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ABSTRACT

It has been proven that solving the constraint satisfaction problem (CSP) is an
No Polynomial hard combinatorial optimization problem. This holds true even
in cases where the constraints are fuzzy, known as fuzzy constraint satisfaction
problems (FCSP). Therefore, the continuous Hopfield neural network model can
be utilized to resolve it. The original algorithm was developed by Talaavan in
2005. Many practical problems can be represented as a FCSP. In this paper, we
expand on a neural network technique that was initially developed for solving
CSP and adapt it to tackle problems that involve at least one fuzzy constraint.
To validate the enhanced effectiveness and rapid convergence of our proposed
approach, a series of numerical experiments are carried out. The results of these
experiments demonstrate the superior performance of the new method. Addi-
tionally, the experiments confirm its fast convergence. Specifically, our study
focuses on binary instances with ordinary constraints to test the proposed res-
olution model. The results confirm that both the proposed approaches and the
original continuous Hopfield neural network approach exhibit similar perfor-
mance and robustness in solving ordinary constraint satisfaction problems.
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1. INTRODUCTION
The constraint satisfaction problem (CSP) is a central part of artificial intelligence [1]. Many problems

can be represented and solved as CSPs. In recent years, this concept has been extended to incorporate soft
constraints, leading to the emergence of valued constraint satisfaction problems (VCSPs). VCSPs associate
costs with sub-assignments of variables within the scope of constraints, and the goal is to find an optimal value
for the aggregate function of all the valued constraints. This generalization has resulted in various extensions,
including valued CSP [2], weighted CSP [3], and fuzzy CSP [4], [5].

In this paper, our focus lies on fuzzy CSP. In a fuzzy constraint satisfaction problem (FCSP), each
constraint represents preferences through fuzzy sets rather than strict categorical satisfaction [6]. As a result,
acceptability becomes a gradual notion, allowing for probable solutions. It is well-known that solving CSP
is an No polynomial complete problem, meaning its values and status are unknown and the problem needs to
be solved in polynomial time. Consequently, various approaches have been developed to tackle FCSPs [3],
[4], [7], [8]. In this work, we introduce a generalization of our CSP model resolution [9], [10] to effectively
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solve FCSPs. The last model concerned is based on the Hopfield network [11]–[13], which has shown great
efficiency in solving combinatorial problems. This fact has encouraged us to adopt and enhance this network
for the resolution of fuzzy CSP problems. The Hopfield neural network was proposed by Hopfield and Tank
[14] with both discrete and continuous modes, and it has been widely used in various applications, including
identification [15], pattern recognition, and optimization [16]. The continuous Hopfield neural network (CHN)
has also demonstrated its ability to solve hard optimization problems [17], [18]. Our main objective in this
paper is to adapt the weights and settings of the continuous Hopfield neural network to be able to solve FCSP.
Additionally, we study the capability of this model with fuzzy constraints to solve binary CSP as well. The
structure of this paper is organized as follows: In the next section, we introduce some approaches for solving
the fuzzy constraint satisfaction problem. In section 3, we adapt a general method proposed in [19] to solve
quadratic problems (QP). The last section is devoted to the experimental results.

2. FUZZY CONSTRAINT SATISFACTION PROBLEMS
In practice a wide number of artificial intelligence problems and many other areas can be redefine as a

fuzzy constraint satisfaction problem. The goal is to find a variables assignment which satisfied all constraints.
In some case not all the given constraints need to be satisfied. In particular, how much the satisfaction intensity
reached by a given assignment. In this paper we will consider binary FCSPs only. The typical way to solve a
FCSP to extending a partial solution to build the complete one.

2.1. Fuzzy CSP formulation
In the context of this study, a fuzzy constraint is defined as the assignment of a grade to each tuple in

the Cartesian product of variables involved in the constraint, which falls within the interval [0, 1]. The FCSP
can be formulate by extending the definition of CSP as a quadruplet sets (X;D;C;µC) where:
− Y = {Y1, ....., YN} is a set of N variables.
− D = {D1, ....., DN} where each Di is a set of di possible values for Xi.
− C = {C1, ....., CM} is a set of constraints.
− µC = {µC1 , ....., µCM

