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 Human action recognition has emerged as a significant area of study due to 

it is diverse applications. This research investigates convolutional neural 

network (CNN) structures to extract spatio-temporal attributes from 2D 

images. By harnessing the power of pre-trained residual network 50 

(ResNet50) and visual geometric group 16 (VGG16) networks through 

transfer learning, intricate human actions can be discerned more effectively. 

These networks aid in isolating and merging spatio-temporal features, which 

are then trained using a support vector machine (SVM) classifier. The 

refined approach yielded an accuracy of 89.71% on the UCF-101 dataset. 

Utilizing the UCF YouTube action dataset, activities such as basketball 

playing and cycling were successfully identified using ResNet50 and 

VGG16 models. Despite variations in frame dimensions, 3DCNN models 

demonstrated notable proficiency in video classification. The training phase 

achieved a remarkable 95.6% accuracy rate. Such advancements in 

leveraging pre-trained neural networks offer promising prospects for 

enhancing human activity recognition, especially in areas like personal 

security and senior care. 
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1. INTRODUCTION 

Research in computer vision encompasses human activity recognition [1]. Systems designed for 

such recognition can be pivotal for video cataloging, content-driven retrieval, interactive human-computer 

interfaces, and surveillance [2], [3]. Analyzing video footage to discern human actions is crucial, but factors 

such as background distractions, obstructions, variable sizes, differing appearances, and inconsistent lighting 

can complicate the task. Typically, urban areas have denser populations than rural regions, leading to a 

higher probability of unauthorized assemblies, altercations, and similar events [4]. The identification of 

human actions in videos necessitates the extraction of feature vectors. Much of the research in this domain 

emphasizes specific attributes like local space-time elements [5], spatio-temporal dynamics [6], and motion 

boundary histograms (MBH) [7]. The accuracy of recognition is often contingent on factors such as lighting 

[8], [9] and the perspective of the video. 

https://creativecommons.org/licenses/by-sa/4.0/
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Modern discourse on computer vision has been influenced by advancements in neural networks 

[10]. This piece delves into the 3D convolutional neural networks (CNN) and their role in medical imaging. 

The 3DCNN architecture is employed for categorizing videos, which is inherently complex due to the 

sequential data involved. The method focused on visual surveillance frequently monitors the elderly [11]. 

3DCNNs are adept at isolating spatio-temporal elements, and the efficacy of recognition is tied to 

these unique features. While handcrafted attributes are intriguing, they don’t always scale well with 

expansive video datasets [12]. Hence, architectures like 3D residual network (ResNet) [13] and visual 

geometric group 16 (VGG-16) are employed to derive feature descriptors. It is essential that video data 

comprehensively represents motion on a frame-by-frame basis. Thus, the 3D convolution in CNNs 

effectively mirrors spatio-temporal nuances [14]. The conceptualized approach is illustrated in Figure 1. 

 

 

 
 

Figure 1. Block diagram of the proposed method 

 

 

2. LITERATURE SURVEY 

Haroon and Eranna [15] contend that existing systems don’t prioritize computational efficiency, 

instead focusing on identifying application-specific anomalies. The emerging technology can pinpoint human 

movement accurately and affordably, even without leveraging all features. Recognizing human skeletal 

movements assists in identifying crucial joints. The innovative approach of the proposed system holds 

promise for enhancing human activity recognition. Systems trained using k-nearest neighbor (KNN) have 

shown superior performance. 

Sakr et al. [16] highlight that while primary activity recognition has been explored extensively, 

intricate activity recognition remains challenging [17]. Recognizing complex activities involves multilabel 

classification [18], where a single test instance is categorized into multiple concurrent activities. Existing 

techniques [19] are limited in recognizing just two concurrent activities, underscoring the need for a 

multilabel activity training dataset. Notably, a limited training dataset has been effective in discerning 

intricate multilabel activities using emerging patterns and fuzzy sets. Trials that assume linear separability of 

each activity for individual residents demonstrate the method's robustness and superiority. Our models cater 

to nonlinear, distinctive, and multi-resident activities. 

