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ABSTRACT

The rising usage of social media sites and the advances in communication tech-
nologies have led to a considerable increase in cyberbullying events. Here, peo-
ple are intimidated, harassed, and humiliated via digital messaging. To identify
cyberbullying texts, several research have been undertaken in English and other
languages with abundant resources, but relatively few studies have been con-
ducted in low-resource languages like Bengali. This research focuses on Ben-
gali text to find cyberbullying material by experimenting with pre-processing,
feature selection, and three types of machine learning (ML) models: classical
ML, deep learning (DL), and transformer learning. In classical ML, four mod-
els, support vector machine (SVM), multinomial Naive Bayes (MNB), random
forest (RF), and logistic regression (LR) are used. InDL, threemodels, long short
term memory (LSTM), Bidirectional LSTM, and convolutional neural network
with bidirectional LSTM (CNN-BiLSTM) are employed. As the transformer-
based pre-trained model, bidirectional encoder representations from transform-
ers (BERT) is utilized. Using our proposed pre-processing tasks, theMNB-based
approach achieves the best accuracy of 78.816% among the other classical ML
models, the LSTM-based approach gains the highest result of 77.804% accuracy
among the DL models, and the BERT-based approach outperforms both with
80.165% accuracy.
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1. INTRODUCTION
Social communication platforms like Facebook, Instagram, YouTube, and others are now heavily used

for disseminating personal feelings and opinions. According to the observation of Statista in 2021, about 2.9
billion users actively interact with Facebook each month, and 2.4 billion and 1.4 billion people, respectively,
prefer YouTube for sharing videos and Instagram for photos. During this sharing, a person is often threatened
or embarrassed by sending unpleasant messages through electronic technology. Thus, the term cyberbullying
comes, and it is growing throughout the world. Sometimes, it results in extreme emotional and physical torment
and even self-destruction [1].
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According to the report of NapoleonCat, in 2021, almost 47 million Bangladeshi users interact with
Facebook, and about 68.8% of these users are male. As per a survey of the Global Digital Statshot, in terms of
the highest number of active users, Dhaka, the capital of Bangladesh, ranked second among all cities globally
in 2017. The Daily Star, a leading newspaper in this country, reported in 2020 that there is a high incidence of
cyberbullying in this region, with 80% of the victims between the ages of 14 and 22 being females.

Although, cyberbullying is the rising issue in Bangladesh, few research articles have been published
to detect Bengali bully text. However, identifying the cyberbullying class is not the easy task, since extracting
the intention and the context of a particular text is still challenging jobs for the researchers. Furthermore, very
rare of the study focus on detail analysis of text pre-processing and feature selection levels from three aspects
of machine learning (ML) models: classical ML, deep learning (DL), and transformer learning [2]. Moreover,
most of these studies do not consider cross-validation technique to develop more generic detection model. In
addition, we have found very less analysis of hyper-parameter tuning of theDLmodels. In this research, wewant
to handle these issues in order to build a strong cyberbullying text detection system for the Bengali language.

