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 The aim of this research is to compile a tsunami wave hazard scale based on 

built-up land density extracted and classified by machine learning from 

Sentinel 2A satellite and digital elevation model (DEM) imageries. This 

research was carried out in 5 stages, namely: (i) pre-processing of Sentinel 

2A and DEM images, (ii) Classification of VI data using the machine 

learning algorithms, (iii) Spatial prediction using the ordinary kriging 

method, (iv) Field testing using the confusion matrix method, (v) Preparation 

of decision matrix for tsunami wave hazard. The results of the study show 

that the most accurate classification algorithm for classifying built-up 

indices data is the k-nearest neighbor (k-NN) algorithm. The results of the 

statistical accuracy test show that the most accurate is normalized difference 

built-up index (NDBI) with a mean of square error (MSE) value of 0.073 

and a mean of absolute error (MAE) of 0.003. DEM analysis shows that the 

research area is at an altitude of 0–15 meters above sea level so it is in the 

high vulnerability to medium vulnerability category. Field testing showed 

user accuracy of 91.11%, manufacturer accuracy of 92.16%, and overall 

average accuracy of 91%. 
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1. INTRODUCTION 

Machine learning (ML) is a type of artificial intelligence that uses certain algorithms through the 

process of analyzing large amounts of data which their nature is multidimensional and uses patterns to 

produce new values as predictive data based on the provided historical data features [1]–[3]. ML is an 

algorithm for the process of predicting and detecting a phenomenon that is described in remote sensing 

imagery and occurs in locations or positions that are not accessible to human vision, namely the support 

vector machine (SVM), random forest (RF), k-nearest neighbour (k-NN), multivariate adaptive regression 

splines (MARS) and artificial neural networks (ANN) [4]–[6]. ML is used as a method for computing, 

classifying and predicting data in the form of pixels or digital number (DN) derived from Landsat 8 OLI and 

Sentinel 2A satellite images [7]–[10]. The research on the classification of buildings destroyed as the impact 

of tsunami wave in Japan in 2011 and the impact of earthquake and tsunami wave in 2016 was done using the 

SVM algorithm [11]. Prediction of inundation on coastal tsunami wave is made using the ANN algorithm 

[12]. Tsunami wave vulnerability modelling on the coast and residential areas is created using data from 

normalized difference vegetation index (NDVI), modified soil adjusted vegetation index (MSAVI), 

normalized difference water index (NDWI), modified normalized difference water index (MNDWI), and 

https://creativecommons.org/licenses/by-sa/4.0/
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normalized difference built-up index (NDBI) extracted from Sentinel 2A satellite images. The Sentinel-2A 

MSI images has 13 spectral bands in the visible, NIR, and SWIR wavelength region with spatial resolutions 

of 10–60 m as shown in Table 1 [13]. The SVM aims to achieve optimal separation between hyper planes 

and/or hyper planes located in height and/or hyper planes in dimensional space, in order to find the optimal 

boundaries between classes. The SVM formula is shown as (1) [14], 

 

𝑓(𝑥) =  ∑ (𝛼𝑖 − 𝛼𝑗)𝐾(𝑁𝑖 − 𝑁𝑗) + 𝑐𝑛
𝑖−1  (1) 

 

The (1) shows that 𝐾(𝑁𝑖 − 𝑁𝑗) is a kernel function which is used as a higher dimension 

transformation from non-linier function to linier function. The RF algorithm is called the ensemble learning 

method because the first decision making on a tree is made by a random subspace method, and the second 

data classification is made by a stochastic discriminant method [15]–[17]. RF is an ensemble learning-based 

algorithm which has an advantage in its resistance to noise in large data sets. Each input data will form a 

class in the form of a tree classification, and RF is able to form a tree classification according to the size of 

the input data in the form of numeric data, pixel data and spectrum data of satellite images. The RF uses Gini 

index to select a tree classification to produce a decision. 𝐺𝑔𝑖𝑛𝑖(𝐷) Index represents the uncertainty of the 

sum of VI values as the sample of this study. Gini Index is defined as (2) [18], 

 

Ggini(D) = 1 − ∑ (
|An|

D
)N

n−1

2

 (2) 

 

Where 𝐴𝑛 is the sum of data obtained from the results of the observation in n class. An ANN 

algorithm is composed of 3 layers, namely input layer, hidden layer and output layer. The pixel, numeric or 

spectrum data extracted from the satellite image is transferred from the input layer to the output layer via 

neurons. The value of the connection weight between nodes is determined randomly, then the differences 

between the actual weight value and the predicted value are computed so that the weight value of the 

computational results gets closer to the actual condition. The parameters in the ANN are the number of 

layers, the number of neurons, learning algorithms and the activation function. The formula for data 

processing on ANN neurons is as (3),  

 