Haroon and Eranna [20] posit that real-time event streams can present variability, especially when 

digital image processing is employed for activity identification. Many contemporary techniques fall short 

when dealing with real-world events, rendering them suboptimal. The proposed model for activity detection 

harmoniously integrates accuracy and efficiency, making extracting event features based on spatial and 

temporal cues easier. Machine learning could be harnessed in scenarios with significant subject movements 

to amplify these features. The recommended approach underscores improvements in both precision and 

operational performance. 

Han et al. [21] introduced networks influenced by autoencoders. A principal coefficient encoder 

model (PCEM) was instrumental. PCEM, relying on training data, determines network weights and employs 

two hidden layers with core coefficient encoding for profound architecture. Evaluating PCEM’s efficacy 

independent of the subject involves leveraging training and testing datasets from varied participants, with the 

PCEM successfully identifying 97% of activities. 

Vrskova et al. [22] championed a 3DCNN for discerning human motions from videos. 3DCNNs 

surpass other neural network architectures when optimized, especially in tests involving motion, static, and 

combined attributes. The foremost 3DCNN model boasts an impressive 87.4% recognition accuracy, 

compared to 65.4%, 63.1%, and 71.2% by other models. Future iterations of this research will harness larger 

batch sizes and epochs, alerting users upon detecting anomalies in human behavior. 
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Butt et al. [23] illustrated the creation of novel codebooks, focusing on video motion representation 

by melding hybrid encoding with spatio-temporal CNN architectures. Their method, favoring agglomerative 

clustering, utilizes global and class-specific codebooks, with performance metrics on HMDB51 and UCF101 

standing at 72.6% and 96.2%, respectively. Their efforts seek to refine the bag-of-words codebook and 

feature encoding, leveraging two-stream 2D and 3D ResNets to extract deep ConvNet features. To augment 

computational performance, they embed the encoding within a holistic ConvNet, determining fusion weights 

for each stream. 

Kahlouche et al. [24] turned to deep learning for classifying seven activities. Their approach 

harnesses the efficiency of the human activity recognition algorithm, with training on Microsoft Kinect 3D 

skeletal data focusing on both spatial and temporal attributes. The combined strength of CNN-long short term 

memory (LSTM) aids in mastering these features [25], [26]. LSTM and CNN architectures enhance outcomes, 

and data preprocessing ensures view invariance. Upcoming work will enhance human action recognition, 

factoring in skeletal sequencing and the visual appearance of objects using both RGB and depth modalities. 

 

 

3. METHODOLOGY 

Figure 1 illustrates the four core stages of the proposed method: pre-processing, feature extraction, 

feature fusion, and training. The pre-processing step encompasses frame extraction, resizing, and contrast 

enhancement through histogram equalization, as detailed in section 3.1. From these enhanced frames, 

features are gleaned using the spatio-temporal domain and then channeled through the pre-established 

ResNet50 and VGG16 networks, as delineated in section 3.2. Subsequently, features derived from the 

FC1000 layer of these networks are merged (or concatenated) employing an averaging strategy, a process 

further elaborated upon in section 3.3. These amalgamated features then undergo training via a multiclass 

nonlinear support vector machine (SVM) classifier, detailed in section 3.4. 

 

3.1.  Pre-processing 

Preprocessing plays a pivotal role in enhancing the quality of video frames, paving the way for more 

effective analysis. It mitigates unwanted distortions and amplifies specific features vital for the given 

application. These essential features can differ based on the application in focus. The proposed methodology 

incorporates frame extraction, resizing, and contrast augmentation. These stages are further elaborated and 

their procedural flow is depicted in Figure 2. 

 

 

 
 

Figure 2. Pre-processing flowchart 

 

 

3.1.1. Frame extraction 

The initial step is “frame extraction” from the video. The primary objective of this extraction 

process is to isolate essential frames from the video, eliminate redundancy, and streamline processing. 

Frames are then resized to a resolution of 128×128. Keyframes from these videos have the potential to 

forecast human behavior. The keyframe process prioritizes the selection of summary frames that best 

represent the video’s content. 