Several pieces of research have been undertaken to investigate bullying materials in the Bengali lan-
guage. Ahmed et al. [3] successfully identified bullying texts in the social media texts. Here, the authors used
a unique feature, the pointwise mutual information-semantic orientation (PMI-SO) score, besides the other
features like number of likes, and cyberbullying words. Then, they applied the extreme gradient boosting
(XGBoost) classifier and obtained a 93% accurate result. However, they did not apply cross-validation or
hyper-parameter tuning, and they did not try DL or transformer-based models in this work. Ahmed et al. [4]
made three cyberbullying detection systems for three different types of Bengali datasets: single-coded Ben-
gali, Romanized Bengali, and a mix of single-coded and Romanized Bengali. This is the unique contribution
in the case of cyberbullying detection. For single-coded Bengali, they proposed the convolutional neural net-
work (CNN) classifier (with an accuracy of 84%); however, for the other two dataset types, multinomial Naive
Bayes (MNB) showed superior performance: 84% for the Romanized Bengali and 80% for the mixed dataset.
They did not apply transformer-based pre-trained models and did not use cross-validation or hyper-parameter
optimization techniques in this research. Das et al. [5] worked on a hateful dataset and handled both binary
and multi-class classification problems. Here, they created the “Bangla Emot” module for processing emoji
and emoticons and provided an attention-based decoder model that demonstrated the best performance with an
accuracy of 88% in binary classification and 77% in multi-classification. Cross-validation and hyper-parameter
tuning were not taken into account. Romim et al. [6] conducted an experiment on hateful text. For extract-
ing the features, they applied fastText, BengFastText, and word2vec word embedding techniques. The authors
proposed the support vector machine (SVM) model that successfully achieved the highest accuracy of 87.5%
and the highest F1-score of 0.911. However, hyper-parameter tuning and cross-validation were not considered
in this work. Also, they did not experiment on the transformer-based models to detect the hateful text. Islam
et al. [7] utilized SVM model with term frequency-inverse document frequency (TF-IDF) feature extraction
technique and achieved 88% accuracy on an abusive text dataset. Authors did not perform cross-validation and
hyper-parameter optimization. Moreover, this research did not consider DL and transformer learning methods
to identify the abusive text. Kumar et al. [8] employed two shared task datasets, “HASOC” [9] and “TRAC-2”
[10], to identify offensive and aggressive text in Bengali, Hindi, and English languages. The principal success
of this research is the authors achieved the best result (0.93 F1-score) using a mix of character trigram and word
unigramwith a SVM classifier for Bengali text. Although they applied 5-fold cross-validation, hyper-parameter
optimization was skipped. Chakraborty and Seddiqui [11] investigated abusive and threatening texts and devel-
oped a detection system through the linear SVMmodel with greater accuracy (78%), which is the main success
of this study. The authors did not use the cross-validation technique for generalizing the model and did not
tune the hyper-parameters during the model execution. Furthermore, they did not choose transformer learning
algorithms during model implementation.

Our goal in this study was to address every concern of the previous studies in this area. With this in
mind, we conduct experiments on three levels: pre-processing tasks, feature selection tasks, and implementation
of cutting-edge ML models. Ultimately, we contribute the following to the establishment of a very effective
cyberbullying detection system:
− Pre-processing level: incorporate some additional pre-processing tasks such as removing thin-space Unicode

characters, replacing emoticons and emojis by the Bengali words, with the general pre-processing tasks.
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− Feature selection level: features are extracted for the classical ML, DL, and transformer leaning classifiers
separately.

− Cross-validation technique: perform 10-fold cross-validation approach for classical ML models for more
reliable detection system.

− Hyper-parameter tuning: perform hyper-parameter tuning using “Bayesian optimization” algorithm during
the implementation of DL models.

− Selection of best models: propose the better detection approaches from each three type of ML model.

2. METHOD
For developing a strong detection system, at first we collect the dataset. Then, we apply various

text pre-processing tasks. After that, we extract the features from the pre-processed data. Finally, we apply
different types of classifier models with 10-fold cross-validation and hyper-parameters tuning using Bayesian
optimization technique. The overall working process is depicted in Figure 1. The following sub-sections explain
all the processes step-by-step.

Figure 1. Overall working process

2.1. Dataset description
In this investigation, the same dataset was utilized as in [11]. This dataset contains 5,644 code-mixing

Bengali-English comments and posts which are collected from various popular types of Facebook pages like
celebrities, newspapers, and entertainments. Here, the almost 50% data are tagged as bullying and the remaining
are non-bullying. Table 1 presents some statistical information about the dataset including, number of entries
(quantity), minimum (minWords), maximum (maxWords), and average (avgWords) number of words in a text.