𝑦(𝑡) = 𝐹(∑ 𝑏𝑖(𝑡)
𝑚
𝑖=0 . 𝑥𝑖(𝑡) + 𝑐) (3) 

 

where 𝑥𝑖(𝑡) is the input value of pixel, numeric or spectrum data of satellite imagery, with the value 

of 𝑥 is in discrete form with a value from of i of 0 to m. The value of 𝑏𝑖(𝑡) is the weight value in discrete 

form with a value of i from of 0 to m. The value of c is the bias, the value of F is the transfer function from 

one neuron to the next neuron, and the value of 𝑦(𝑡) is the final value in discrete form [19]. The concept of 

the k-NN algorithm works by identifying pixel, numeric or spectrum data that are not recognized to be 

included as members of the pixel, numeric or spectrum data class of the nearest recognized class [20]. 

Suppose a training data set is denoted as 𝐷 = {(𝑥1 −𝑦1)(𝑥2 − 𝑦2)(𝑥3 − 𝑦3) … (𝑥𝑛 − 𝑦𝑛)}, the number 

of training data variances or training parameters is n , vector data is denoted as 𝑥𝑖 ∈ ℜ𝑑 and 𝑦𝑖 ∈ 𝘧 = 

(𝑎1, 𝑎 2, 𝑎 3 … 𝑎 𝑛) with the value of i = 1,2,3…N. The distance of the analyzed sample is calculated from the 

training data as the value of k-NN which is denoted by 𝑆𝑘 (𝑥). The neighborhood relationship between input 

data and training data is 𝑀𝑙 = 𝐸𝑁𝑙 where the value of 𝑀𝑙 is the set of neighbors, the value of E is the training 

data and 𝑁𝑙 is the matrix coefficient. The matrix coefficient value is calculated using (4) [21], [22]. 

 

𝑁𝑙
̅̅ ̅ = 𝑎𝑟𝑔𝑚𝑖𝑛‖𝑀𝑙 − 𝐸𝑁𝑙  ‖𝐹

2 , 𝑠. 𝑡. ‖𝑁𝑙‖𝑟𝑜𝑤,0 ≤ 𝑡0 (4) 

 

The definition of the distance between the sample value and the class value is calculated using (5). 

 

𝑑(𝑀𝑙; 𝐸
𝑥) = ‖𝑀𝑙 − 𝐸𝑚𝑁𝑙

𝑚 ⃐       ‖𝐹
2  (5) 

 

MARS is the method used to analyze various problems and natural phenomena that always leads to 

a high dimensional nonlinear orientation using a linear approach in different intervals [23]. The MARS 

equation is as (6). 

 

𝑦 = 𝛽0 + ∑ 𝛽𝑖Β𝑖(𝑋) + 𝜀𝑀
𝑖=1  (6) 
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In which 𝛽0 is the intercept of the model, Β𝑖(𝑋) is a linear basis function pair where the value (𝑋) 

is the vector of independent variables. The notation of 𝛽𝑖 is the ith coefficient, the M notation is the number 

of basic functions, and 𝜀 is the error rate [24]. 

This research is focused on solving the following problems: (i) Identifying and predicting 

distribution patterns of built-up land objects in tsunami wave hazard areas from satellite imagery data, (ii) 

Making an accurate classification of the tsunami wave hazard level on built-up land objects, iii) Determining 

of decision matrix and tsunami wave hazard scale from the best algorithm, (iv) Testing of accuracy using 

Confusion Matrix. In accordance with the research problems, the proposed solutions are: (i) Extracting built-

up land objects from Sentinel 2A imageries using the algorithms of VI, (ii) Conducting experiments on 

selecting a classification method using the ML algorithms, (iii) Building a computer model architecture for 

an effective and efficient process of extracting, interpreting and classifying tsunami wave hazard levels, (iv) 

Conducting tests to identify the accuracy in the field. The novelty of this research is the existence of a 

computer-based model and a simulation to carry out comparisons and selection of tsunami wave hazard 

classifications using ML algorithms based on built-up land objects using VI. This research refines previous 

research that uses ML algorithms of ANN, RF, SVM, MARS, CART, k-NN, and LASSO [20]. 

 

 

Table 1. Vegetation Indices NDVI, MSAVI, NDWI, MNDWI, and NDBI  
Description Equation  Reference 

NDVI is the algorithm to study the growth and health of plants in 

relation to climatic and seasonal factors. NDVI is calculated using the 

spectrum of Red (𝜌𝑟𝑒𝑑) and Near Infrared (NIR) (𝜌NIR) lights is as 

follows. 

NDVI = 
𝜌𝑁𝐼𝑅 − 𝜌𝑟𝑒𝑑 

𝜌𝑁𝐼𝑅 + 𝜌𝑟𝑒𝑑 
 (7) [25], [26] 

NDWI and MNDWI are the algorithms used to detect water bodies on 

the earth’s surface, such as rivers, lakes, reservoirs and beaches 
macroscopically, in real-time, dynamically and efficiently compared to 

conventional measurements on lakes is as follows. 