 

3.1.2. Contrast enhancement using histogram equalization 

Contrast enhancement boosts the visibility of objects by amplifying brightness disparities. This 

enhancement can be applied in either a single step or multiple stages. One popular method in image 

processing for improving contrast is histogram equalization, prized for it is straightforwardness and 

efficiency. This method adjusts an image’s dynamic range and contrast to align with it is intensity histogram 

by expanding prevalent intensity levels and redistributing the values, resulting in a uniform image histogram. 

The fundamental formula for histogram equalization is depicted in (1), with the protocol detailing each 

subsequent step. 

 

ℎ(𝑣) = 𝑟𝑜𝑢𝑛𝑑 (
𝑐𝑑𝑓(𝑣)− 𝑐𝑑𝑓𝑚𝑖𝑛

(𝑀×𝑁)− 𝑐𝑑𝑓𝑚𝑖𝑛
 ×  (𝐿 − 1)) (1) 
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where 𝑣 is value, 𝑐𝑑𝑓𝑚𝑖𝑛  is minimum non-zero value of the cumulative distribution function, (𝑀 × 𝑁) is 

image’s number of pixels, and 𝐿 is number of gray levels used. 

 

3.2.  Feature extraction 

Figure 3 illustrates the feature extraction process, divided into three phases. The superfluous 

temporal data from interframes are deducted from the intraframe and then processed through 3D ResNet50 

and 3D VGG16 pre-trained networks. Spatio-temporal characteristics are drawn from the fully connected 

layer of these pre-trained networks. Subsequently, these features are merged via the averaging technique and 

trained with a multiclass nonlinear SVM.  
 

 

Pre-Processed Frames

Spatio-Temporal Features

ResNet50 VGG16

FC1000 FC8

Concatenation using Averaging method

 
 

Figure 3. Feature extraction and fusion flowchart 
 
 

3.2.1. Spatio-temporal features 

A set of 15 frames, termed group of pictures (GOP), is considered. Repeated data is eliminated by 

subtracting the temporal information in interframes from the intraframe. The spatio-temporal characteristics 

of this refined data are then extracted using the pre-trained 3D ResNet50 and 3D VGG16. 

a. ResNet50 

The ResNet [27] architecture serves as the basis for feature extraction. Specifically, the pre-trained 

ResNet50 network, which comprises 49 convolutional layers arranged in three layers across five sections, 

and one fully connected layer, is utilized for initial feature extraction. The spatio-temporal features derived 

from the GOP are input into this network, and the features from the FC1000 layer are subsequently 

harvested. A comprehensive breakdown of the ResNet50 structure can be found in Table 1. The input 

dimension for the pre-trained network has been adjusted to 112×112. 
 

 

Table 1. ResNet50 layers detail 
Layer name Output size Layers 

Conv1 112×112 7×7, 64, stride 2 

Conv2 56×56 3×3 Max pool, stride 2 

1×1, 64 ×3 
3×3, 64 

1×1, 256 

Conv3 28×28 1×1, 128 ×4 
3×3, 128 

1×1, 512 

Conv4 14×14 1×1, 256 ×6 
3×3, 256 

1×1, 1024 

Conv5 7×7 1×1, 512 ×3 
3×3, 512 

1×1, 2048 
 1×1 Average Pool 

1,000-d Fully Connected 

SoftMax 

 
 

The mathematical expression for the convolution layer in a pre-trained network is described as in (2): 
 

(𝑓 ∗ 𝑔)(𝑡) =  ∫ 𝑓(𝜏)𝑔(𝑡 −  𝜏)𝑑𝜏
∞

−∞
 (2) 
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The mathematical expression for the rectified linear unit (ReLu) layer in a pre-trained network is described as in (3): 
 

𝑓(𝑥) = 𝑚𝑎𝑥 (0, 𝑥) (3) 
 

where x is input to a neuron. The mathematical expression for the SoftMax layer in a pre-trained network is 

described as in (4): 
 

