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 Wireless energy transfer is emerging as a promising technology for mobile 

devices because it enhances rapid charging without requiring conventional 

cables. In this paper, a wireless mobile charger circuit was designed and 

simulated, the data obtained thereof was used to train an artificial neural 

network (ANN) using Levenberg-Marquardt (LM) algorithm. The result 

obtained was validated against that obtained when trained with regular 

scaled conjugate algorithm. Analysis of the results showed that the proposed 

technique remains a viable technique for rapidly analyzing several parts of 

the wireless mobile charger circuit for design and educational purposes, 

without always executing computationally intensive and time-consuming 

simulations.  
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1. INTRODUCTION 

Wireless sensor networks (WSNs) are made of interconnections of individual wirelessly 

interrogable sensor nodes networked for information sharing. These information are often made up of 

measurement data obtained locally by each sensor node, which together makes a network that shares 

distributed resoures within the network and with managers. Since the advent of wireless sensors and their 

networks, they have found applications in numerous fields, thereby enhancing sensing accuracy across 

various applications. One of such is in the agriculture and storage sector wherein wireless sensors have been 

deployed for temperature, humidity and water moisture content sensing and measurement. Another area 

which is experiencing a growing application of wireless sensors is the smart home industry where these 

systems have been deployed in order to measure different variables of interest in attempt to ensure thermal 

comfort and energy management. WSNs have shown great potential in various other applications, from 

military surveillance to environmental monitoring, condition monitoring and assessment of industrial 

installations, disaster reliefs, and home automation. One of the biggest challenges facing WSNs, however, is 

the issue of energy conservation and management [1] as network lifetime is significantly limited by the 

battery capacity [2], [3]. Over the years, several techniques have been devised in order to combat this energy 

requirement challenge. A way to address this battery problem is to redesign these sensor nodes such that they 

have the capacity to harvest energy from latent energy sources around the vicinity of each sensor node. These 

energy sources might include wave signals from numerous wireless applications around, or vibrations from 

different moving sources through the adaptation of some form of piezoelectric devices, or the radiation from 

the sun harnessed with photovoltaic cells. Energy may also be harnessed by these sensor nodes from the wind 
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current passing over these node sensors. However, harvesting energy from the aforementioned sources may 

yet not be the lasting solution to the persistent energy needs of WSNs owing to the following reasons. Firstly, 

these sources are not reliable in terms of availability because most of them are either weather dependent 

(Thereby adding to their unpredictability), or dependent on motion of unpredictable humans and machineries. 

It is therefore necessary to device a better battery charging solution. The use of wirelessly rechargeable 

sensor node is therefore a promising technique to address this issue going forward. This is because such 

network nodes can then be charged from unmanned aerial vehicles in a noncontact manner in order to ensure 

that the network does not run aground because of dead batteries. 

Other proposed solutions include the efforts to minimize power requirements of sensing units using 

duty cycling, energy provisioning and wakeup radio. However, new developments in sensor energy systems 

have introduced another dimension to these range of solutions by enabling the design of wireless 

rechargeable sensor networks (WRSNs), with the use of magnetic coupling technology for charging elements 

of the network to avoid dead batteries and downtime. Appearing similar to conventional energy scavenging 

techniques, wireless charging entails a different technology and this improves the reliability and durability of 

the network [4]. In recent years, wireless charging technology has rapidly evolved from theories to standards 

and is being adopted in commercial products, especially mobile phones and portable devices. In addition to 

the aforementioned features, wireless charging improves user-friendliness as the hassle from connecting 

cables is removed. Also, wireless charging provides better product durability (e.g., waterproof and dustproof) 

for contact-free devices. Furthermore, it enhances flexibility, especially to devices for which battery 

replacement or cable connection or charging is costly, hazardous, or impracticable (e.g., body-implanted 

sensors). Finally, wireless charging can provide on-demand power, avoiding an overcharging problem and 

minimizing energy costs [1]. 

Conventionally, in terms of physical connectivity, the charging range of conventional chargers is 

limited by their cable length. Hence, a mobile wireless charger is often required in order to integrate mobility 

with charging. This integration, therefore, guarantees that the nodes remain charged above specified 

threshold to enable them perform sensing, communication, and computation tasks [5]. 

Soft computing and intelligent computing techniques have become techniques of huge interest in 

recent decades. One of the qualities attributable to this growing interest is their ability to adapt and learn even 

complex nonlinear problems with relative ease. Most of these soft computing techniques take their roots from 

the natural learning capabilities of living animals. Fuzzy inference system [6], for example, does this by 

adopting a logic that varies over a continuum from total inclusion to complete exclusion, as against the 

conventional crisp logic of only "0" and "1" [7]–[9]. Optimization problems have also enjoyed their share of 

the speed and ease of computing offered by soft computing-based optimization techniques like genetic 

algorithm (GA) and particle swarm optimization [10]. In this vein, artificial neural networks (ANNs)  

(A connection of computing nodes called neurons) also solve complex matching and classification problems 

by adopting the neural structures of the human brain [11]–[14]. 