Table 1. Statistical information of the dataset
Class quantity minWords maxWords avgWords
Bullying 2,718 1 201 19
Non-bullying 2,926 2 247 23
Bullying and Non-bullying 5,644 1 247 21

2.2. Data pre-processing
The collected data convey unwanted and noisy contents such as thin-space Unicode characters, links,

and punctuation. Here, we have divided entire pre-processing tasks into two groups: general pre-processing
tasks named “GPT” and additional pre-processing tasks called “APT”. In the “GPT”, we remove HTML tags,
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links, URLs, special characters, punctuation, digits, and stop-words and apply tokenization, lower casing (for
English words), and stemming [12] operations. On the other hand, the “APT” contains the following four
pre-processing tasks:
− Removing thin-space unicode character: our dataset contains “ZERO WIDTH NON-JOINER”

(U+200C) Unicode character which creates garbage tokens when we use regular expression during tok-
enization. We have discarded this unicode character from the dataset.

− Fixing space error with delimiters and sentence-ending punctuation: in this dataset, we have found many
space related errors before and after delimiters like comma (“,”), semi-colon (“;”), and sentence-ending
punctuation like full-stop (“.”) or (“।”), question mark (“?”). These types of errors are corrected that reduces
the number of unwanted tokens.

− Replacing emoticons (ASCII characters) with Bengali words: we have developed an emoticon dictionary
which contains about 400 usable emoticons and their equivalent Bengali meaning. Here, we have grouped
the similar types of emoticons with the same Bengali word. E.g., the emoticons, “:)”, “:=)”, “:|)”, convey
the same Bengali meaning, “খুিশ” (smile). Entire emoticons of the dataset are substituted with corresponding
Bengali words. This replace operation may help for better understanding of the emotion [13] of a particular
text.

− Replacing emoji (unicode characters) with Bengali words: like the emoticons, we have replaced every emoji
by the equivalent Bengali words. Here, we also make an emoji dictionary of about 280 mostly used emoji
with their Bengali meaning and group the similar types of emoji with same the Bengali word.

To the best of our knowledge, the above four pre-processing tasks are slightly differed from those of
existing studies. We experiment on “APT” in section 3. Finally, we observe the impact of these pre-processing
tasks in the detection system.

2.3. Feature selection
A feature selection operation has been introduced to extract the significant features that have a substan-

tial impact on cyberbullying text detection. We have addressed feature selection technique from three different
perspectives: features for traditional ML models, features for DL models, and features for transformer-based
pre-trained model. For traditional ML models, we have utilized N-grams at the character and word level and
assigned TF-IDF values for each feature. After conducting some empirical research, we have determined that
N should be between 3 and 5 for character N-grams and between 1 and 2 for word N-grams. For DL models, we
use three word embeddingmodels: word2vec, fastText, and global vector (GloVe) which deal with syntactic and
semantic word-similarity and word-analogy of a text. As a transformer-based ML technique, we have utilized a
cutting-edge bidirectional encoder representations from transformers (BERT) pre-trainedmodel. During feature
extraction, BERT employs its own tokenizer, the BERT tokenizer, and turns each word into three embedding
vectors: token, segment, and position. By adding these three vectors, the final embedding of a particular word
is computed [14].

2.4. Model classifiers
This research experiments on eight ML models such as SVM, MNB, random forest (RF), logistic

regression (LR), long short term memory (LSTM), bidirectional LSTM (BiLSTM), CNN-BiLSTM, and BERT,
which give better outputs in several studies for classifying a text for the Bengali language. In the case of classical
ML models, the SVMmodel outperformed in [3], [7], [8], [11], whereas, the MNB model showed better results
in [4], [15]. However, the RF and the LR presented the higher accuracy in [16] and [17], respectively. On
the other hand, LSTM, BiLSTM, and CNN-BiLSTM presented the best performance in [18], [19] for the DL
models. At very recent time, BERT plays outstanding result in text classification task [20]. These eight models
are illustrated below:

Support vector machine (SVM): in SVM, a hyper-plane space is generated by maximizing the gap
between the margins of two classes (E.g., positive and negative) of support vectors. This marginal distance
yields a more generalized version of the model. In addition, SVM handles errors by employing a regularization
technique based on the soft margin hyper-plane over incorrectly categorized data points [21].