𝜎(𝑧)𝑖 =  
𝑒𝑧𝑖

∑ 𝑒
𝑧𝑗 𝐾

𝑗=1

=   𝑓𝑜𝑟 𝑖 = 1 … , 𝐾 𝑎𝑛𝑑 𝑧 = (𝑧1, … … , 𝑧𝐾) 𝜖 𝑅𝐾 (4) 

 

where z is input vector and K is real number. 

b. VGG16 

The VGG16 network, already pre-trained, encompasses 13 convolutional layers divided into five 

sections, along with three fully connected layers. This network is employed in the secondary phase of feature 

extraction. spatio-temporal attributes from the GOP are funneled into this network, with the FC8 layer being 

the source of extracted features. An in-depth depiction of the VGG16 layout is provided in Table 2. The 

dimensions of the input layer in this pre-trained network are adjusted to 224×224. 
 

 

Table 2. VGG16 layers detail 
Layer name Output size Layer size 

Conv_1 112×112 224×224×64 

224×224×64 
MaxPool 112×112×128 

Conv_2 56×56 112×112×128 

112×112×128 
MaxPool 56×56×256 

Conv_3 28×28 56×56×256 

56×56×256 
56×56×256 

MaxPool 28×28×512 

Conv_4 14×14 28×28×512 
28×28×512 

28×28×512 

MaxPool 14×14×512 
Conv_5 7×7 14×14×512 

14×14×512 

14×14×512 
MaxPool 7×7×512 

Fully_Connected_1 (FC6) 1×1×4096 

Fully_Connected_2 (FC7) 1×1×4096 
Fully_Connected_3 (FC8) 1×1×1000 

SoftMax layer 

 
 

3.3.  Feature fusion 

Features derived from the FC1000 layer of ResNet50 and the FC8 layer of VGG16 are integrated 

using the averaging technique. The 2048 attributes obtained from the FC1000 layer of ResNet50 undergo 

downsampling to align with the 1,000 attributes from VGG16’s FC8 layer. A feature vector is formed via the 

averaging process utilizing these attributes. This vector becomes instrumental in the training process, further 

elucidated in the subsequent section. 
 

3.4.  Training-multiclass nonlinear support vector machine 

The feature vector resulting from feature fusion is trained using a multiclass nonlinear SVM 

classifier equipped with radial basis function (RBF) kernel. SVMs, commonly employed for classification 

and regression [28], utilize hyperplanes in multi-dimensional spaces to separate target categories. The goal is 

establishing the optimal decision boundary with the maximum margin for classifying new data points. 

However, when decision boundaries in multi-dimensional space are inadequate for data classification, the 

RBF kernel comes into play. This kernel functions similarly to the KNN approach. Importantly, during the 

training phase, the kernel can reduce space complexity by retaining only the support vectors instead of the 

entire dataset. The RBF kernel is defined by (5): 
 

𝑘(𝑥⃗𝑖 , 𝑥⃗𝑗) = 𝑒𝑥𝑝(−𝛾  ⃦𝑥⃗𝑖 − 𝑥⃗𝑗   ⃦2) 𝑓𝑜𝑟 𝛾 > 0 (5) 
 

where 𝑥⃗𝑖 , 𝑥⃗𝑗 is feature vectors, 𝛾 is 
1

2𝜎2, and 𝜎 is free parameter. 



Int J Artif Intell ISSN: 2252-8938  

 

Activity recognition based on spatio-temporal features with transfer learning (Seemanthini Krishne Gowda) 

2107 

3.5.  Database 

The UCF101 dataset features upcoming YouTube videos spanning 101 action categories, totaling 

13,320 individual clips. These action categories can be grouped into five types: human-object interaction, 

body-motion only, human-human interaction, playing musical instruments, and sports. The UCF101 extends 

the UCF50 dataset, encompassing 50 categories [29]. For our experiments, we selected the third category. 

This subset consists of five specific classes: “BandMarching,” “Haircut,” “HeadMassage,” “MilitaryParade,” 

and “SalsaSpin.” These classes contain 155, 130, 147, 125, and 133 videos. All videos are presented in a 

320×240 resolution at 25 fps. We've divided the database into three segments: training, validation, and 

testing, with a ratio of 70:10:20. 