} is fuzzy valuation structure.
Each constraint Ci refers to an ordered subset of Y. We call This subset of variables the scope of Ci

and is denoted by var(Ci). The arity of constraint is the number of variables in its scope. The structure µC

the brings together the different evaluation functions of each constraint, we consider the constraint ci with a
cardinality k (arity), and we designate by (v1, v2..., vk) the projection of domains values of a given assignment
A on var(ci), in this case the function µci associates the tuple (v1, v2..., vk) with it degree of satisfaction regard
to the constraint ci. Thus, this fuzzy valued describe how well this tuple satisfies the associated constraint.
When µci = 1 we say that ci is fully satisfies, while for the other extreme side 0 we say that ci is fully violated.
Then goal of resolving is to maximize the combination of membership. To calculate the cost of a FCSP solution
there are many objective function, for example in [7] the cost is defined by the average of the satisfaction of the

individual by a solution v: µC(v) =
1

N

∑N
i=1 µCi

(v).
Ruttkay [20] suggest to favourite the maximisation of the last membership function; therefore to

achieve a perfect solution, it is necessary to ensure that all individual constraints are satisfied optimally. This
means that each constraint should be fulfilled to the highest possible degree, maximizing the overall satisfaction
level across all constraints: Max(µC(v)) = {max µCi

(v), for all Ci}. Medini and Bouamama [8] propose
to maximise the worst membership function as: Max(µC(v)) = max{min{µCi

(v) , for i = 1 toM}}.

3. FCSPS SOLVED BY CHN
To resolve a binary FSCP by CHN we need first to reformulate it as a quadratic problem (QP), this

can be easily done by the association a binary variable xik to each variable yi of FCSP model, with k is in the
domain of yi, such that:

xik =

{
1, if value k is assigned to variable i

0, otherwise
(1)

for two variable i and j with r and s it assigned value respectively we put:
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Qijrs =

{
1− µCij(r,s) if(r, s) ∈ Cij

0 otherwise
(2)

let yi and yj two variables,then for constraints these associate binary fuzzy Cij , we introduce a state function
defined as:

Sij(x) =

di∑
r=1

dj∑
s=1

xirxjs Qijrs (3)

we note that x = {xik , i ∈ [1..N ], k ∈ di} is the solution vector.
To be more generalize we can reformulate also unary constraint. So, for a variable i a constraint Ci

will be reformulate as (4).

qir =

{
1− µCi(r) if r ∈ Cij

0 otherwise
(4)

We defined Q and q in way to be equal 1 if the concerning constraint is fully violated. Considering all equations
defined in (3) and (4), thus we can consider the objective function as a quadratic problem (QP):

f(x) =

N∑
i=1

N∑
j=1

di∑
r=1

dj∑
s=1

xirxjs Qijrs +

N∑
i=1

di∑
r=1

qir

valid solutions must conform to stringent constraints that can be mathematically expressed as a system of linear
equations:

∑di

r=1 xir = 1, with i = 1..N By puting matrix A with an N ×M dimensions and the vector b with
M dimension which is fully initialised to 1 This formulation can also be reformulate as Ax = b. So, the model
is given as follows:

(QP )

 Min f(x) = xTQx+ qTx
with Ax = b

x ∈ {0, 1}n

now we can use any optimization approach to solve the last problem. The combinatorial nature of this problem
favours the use of meta-heuristic approaches rather than execte approches based. We recently developed an
approach based on Hopfield neural network which is ideal for this kind of NP-hard problem. To apply this
recurrent neutral network to minimise the last objectif function, the objective is to construct an energy function
in such a way that the local minima of the energy function of a Hopfield recurrent neural network (RNN) align
with the viable solutions of the problem.

3.1. Hopfield neural network
In [14] is the first work which introduced Hopfield neural network, in this paper Hopfield and Tank,

originally aimed to tackle combinatorial optimization problems. Since its inception, the Hopfield neural net-
work has undergone extensive research, enhancements, and application in various domains, including optimiza-
tion, pattern identification, and pattern recognition. Notably, the Hopfield neural network has shown promising
capabilities in providing acceptable solutions to challenging optimization problems. In this paper, we aim to
extend the applicability to solve quadratic programming (QP) by continuous Hopfield network (CHN) in the
context of fuzzy constraint satisfaction problems (CSP). The Hopfield model comprises a set of interconnected
neurons, typically represented by n units. The dynamics of the continuous Hopfield network (CHN) are gov-
erned by (5).

dy

dt
= −x

τ
+ T x+ ib (5)

where x represents the vector of neuron inputs; y represents the vector of outputs, which belongs to Rn; and T
is denotes the weight matrix between each pair of nodes.