Multinomial Naive Bayes (MNB): the main working principle of MNB is based on the
Bayes theorem [22]. Through this theorem and the formula of prior probability and the conditional proba-
bility, each class variable and each feature variable are computed during the training process. After that, these
prior and conditional probabilities are applied on the test dataset. Then, based on the features of the test data,
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MNB assigns the probability for the classes of each data point and select a class with higher probability. The
probability, P (C|F ) is calculated using the Bayes theorem as (1).

P (C|F ) = P (F |C) ∗ P (C)/P (F ) (1)

Where, C is a possible class variable and F represents the unique feature.
Random forest (RF): the RF consist of a number of decision trees which are computed separately [23].

Here, the information gain is achieved for each tree through the “Gini Impurity” formula as follows:

Gini = 1−
C∑

n=1

(Pi)
2 (2)

where, C is the total number of possible class and Pi is the probability of ith class.
Logistic regression (LR): the working principle of this model is based on the two functions: sigmoid

(3) and cost (4), given below:

hθ(x) =
1

1 + e−βT x
(3)

C(θ) =
1

k

k∑
i=1

c(hθ(xi), yi) (4)

c(hθ(x), y) =

{
− log(1− hθ(x)), if y = 0

− log(hθ(x)), if y = 1

where, βT indicates the transpose of regression coefficient matrix (β), k represents the total amount of training
observations, hθ(xi) is the hypothesis function of the ith training observation, and yi presents the actual output
of ith training sample.

Long short term memory (LSTM): this model is developed to handle the problem of long-term depen-
dency for the sequential and the time series data [24]. Here, four interactive layers: memory cell unit, forget
gate unit, input gate unit, and output gate unit are working together in each LSTM cell state. Information are
added or forgot in the memory cell state. Forget gate unit decides which information from the previous cell
state. In the input gate unit, new significant information are added into the memory cell state. Lastly, the output
gate unit decides which information are passed into the next LSTM cell state.

Bidirectional LSTM (BiLSTM): the LSTM model struggles to predict a word which more depend on
the future context word. To solve this issue, the concept of BiLSTM where one LSTM operates into forward
direction and another one flows into backward directions [25]. Here, the output of a particular BiLSTM cell
state is computed by combining the output of both LSTM cells for the same time-stamp.

Convolutional neural network with bidirectional LSTM (CNN-BiLSTM): the CNN-BiLSTM is a hy-
brid model, where CNN and BiLSTMmodels are executed sequentially. CNN operates with three fundamental
layers: convolution, pooling, and fully connected. In the convolution layer, element by element matrix multi-
plication operation (convolution operation) is performed between the input data and the kernel (feature detector)
and produce a feature map for each kernel. The dimension of this feature map is reduced in the pooling layer.
Finally the reduced feature map is passed through the fully connected layer which performs like the standard
artificial neural network (ANN) architecture. In the CNN-BiLSTM model, the BiLSTM part is added just be-
fore the fully connected layer. For the text processing task, CNN works on local dependency of the contiguous
words of a sentence by extracting character level features, while BiLSTM deals with overall dependency for a
particular feature of an entire text [26].