Numerous problems in wireless communication systems have been solved in recent years through 

the use of ANNs or their variants. These include the estimation of channel state information (CSI) [15] as 

well as reception diversity combining techniques. The performances of typical ANNs largely depend on the 

architecture of the network in terms of the neural configuration, activation function deployed for neurons in 

different layers, as well as the type of initialization and data pre-processing functions deployed. Another 

crucial factor upon which may affect the overall accuracy of most softcomputing techniques is the weight 

adaptation technique employed as this controls how the network learns by setting the rules with which the 

network adjusts its weights. 

With advancements in magnetic resonance based wireless energy transfer technology, wireless energy 

replenishments are now being recently adopted for prolonging lifetime of WSNs. Even though this wireless 

charging solution is a relatively new technology as at this time, a significant amount of research works have 

been reported [16]–[21]. This work, therefore, proffers a soft computing technique for easier, rapid and 

accurate circuital analysis of a wireless mobile charger for research and educational purpose, by training and 

deploying a tunned Levenberg-Marquardt (LM) trained neural network. 

 

 

2. METHOD 

The performance of ANN for any problem depends on the choice of algorithm amidst other factors. 

In this article, the Levenberg-Marquardt (LM) algorithm was tuned to train a pre-optimized neural network 

so as to model outputs of a simulated wireless mobile charger suitable for charging wireless sensor nodes. 

The Levernberg-Marquardt algorithm is an iterative method that belongs to the class of second-order 

techniques utilized for optimizing problems involving cost functions similar to mean squares. It leverages 

quasi-newton optimization methods along with the conventional gradient descent approach. The LM 
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procedure has gained a reputation for its remarkable efficiency when employed in the context of neural 

networks [22]–[25]. 

Letting the error 𝐸𝑘 = 𝑅𝑘 − 𝑍𝑘, 𝑘 = 1,… . . , 𝑁, cost function would be defined to quantify the 

difference between R and (1) in the jth epoch as,  

 

 𝐸𝑗 = 𝐸𝑗 (𝑒𝑘, 𝑘 = 1,… . , 𝑁) =
1

2
∑ 𝑒𝑘

𝑁
𝑘=1

2
 (1) 

 

where 𝑅 = [𝑅1 … . 𝑅𝑁]𝑇 is an N x 1 vector as the target output variable, Z= [𝑍1 … . 𝑍𝑁]𝑇 is an N x1 vector 

representing the network output, e = [𝑒1 … 𝑒𝑁]𝑇 is a N x1 representing the observed error. Such that a weight 

matrix can be written as,  

 

𝑊 = [𝑐1 𝑠1 … 𝑐2𝑛 𝑠2𝑛]𝑇 = [𝑊1 … .𝑊4𝑛 ]
𝑇 (2) 

 

where 𝐶1 and 𝑆1 denote the centroid and deviation, respectively, at each iteration. LM algorithm uses 

Jacobian matrix 𝐽𝑗 which is a gradient matrix representing the partial derivatives of 𝑒𝑗 with respect to 𝑊𝑗 as 

written in (3). The new weight values for the network is hence written as seen in (4). 
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 (3) 

 

𝑊𝑗+1 = 𝑊𝑗 − ((𝐽𝑗
𝑇𝐽𝑗) + ϻ𝐼)2𝐽𝑗

𝑇𝑒(𝑊𝑗) (4) 

 

An ANN was used to model and analyze different circuital sections of a wireless mobile charger. 

Data extracted from repetitive simulations were used to train and validate the network under MATLAB 

computing environment. This is particularly aimed at rapidly analyzing the directive gain characteristics and 

the radiation distribution of the charger across all applicable voltage ranges. The data was utilized to train the 

neural network whose selected samples are shown in Table 1 using the Levenberg-Marquardt algorithm, 

employing a random data division, with the performance measure function of mean squared error. As 

itemized in Table 2, the neural network has three inputs and one output. The network has a total of 20 

neurons. The training data were divided into 70%, 15%, and 15% corresponding to the training, validation, 

and testing data, respectively. In the network, the hidden layer neurons utilize the sigmoid transfer function, 

while the output layer neuron employs the linear transfer function. Figure 1 shows the design model of the 

wireless mobile charger which was designed and simulated using Proteus 8 Professional simulation software.  

 

 

Table 1. Selected samples of training data 
TIME TR1(S1) U1(VI) U1(VO) 

0 1.36E-19 -1.86E-21 -1.92E-30 

0.000103 0.524178 4.37E-06 -8.10E-13 

0.000306 1.832330 0.550973 -8.68E-07 
0.000402 2.708590 1.335350 -0.005200 

0.001072 9.296990 7.867380 -0.496470 

0.006185 30.315400 30.356400 -0.497320 
0.014000 -1.127830 28.650100 -0.497660 

0.020220 15.243200 28.260400 -0.497700 

0.033500 -1.058700 26.837500 -0.497780 
0.061880 22.745700 27.417700 -0.497750 

0.103491 27.890500 26.865500 -0.497786 

 

 