The network inputs are defined each one by an activation function x = g(y), where g(y) is a function
that bounds the values between 0 and 1. The specific form of the activation function g(y) is given by g(y) =
1
2 (1 + tanh( y

u0
)). The energy function of the continuous Hopfield network (CHN) is defined as (6).

E(x) = xt T x+ (ib)
t
x (6)

Int J Artif Intell, Vol. 13, No. 1, March 2024: 228–235



Int J Artif Intell ISSN: 2252-8938 ❒ 231

We construct the CHN energy function as in [19], [12], and we rewrite it to be able to solve the binary
FCSPs quadratic formulation in the previous section (QP). The CHN energy function used in this work is based
on the construction described in [19] and [12]. To adapt it for solving binary fuzzy constraint satisfaction
problems (FCSPs), we modify the energy function to formulate it as a quadratic problem (QP).

E(x) =
α

2

N∑
i=1

N∑
j=1

di∑
r=1

dj∑
s=1

xirxjs Qijrs + α

N∑
i=1

di∑
r=1

qir+

1

2
ϕ

N∑
i=1

di∑
r=1

di∑
s=1

xirxis + β

N∑
i=1

di∑
r=1

xir + γ

N∑
i=1

di∑
r=1

xir(1− xir) (7)

The two first terms penalize constraints violation based on there satisfaction degrees, the second one
ensure that each variable is assigned a single value. the third term aggregate all linear constraint Ax = b, and
the last terms satisfies the integrity propriety to enforce neurone to be closed at 0 or 1 state. To calculate the
the network weight link it’s enough to match in (6) and (7):{

Tirjs = −α(1− δij)Qirjs − δijϕ+ 2δijδrsγ
ibir = −αqir − β − γ

with δij =

{
1 if i = j
0 othwise i ̸= j

is the Kroneckern symbol. In [19] to obtain an equilibrium point for the

CHN, authors use an adapted algorithm based step by step update approach introduced by Talavaán and Yáñez
in [21].

This approach significantly increases the convergence speed of the neural network. The main idea is
to iteratively move in the direction dy

dt until the network reaches the minimum energy state. To ensure stability,
both Haddouch et al. [19] and Talavan and Yanez [22] utilize the hyperplane method. This method involves
dividing the Hamming hypercube, which represents all possible solutions, by a hyperplane that contains only
the feasible solutions. By using the hyperplane method, the CHN is guided towards stable and optimal solu-
tions while ensuring convergence towards the global energy minimum. This technique helps to enhance the
performance and effectiveness of the neural network in solving complex optimization problems. To ensure
convergence, we impose two conditions by studying the derivative of the energie function E:

δE(x)

δxir
= Eir(x) =

α

2

N∑
j=1

dj∑
s=1

xjs Qirjs + αqir+

1

2
ϕ

di∑
s=1

xis + β + γ(1− xir) (8)

− The first one is imposed to prevent the assignment of two different values to one variable, denoted as ∃i, j ∈
D(Xk) with i ̸= j, and their corresponding neurons satisfying xki = xkj = 1, it is necessary to ensure that
the energy function, denoted as E(x), satisfies the following condition: Eir(x) ≥ α qmin+2ϕ+β−γ ≥ ε.

− In order to ensure that all variables are assigned values and avoid the case where xir = 0 for all r ∈
1, . . . , di, an additional condition must be imposed on the energy function E(x). This condition can be
expressed as Eir(x) ≤ αd+ β + γ ≤ −ε with:

d = Max


N∑
j=1

dj∑
s=1

Qirjs +

di∑
k=1

qik / i ∈ [1, N ] and r ∈ {1, ..., di}


We founded that the optimal value of ε is 10−5 and for parameter settings there are obtained by finding a
solution that satisfies the given inequality [19]:

ϕ ≥ 0, α > 0
−ϕ+ 2γ ≥ 0

α qmin + 2ϕ+ β − γ = ε
α d+ β + γ = −ε
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4. COMPUTATIONAL EXPERIMENTS
In our knowledge there are no benchmark created for FCSP. Thus we will use on the one hand a ran-

dom geneated FCSP, and on the other hand we study the performance of our solver on typical CSP instances
[13], [23]. The first choice is aimed at demonstrating the practical relevance of our approach, highlighting its
potential benefits in real-world applications. We strive to showcase how our approach can address practical
challenges effectively. The second choice involves evaluating the performance of our approach across diverse
problem types, including random, academic, and real-world problems. To achieve this, we utilize the bench-
mark datasets provided by Cril University [24]. These datasets encompass a wide range of problem instances,
allowing us to assess the effectiveness and versatility of our approach across different problem domains. The
last study is summarize in Table 1 with V represent the number variables in the specific instance; C is con-
straints number of a given instance; ratio mean is the average of the optimal value founded of a run series on
each instance; and CPU(s) is the average execution time of multiple runs on this specific problem instance.