Bidirectional encoder representations from transformers (BERT): BERT shows an utmost performance
for context-specific tasks including language inference, question answering, among the other pre-trainedmodels
like embeddings from language models (ELMo), and OpenAI generative pre-training (GPT). It works with
two separate frameworks: pre-training framework and fine-tuning framework. In the pre-train framework,
BERT obtains the contextual understand about the specified languages using two unsupervised tasks: mask
language model (MLM) and next sentence prediction (NSP). In contrast, the fine-tuning framework is applied
to several downstream tasks linked to natural language processing (NLP), such as sentiment classification,
sentence prediction, and named entity recognition, by simple adjustment of the task-specific architecture [14].
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2.5. Experimental set-up
We have explained the experimental procedures and model configuration from three points of view:

classical ML models, DL models, and transformer-based pre-trained models. We examine the potential com-
binations of pre-processing tasks, feature selection tasks, and classifier models. In addition, we configure the
hyper-parameters during the implementation of the detection system.

2.5.1. Experimental set-up for classical ML models
For evaluating the influence of the pre-processing task “additional pre-processing tasks” (APT) as

shown in section 2.2., we experiment from two point of views: “general pre-processing tasks” (GPT) with
“APT” and “GPT” without “APT”. In feature selection stage, three approaches are settled by empirical ex-
periments: character N-grams (3 to 5) with TF-IDF, word N-grams (1 to 2) with TF-IDF, and a combined
character-word N-grams. In this investigation, four ML classifiers, including SVM, MNB, RF, and LR, are
utilized. Consequently, each classifier provides six potential outputs. During the experiment, the dataset is
separated into two parts: training data and testing data, with respective proportions of 80% and 20%. In order
to obtain a more reliable model, a 10-fold cross-validation procedure is employed [27]. Using sklearn Python
libraries, we have tried to use default values of hyper-parameters to implement each model. However, slight
changes of the hyper-parameter values are taken into account through the empirical experimentation such as
kernel is “linear” and gamma is “auto” for SVM model, and alpha is 0.25 for MNB model.

2.5.2. Experimental set-up for DL models
During the implementation of DL models, same two variations of pre-processing tasks are chosen like

classical ML models. However, three different feature selection techniques such as word2vec, fastText, and
GloVe are applied for three DL models, such as LSTM, BiLSTM, and CNN-BiLSTM. Therefore, each DL
model shows six possible results. Here, we use the scikit-learn python library and KerasTuner framework to
implement the models by tuning the models’ parameters. We have experimented on thirteen parameters which
value ranges are specified in Table 2 via the empirical analysis. We implement the LSTM model with two
LSTM layers, the BiLSTM model with two BiLSTM layers, and the CNN-BiLSTM model with one BiLSTM
layer. Here, the dataset is split into three parts: training data, validation data, and testing data with a ratio of
70%, 15%, and 15%.

Table 2. Hyper-parameter values during the implementation of DL models
Parameter Data

Type
Description Value

The number of convolution layers Integer Number of convolution layers in CNN. Min value=2 and Max value=3
Filters Integer The number of output filters in each convolution. Min value=32, Max

value=768, and Step value=32
Kernel size Integer Indicating the length of the convolution window. Min value=3, andMax value=5
Pooling types String Max pooling and average pooling, used to reduce the

dimensionality of the feature map.
value=[‘max pooling’, ‘aver-
age pooling’]

LSTM units Integer Number of LSTM output units. Min value=32, Max
value=768, and Step value=32

Number of hidden layers Integer The number of hidden layers in the fully connected net-
work.

Min value=1 and Max value=3

Hidden units Integer The number of neurons of each hidden layer. Min value=32, Max
value=512, and Step value=32

Activation function String The function defines the output value of each neuron. Value=[‘relu’, ‘leaky_relu’,
‘elu’, ‘swish’]

Kernel initializer String A procedure to assign a set of small random values of
a neural network at the very early stage.

Value= [‘glorot_normal’,
‘glorot_uniform’, ‘he_normal’,
‘he_uniform’]

Dropout rate Float Fraction of the number of neurons to drop. Min value=0.2, Max
value=0.5, and Step value=0.1

Learning rate (Adam) Float It controls the rate at which a loss function approaches
the point where the curves converge.