Table 2. ANN network parameters 
ANN Parameters Values 

Type of transfer function (hidden layer) Sigmoid 

Type of transfer function (output layer) Linear 

Training algorithm Levenberg-Marquardt, Scaled Conjugate Gradient 
Total number of neurons 20 

Total number of weight elements 161 

Maximum epochs 1,000 
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Selected sample of the training data extracted from the wireless mobile charger is presented in  

Table 1. As highlighted in Figure 2, the network inputs are ‘TIME’, ‘TR1’ and ‘U1’ corresponding to the 

time (in sec), time response (in sec), and voltage (in volts). While the output of the network is the output 

voltage ((VO) in volts). During training, at each iteration, input data from each datapoint in the training 

dataset is supplied at the network input, which then traverses from neuron to neuron within the network, 

interacting with the layer weights and respective activation function enroute the network output. 

The observed output is evaluated with the expected corresponding target as specified in the training 

data. The discrepancies between the two, commonly refered to as the error, is obtained, and as contained in 

the training algorithm, the network weights are adapted accordingly with the aim of minimizing the error in 

the next iteration. The performance of the neural network is then continuously evaluated with the validation 

dataset in order to avoid overtraining or undertraining whilst attaining network convergence. Once 

satisfactory performance is reached with respect to the network specifications, the training is halted and 

resulting values of the weights and biases at this point is saved for the network. The network is then deployed 

and fed with the testing dataset and the performance thereof is evaluated.  

 

 

 
 

Figure 1. Circuit diagram of the wireless charger 

 

 

 
 

Figure 2. Architecture of the network 

 

 

3. RESULTS AND DISCUSSION 

The ANN was trained based on the Levenberg-Marquardt (LM) algorithm and the output was 

analyzed using regression and mean squared error (which is the average squared difference between output 

and target). As a way of cross-validating the performance of the network under the specified condition, the 

network was trained using the scaled conjugate gradient Quasi-Newton algorithm and the performances 

obtained in both cases were compared. The results observed for the two algorithms are presented in Table 3.  

 

 

Table 3. Performance of the algorithm of the training 
Algorithm Training Regression R Validation Regression R Test Regression R 

Levenberg-Marquardt 0.99984 0.99983 0.99992 

Scaled Conjugate Gradient 0.98615 0.99815 0.97568 
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The total training data for the network (21,279) was segmented into 3 samples; training (14,895), 

validation (3,192) and testing (3,192). To assess the network's generalization, the training values were 

utilized, and the training process was halted when further improvement in generalization ceased. The LM 

model exhibited a remarkable training regression of 0.99984, and during testing, it achieved a regression of 

0.99992, completing the process after 27 iterations. On the other hand, the scaled conjugate gradient method 

attained a training regression of 0.98615 and a testing regression of 0.97568, finalizing after 39 iterations. 

The oscilloscope and analogue analysis graph presented in Figures 3 and 4 highlight specific sections of the 

input and output variables of the neural network. 

Table 4 shows samples of input data, the expected output and the simulated results obtained from 

both the LM algorithm and scaled conjugate (SCG) algorithm for the neural network. The performances of 

both algorithms were evaluated by comparing the closeness of the outputs of the neural network with the 

expected values under each algorithm. These comparisons are shown in Figures 5(a) and 5(b). Results 

obtained in this work showcases the adaptability of ANNs and their associated algorithms for various 

engineering problems. The neural network successfully captured and modeled various subsections of a 

wireless mobile charger in this scenario.  
 

 

 
 

Figure 3. A section of the output on the oscilloscope 
 

 

 
 

Figure 4. Analogue analysis graph 
 
 

  
(a) (b) 

 

Figure 5. The neural network testing performance for; (a) LM algorithm and (b) SCG algorithm 
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Table 4. Comparison of selected samples of predicted and measured output 
Network Input Measured Output (V) Network Outputs 

Time (s) Voltage (V) LM_ANN LM_SCG 
0.02738 -0.49772 -0.51495 -0.6263 

0.03405 -0.4978 -0.51495 -0.6265 

0.04071 -0.49765 -0.51495 -0.6265 
0.004738 -0.49732 -0.51495 -0.6266 

0.005405 -0.4972 -0.51495 -0.6266 

0.005645 -0.49724 -0.51495 -0.6266 
0.005755 -0.49726 -0.51495 -0.6266 

0.005831 -0.49727 -0.51495 -0.6266 

0.005903 -0.49728 -0.51495 -0.6266 
0.005948 -0.49729 -0.51495 -0.6266 

 

 

4. CONCLUSION  

This paper develops a soft computing technique for rapid circuital analysis of a wireless mobile 

charger by training an ANN with extracted data of interest from simulated circuit of the wireless mobile 

charger. This enables users to quickly and accurately analyze the expected responses of different sections of 

the circuit with the trained network, without necessarily performing computationally intensive simulations 

over again. The evaluation of the network's performance indicates that the approach remains a valid method 

for modeling and analyzing the circuit of a wireless mobile charger. for research and development, as well as 

for educational purposes.  
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