Table 1. Performance of CHNFCSP and CHNCSP over typical instances problems
Name of instance V C FCHN CHN Means of Iteration

Ratio means CPU(s) Ratio means CPU(s)
driverlogw-01c 71 217 3 0.0754 3 0.0754 237.74

composed-25-10-20-5 105 620 55.7 2.9317 55.7 2.9341 276.24
dsjc-125-1-5 125 736 78.72 0.7957 78.72 0.7957 331.12

frb30-15-5-mgd 30 210 40.98 1.0677 40.98 1.068 309.09
frb40-19-3-mgd 40 308 52.13 0.9303 52.13 0.9313 931.34

geom-30a-5 30 81 7.5 0.0559 7.5 0.0559 273.26
geom-30a-6 30 81 5.74 0.0521 5.74 0.0521 343.92
geom-40-2 40 78 27.17 0.0115 27.17 0.0115 125.33
geom-40-6 40 78 3.63 0.0933 3.63 0.0933 320.44
le-450-5a-5 450 5714 856.76 13.6679 856.76 13.6718 353.96
myciel-5g-5 47 236 16.66 0.4731 16.66 0.4738 304.78
myciel-5g-6 47 236 13.96 0.1035 13.96 0.1347 328.06
queens-5-5-5 25 160 18.98 0.027 18.98 0.0274 138.34
qwh-15-106-1 225 2324 66.76 1.797 66.76 1.8004 283.96
qwh-15-106-4 225 2324 59.21 4.06 59.21 4.0638 245.62
qwh-15-106-6 225 2324 67.76 2.3029 67.76 2.3099 351.14
qwh-20-166-0 400 5092 93.3 16.7906 93.3 16.7941 599.8
qwh-20-166-3 400 5092 87.89 2.881 87.89 2.882 433.58
qwh-20-166-6 400 5092 85.1 8.1842 85.1 8.191 407.44

queens-10 10 45 11.68 0.001 11.68 0.01 196.76
queens-20 20 190 43.23 0.0278 43.23 0.0278 316.9
queens-30 30 435 85.11 1.9348 85.11 1.935 411.34

rand-23-23-253-131-48021 23 253 45.8 1.3432 45.8 1.3456 261.47
rand-23-23-253-131-49021 23 253 40.87 1.5358 40.87 1.5353 298.32
rand-23-23-253-131-50021 23 253 33.04 0.699 33.04 0.6995 409.08

In our analysis, we have observed that there is no significant difference between continuous Hopfield
neural network for fuzzy constraint satisfaction problems (CHNFCSP) and continuous Hopfield neural network
for constraint satisfaction problems (CHNCSP) when it comes to solving normal CSPs. Both approaches
exhibit comparable performance and solution quality. To generate random instances for experimentation, we
consider an FCSP problem as a triple (n, d, t̄), where n represents the number of variables as well as the domain
size for each variable. The value of n is randomly selected from the interval 10 to 20. The parameters d and t̄
denote the network density and tightness, respectively, and can take values from the set 0.1, 0.3, 0.5, 0.7, 0.9.
Thus, we can generate a total of 25 classes (d, t̄) by considering all possible combinations of d and t̄. For each
of these (d, t̄) classes, we randomly generate 20 instances, resulting in a total of 500 randomly generated CSPs
for our evaluation. The truth value of each tuple admitted by a constraint is assigned a random value within
the interval [0, 1]. The random instance generation process allows us to cover a diverse range of problem
characteristics and evaluate the performance of our approach across various scenarios.

The performance evaluation of our approach compared to a genetic algorithm-based evolutionary
algorithm [25] on random instances is presented in Table 2. The results are displayed in a matrix format,
where each cell represents a particular combination of density and average tightness values. Within each cell,
the average best truth value (mftv) discovered and the average CPU execution time for both algorithms are
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provided. Despite this approach and very old but remains the only one that has explicitly adapted the genetic
algorithm for the case of Fuzzy constraints. Then we carry out other comparison with recent evolutionary
approaches adapted to resolve of ordinary CSPs without fuzzy constraints. In order to study the capacity of this
approach to solve the binary CSP, this last can be considerate as a particular case of FCSP. So we choose two
algorithms elaborated specially to solve CSP [26], [27]. In their work, Ortiz et al. [26] employed a variable
length genetic algorithm to address the challenge of encoding more intricate rules by utilizing a larger number
of features and heuristic actions. The genetic algorithm’s chromosome structure comprised ten values, where
nine of them represented landscape features and the tenth indicated the chosen low-level heuristic for variable
ordering. The objective was to find the chromosome in the genetic algorithm that closely matched the current
solution state of the constraint satisfaction problem (CSP), and subsequently apply the corresponding low-level
heuristic to guide the search process.