Value=[1e-1, 1e-2, 1e-3, 1e-4]

Batch size Integer The number of samples passing in each iteration during
training the model.

Min value=16, Max
value=256, and Step value=16

Epochs Integer The number of times the entire training data is used to
train the model.

Min value=5, Max value=30
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2.5.3. Experimental set-up for transformer-based pre-trained model
As a transformer learning technique, we have used BERT-base multilingual pre-trained model consist

of 12 hidden layers, hidden output dimensions of 768, and 12 self-attention heads. Through the empirical study,
we have selected four categories of pre-processing tasks, including: “GPT” with “APT”, “GPT” with “APT”,
but not applying stop-word removal and stemming operations, “GPT” without “APT”, and “GPT” without
“APT”, stop-word removal, and stemming operations. Since, in the BERT fine-tuning, the feature vectors come
through the BERT’s own tokenizer and embedding technique. Therefore, we get total four possible outputs from
a BERT model.

3. RESULTS AND DISCUSSION
We illustrate the results of each ML-based approach and their performance analysis. The performance

score is determined using assessment criteria, including precision, recall, F1-score, and accuracy metrics. At
first, we analyze the results from three angles: approaches with classical ML models, approaches with DL
models, and with a transformer-based pre-trained model. Finally, we summarize the overall results.

3.1. Results of approaches with classical ML models
The performance scores of the combination of pre-processing, feature selection, and classical ML

models (MNB, LR, SVM, and RF) are pointed in Table 3. The MNB-based approach performs the highest F1-
score of 0.745 and the highest accuracy of 78.815% which crosses the performance of the existing work [11].
In this approach, the “APT” is included into the “GPT” in the pre-processing stage, and the combined N-grams
is utilized in feature selection stage. Here, both the “APT” and the combined N-grams tasks help in calculating
the proper feature probability by (1), which distinguishes the bully and the non-bully type text effectively. The
MNB-based approach also gives better output for character N-grams of 78.620% accuracy. This approach
obtains the top recall score too by 72.566%, however, word N-grams is taken instead of combined N-grams.
In the case of precision, the LR-based approach gives maximum output of 82.499%. This approach shows
comparatively better accuracy than the other two classical ML models, SVM and RF. Here, the hypothesis
function (3) of the LR model effectively works on the training observation as well as test data for detecting
bully text.

Table 3. Performance evaluation of the methods with classical ML classifiers
Approach Precision Recall F1-score Accuracy
“GPT” with “APT” + Character N-grams + SVM 79.117% 67.858% 0.716 76.582%
“GPT” with “APT” + Word N-grams + SVM 79.165% 64.290% 0.697 75.341%
“GPT” with “APT” + Combined N-grams + SVM 76.046% 69.844% 0.716 75.607%
“GPT” without “APT” + Character N-grams + SVM 79.027% 67.197% 0.712 76.387%
“GPT” without “APT” + Word N-grams + SVM 79.308% 63.443% 0.693 75.129%
“GPT” without “APT” + Combined N-grams + SVM 76.310% 69.366% 0.715 75.696%
“GPT” with “APT” + Character N-grams + MNB 81.703% 69.477% 0.737 78.620%
“GPT” with “APT” + Word N-grams + MNB 76.696% 72.566% 0.736 76.759%
“GPT” with “APT” + Combined N-grams + MNB 80.557% 71.611% 0.745 78.815%
“GPT” without “APT” + Character N-grams + MNB 81.899% 69.036% 0.736 78.620%
“GPT” without “APT” + Word N-grams + MNB 76.106% 71.867% 0.730 76.245%
“GPT” without “APT” + Combined N-grams + MNB 80.389% 71.170% 0.742 78.656%
“GPT” with “APT” + Character N-grams + RF 80.541% 65.136% 0.705 76.370%
“GPT” with “APT” + Word N-grams + RF 79.040% 61.603% 0.684 74.403%
“GPT” with “APT” + Combined N-grams + RF 81.025% 63.995% 0.699 76.264%
“GPT” without “APT” + Character N-grams + RF 80.677% 65.026% 0.707 76.600%
“GPT” without “APT” + Word N-grams + RF 76.621% 63.224% 0.683 73.801%
“GPT” without “APT” + Combined N-grams + RF 81.332% 64.952% 0.709 76.866%
“GPT” with “APT” + Character N-grams + LR 81.707% 66.387% 0.717 77.397%
“GPT” with “APT” + Word N-grams + LR 81.923% 59.692% 0.676 74.952%
“GPT” with “APT” + Combined N-grams + LR 81.209% 67.086% 0.721 77.397%
“GPT” without “APT” + Character N-grams + LR 81.869% 66.535% 0.721 77.539%
“GPT” without “APT” + Word N-grams + LR 82.499% 58.772% 0.673 74.863%
“GPT” without “APT” + Combined N-grams + LR 81.523% 67.050% 0.722 77.539%
SVM-based approach [11] - - - 78.000%
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3.2. Results of approaches with DL models
The evaluation scores of various combination of pre-processing tasks, feature selection methods, and