 

 

4. EXPERIMENTAL RESULTS 

This section outlines the outcomes post-experimentation, aiming to validate or refute the hypothesis. 

It includes data representations like tables and graphs, along with an analysis comparing the results to 

previous studies. While this section presents data-derived insights, a more in-depth analysis.  

 

4.1.  Experimental setup 

For this model, we utilized a system with a 10th-generation i-7 processor running on a Windows 10 

64-bit OS. The system boasts 16 GB RAM, an Nvidia RTX graphics card, and an additional 8 GB dedicated 

RAM. All experiments were conducted using MATLAB 2019b. 

 

4.2.  Performance evaluation parameters 

We assessed the model’s efficacy using several metrics: specificity, accuracy, precision, recall, F1 

score, and the receiver operating characteristic (ROC) curve. In (6) through 10 provide the mathematical 

formulations for specificity, accuracy, precision, recall, and F1 score, respectively [30]. Figure 4 illustrates 

the confusion matrix, displaying the outcomes of machine learning classification based on various 

combinations of predicted and actual values. The results of these performance measurements are summarized 

in Table 3. 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 (6) 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
  (7) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
  (8) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
  (9) 

 

𝐹1 𝑠𝑐𝑜𝑟𝑒 =  2 ∗ (
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
) (10) 

 

The ROC curve is depicted by plotting the true positive rate (TPR) against the false positive rate 

(FPR). This curve can be observed in Figure 5. Table 4 contrasts these findings with other methodologies. As 

the loss function diminishes, there’s a noticeable uptick in accuracy during the training phase. A consistent 

trend of increasing accuracy is evident with each passing epoch. The peak accuracy recorded during training 

was 95%. Table 5 highlights the competitive advantage of the proposed approach, which surpasses the 

accuracy of prior state-of-the-art methods. This underscores the potential significance of the method for 

various applications, including personal security and senior care, where accurate human activity recognition 

is essential. 

 

 

Table 3. Performance parameter measures 
Parameters Percentage 

Specificity 97.57 

Accuracy 89.71 

Precision 96.84 
Recall 89.03 

F1-score 92.77 
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Figure 4. Confusion matrix Figure 5. ROC curve 

 

 

Table 4. Comparison with different methods for the UCF-101 

dataset 
Methods Accuracy (%) 

SVM 64.73 

VGG16 72.98 
ResNet50 77.52 

Proposed 89.71 
 

Table 5. Comparison with  

the state-of-the-art 
Papers Accuracy (%) 

Carreira et al. [31]  75.7 

Simonyan and Zisserman [32]  87.0 
Proposed 89.71 

 

 

 

5. CONCLUSION 

In this research, pre-trained ResNet50 and VGG16 models were employed to recognize human 

activities from videos. Using the UCF YouTube action dataset for training and testing, these networks 

effectively discerned various human actions such as basketball playing, cycling, diving, golf swinging, 

horseback riding, soccer juggling, tennis strokes, trampoline jumps, volleyball spikes, and dog walking. The 

dimensions for the frames in ResNet50 were 112×112×15, and for VGG16, they were 224×224×15. This 

distinction could influence the accuracy of the results. Nevertheless, the 3DCNN models exhibited 

remarkable proficiency in video classification with minimal errors. 

A myriad of human activities in videos were accurately classified using pre-trained networks. 

According to the gathered data, the training phase reduced the loss function to 0.08 and elevated the accuracy 

rate to 95.6%. The 3DCNN model’s inherent strength lies in its ability to seamlessly process spatial and 

temporal information, ensuring consistent analysis across video frames. The tests yielded an accuracy of 

89.71%, a recall rate of 89.03%, and F1 score of 92.77%. This suggests that the pre-trained network 

effectively discerns and classifies human activities. Such advancements in using pre-trained neural networks 

hold promise for enhancing human activity recognition, which is crucial for areas like personal security, 

senior care, and child safety. 
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