters. This model also able to read full form Cuneiform characters with 96.42% reading
accuracy. Model with too much convoluted layers tend to experience overfitting. We can also concur that the
most significant part of Cuneiform characters lies on its half vertical and center area. It nearly impossible to
read when the character loss 50% of its middle area. Finally, this experiment only conducted on emulated
fragmented characters based on Google Noto Sans Cuneiform. Further real fragmented characters dataset from
artifacts are needed to build full Cuneiform characters recognition with fuzzy style reading.
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