DL models (LSTM, BiLSTM, and CNN-BiLSTM) are mentioned in Table 4. The LSTM-based approach
achieves the highest recall, F1-score, and accuracy values of 75.000%, 0.765, and 77.804%, respectively which
outperforms than the earlier work [11] on the same dataset. This approach uses “APT” with “GPT” pre-
processing task and utilizes the fastText word embedding technique for selecting feature vectors. Since the
average number of words represents a small figure of 21, as shown in Table 1, the unidirectional LSTM model
performs better result than the other two DL models (BiLSTM and CNN-BiLSTM). On the other hand, CNN-
BiLSTM-based approach presents the top precision score of 85.161%. This approach also use the same pre-
processing task and feature selection technique like the LSTM-based approach. Furthermore, this approach also
gives the slightly better performance than [11] in terms of accuracy (77.568%). Another notifying point is that,
the fastText embedding method performs much better outputs compare to the word2vec and the GloVe embed-
ding methods in every cases. The main reason is the fastText method uses character N-grams approach and
generates sub-word level features which distinguishes other two embedding methods. Using this mechanism,
the fastText also handles unknown word dictionary of the dataset [28], [29].

Table 4. Performance evaluation of the methods with DL classifiers
Approach Precision Recall F1-score Accuracy
“GPT” with “APT” + word2vec + LSTM 74.702% 61.520% 0.675 71.429%
“GPT” with “APT” + fastText + LSTM 78.061% 75.000% 0.765 77.804%
“GPT” with “APT” + GloVe + LSTM 75.313% 59.069% 0.662 70.956%
“GPT” without “APT” + word2vec + LSTM 51.843% 55.147% 0.534 53.719%
“GPT” without “APT” + fastText + LSTM 80.508% 69.853% 0.748 77.332%
“GPT” without “APT” + GloVe + LSTM 70.833% 70.833% 0.708 71.901%
“GPT” with “APT” + word2vec + BiLSTM 72.702% 63.971% 0.681 71.074%
“GPT” with “APT” + fastText + BiLSTM 78.495% 71.569% 0.749 76.860%
“GPT” with “APT” + GloVe + BiLSTM 73.158% 68.137% 0.706 72.609%
“GPT” without ‘APT” + word2vec + BiLSTM 76.052% 57.598% 0.656 70.838%
“GPT” without “APT” + fastText + BiLSTM 81.143% 69.608% 0.749 77.568%
“GPT” without “APT” + GloVe + BiLSTM 70.051% 67.647% 0.688 70.484%
“GPT” with “APT” + word2vec + CNN-BiLSTM 77.419% 58.824% 0.669 71.901%
“GPT” with “APT” + fastText + CNN-BiLSTM 85.161% 64.706% 0.735 77.568%
“GPT” with “APT” + GloVe + CNN-BiLSTM 69.576% 68.382% 0.690 70.366%
“GPT” without “APT” + word2vec + CNN-BiLSTM 74.566% 63.235% 0.684 71.901%
“GPT” without “APT” + fastText + CNN-BiLSTM 79.348% 71.569% 0.753 77.332%
“GPT” without “APT” + GloVe + CNN-BiLSTM 74.167% 65.441% 0.695 72.373%
CNN-LSTM-based approach [11] - - - 77.500%