The difference between particle swarm optimization (PSO) and standard mother tee PSO (MPSO)
[27] lies in the implementation of operators. In the discrete mother tree optimization (DMTO)-CSP MPSO
approach, similar to feeder recommended pools, authors utilize recommendation pools for exploration and ex-
ploitation through these operators. They introduce a local recommended pool (LRP) and global RP (GRP) that
contain variable assignments from the local best and global best, respectively, excluding the current particle.
The assignments minimizing conflicts are selected. To ensure a fair comparison, we didn’t rely solely on the
original settings provided by the authors. Instead, we empirically determined them by varying the values and
selecting the ones yielding the best performance. For the genetic algorithm (GA), we used a population size
of 200, a mutation rate of 5%, and a crossover rate of 72%. As for MPSO, we set φ1 = φ2 = 1 and a fixed
population size of 100. We conducted 500 runs for each method on randomly generated instances using the
RB model [23]. This model, a variant of the standard Model B, is capable of generating challenging problem
instances that are hard to solve. Figure 1 show the comparative results, in terms of violated Constraint Num-
ber as we can noted our approach performs closely to GA and can be improved by introducing heuristics like
the chosen GA while generating the starting point like the number of constraint in which a given variable is
implicated.

Table 2. Performance of GA and CHN over randoms instances problems
Algorithm d t=0.1 t=0.3 t=0.5 t=0,7 t=0.9

mftv time mftv time mftv time mftv time mftv time
FCHN

0.1
0.9180 0.0521 0.8900 0.0520 0.8480 0.0495 0.7190 0.0420 0.0960 0.0056

GA 0.9180 0.0734 0.8880 0.0519 0.8470 0.0495 0.7130 0.0416 0.0950 0.0055
FCHN

0.3
0.6750 0.0383 0.5830 0.0341 0.3740 0.0218 0.0320 0.0019 0.0000 0.0000

GA 0.6700 0.0536 0.5780 0.0338 0.3630 0.0212 0.0310 0.0018 0.0000 0.0000
FCHN

0.5
0.4790 0.0272 0.3660 0.0214 0.0620 0.0036 0.0000 0.0000 0.0000 0.0000

GA 0.4790 0.0383 0.3610 0.0211 0.0590 0.0034 0.0000 0.0000 0.0000 0.0000
FCHN

0.7
0.3500 0.0199 0.1540 0.3004 0.0060 0.0004 0.0000 0.0000 0.0000 0.0000

GA 0.3460 0.0277 0.1480 0.3126 0.0050 0.0003 0.0000 0.0000 0.0000 0.0000
FCHN

0.9
0.2750 0.0156 0.1250 0.3701 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

GA 0.2720 0.0217 0.1230 0.3761 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Figure 1. Performance of GA, PSO, and CHN-MNC random gendered instances with N=100
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5. CONCLUSION
In this paper, we have addressed the challenges associated with fuzzy constraint satisfaction prob-

lems (FCSPs), which find numerous applications in various domains and are extensively studied in operations
research. We have proposed a novel approach for solving binary fuzzy constraint satisfaction problems, com-
prising several key steps. First, we introduced a new model that formulates the FCSP as a 0-1 quadratic program
subject to linear constraints. Next, we employed the continuous Hopfield network (CHN) to tackle this problem
effectively. To evaluate the performance of our new approach, we conducted experiments comparing it to our
previously developed method for solving CSPs using CHN. We ran these approaches on typical CSP instances
with conventional constraints, as well as on a collection of randomly generated instances with varying levels of
tightness. The results of our experiments demonstrate the effectiveness of our new approach for solving FCSPs.
It outperformed the previous method on various problem instances, showcasing its improved performance and
suitability for handling fuzzy constraints. This study contributes to the advancement of solving FCSPs and
provides valuable insights for researchers and practitioners working on constraint satisfaction problems.
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