3.3. Results of approaches with Transformer-based pre-trained model
In this experiment, we have implemented the BERT pre-trained model with its own tokenizer and

embedding method for four combinations of pre-processing tasks between “APT” and stop-word removal and
stemming, as shown in Table 5. Here, only the recall reaches on the top when “APT” is not considered with
“GPT”, however other three cases: precision, F1-score, and accuracy, BERT-based approach obtains the max-
imum values of 84.682%, 0.777, and 80.165%, respectively, by incorporating “APT” to other pre-processing
tasks except not performing stop-word removal and stemming operations. Since, the BERT obtains a contextual
understanding about the languages by training from a very large dataset, thus, stop-word elimination and stem-
ming tasks may deteriorate comprehensive understanding about a text. For that reason, if we do not consider
these two pre-processing tasks, the result shows better output values.

Table 5. Performance evaluation of the methods with transformer model
Approach Precision Recall F1-score Accuracy
“GPT” with “APT” + BERT-embedding + BERT-base-multilingual-uncased 77.778% 73.775% 0.757 77.214%
“GPT” with “APT”, but not perform stop-word removal and stemming + BERT-
embedding + BERT-base-multilingual-uncased

84.682% 71.814% 0.777 80.165%

“GPT” without “APT” + BERT-embedding + BERT-base-multilingual-uncased 74.146% 74.510% 0.743 75.207%
“GPT” without “APT”, stop-word removal, and stemming + BERT-embedding
+ BERT-base-multilingual-uncased

83.380% 72.549% 0.776 79.811%
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3.4. Overall result analysis
We have extracted the best outputs in terms of F1-score and accuracy from each three types of ML

models where the BERT-based approach gives outstanding results to detect the cyberbullying text, as shown
in Table 6. We observe that our proposed pre-processing task, “APT”, improves the overall performance of
the detection system. Furthermore, in the feature selection stage, combining character and word N-grams with
TF-IDF scoring, the fastText embedding, and the BERT-embedding techniques are effective in classical ML,
DL, and BERT-based transformer models, respectively.

Table 6. Proposed approaches regarding F1-scores and accuracy values
Proposed Approach F1-score Accuracy
“GPT” with “APT” + Combined N-grams + MNB 0.745 78.815%
“GPT” with “APT” + fastText + LSTM 0.765 77.804%
“GPT” with “APT”, but not perform stop-word removal and stemming + BERT-embedding + BERT-base-
multilingual-uncased

0.777 80.165%

4. CONCLUSION
Within this study, we have experimented with pre-processing tasks, feature selection tasks, and selec-

tion of classifier models from three points of view: classical ML, DL, and transformer learning, and proposed
a concise decision in every aspect. Here, “APT” pre-processing task is introduced besides the general pre-
processing tasks. Then, we have shown the combined N-grams (character and word level) performs well for
the classical ML algorithms, while, fastText gives better results than the other two embedding techniques such
as word2vec and GloVe for the DL algorithms. Finally, using “APT”, BERT outperforms with an utmost accu-
racy of 80.165%. In future research, we will implement our proposed approaches to the other related datasets.
Furthermore, we will analyze other new pre-processing tasks and will extract new features. Finally, we will
experiment with various ML approaches (classical ML, DL, and transformer learning) separately and in a com-
bined form.
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