𝑁𝐷𝑊𝐼 =
𝜌𝑔𝑟𝑒𝑒𝑛 − 𝜌𝑁𝐼𝑅 

𝜌𝑔𝑟𝑒𝑒𝑛 + 𝜌𝑁𝐼𝑅 

 
(8) [27] 

MNDWI is calculated using the spectrum of Green (𝜌green) and 

Middle Infra-Red (MIR) (𝜌MIR) light. NDWI is calculated using the 

spectrum of Green (𝜌Green) and Near Infrared (NIR) (𝜌NIR) lights, 

and the NIR spectrum in MNDWI is replaced by Shortwave Infrared 

(SWIR) (𝜌SWIR) light is as follows. 

𝑀𝑁𝐷𝑊𝐼 = 
𝜌𝑔𝑟𝑒𝑒𝑛 − 𝜌𝑀𝐼𝑅 

𝜌𝑔𝑟𝑒𝑒𝑛 + 𝜌𝑀𝐼𝑅 

 
(9) [27] 

NDBI is the algorithm used to study the density of built-up lands, using 

the spectrum of Shortwave Infrared (SWIR) (𝜌SWIR) and Near 

Infrared (NIR) (𝜌NIR) lights is as follows. 

𝑁𝐷𝐵𝐼 =
𝜌𝑆𝑊𝐼𝑅 − 𝜌𝑁𝐼𝑅 

𝜌𝑆𝑊𝐼𝑅 + 𝜌𝑁𝐼𝑅 

 (10) [28] 

MSAVI is the improved algorithm of NDVI by reducing the 

reflectance factor of the soil background in order to produce a more 

accurate vegetation cover is as follows. 

𝑀𝑆𝐴𝑉𝐼 =
𝜌𝑁𝐼𝑅 − 𝜌𝑟𝑒𝑑 

𝜌𝑁𝐼𝑅 + 𝜌𝑟𝑒𝑑 + 𝐿𝑜

(1 + 𝐿𝑜) (11) [29] 

 

 

2. METHOD 

The research location is in Gunungkidul Regency, Special Region of Yogyakarta Province, 

Indonesia which includes 78 villages, in an area of 8 sub-districts. Geographically, the study area is located at 

coordinates of 7° 46' - 8° 09' South Latitude and 110° 21' - 110° 50' East Longitude. The research area is 

classified into 4 parts, namely: built-up land consisting of settlements, traditional markets and road networks 

(indicated by yellow color), agricultural land consisting of dry fields, rice fields and gardens, forest and 

mixed vegetation consisting of open land, grasses and shrubs. This research uses imageries obtained from the 

Sentinel 2A satellite. The research was carried out in 4 stages. The first stage is pre-processing stage 

consisting of geometric, radiometric, atmospheric corrections and extraction of satellite images using the 

vegetation indices algorithms (Figure 1). Next is data extraction using NDVI, MSAVI, MNDWI, NDWI, 

NDBI algorithms. This stage aims to transform data from image data with pixel components into numerical 

form of vegetation indices data. The second stage is classifying VI data using ML algorithms namely SVM, 

k-NN, RF, ANN and MARS. Accuracy testing was carried out using statistical methods, namely MAE, MSP 

and MAPE.  

The third stage is to make spatial predictions at locations that are not observation area using the 

ordinary kriging method. The fourth stage is field testing using the confusion matrix method to see the 

suitability and accuracy of the computer models generated from computations with machine learning with the 

real conditions at the Gunungkidul Regency, Yogyakarta, Indonesia. The fifth stage is to analyze the SRTM 

DEM data to see the elevation of the observation area. 
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Figure 1. Comparison and selection of the computer model for tsunami wave hazard classification using the 

ML algorithms based on built-up land objects using VI information 

 

 

3. RESULTS AND DISCUSSION  

Based on the results of previous research, on the south coast of Central Java and Jogjakarta, 

especially the areas that are highly vulnerable to tsunami waves, land cover consists of: (i) residential 

buildings for socio-economic activities and tourism, (ii) agricultural lands, plantations and forests, (iii) 

aquaculture ponds, and (iv) open grassy areas, bushes and shrubs [30]. Indicators of residential buildings, 

socio-economic activities and tourism are identified using NDBI. Agriculture, plantation and forestry 

indicators are identified using NDVI. Aquaculture and seaweed aquaculture indicators are identified using 

NDWI and MNDWI. Indicators of open grass, shrubs and shrubs are identified using SAVI. 

The composition and density of land cover are important indicators for assessing the risk of tsunami 

waves in coastal areas. Classifying and labeling the tsunami hazard level using the SVM, k-NN, RF, ANN or 

MARS algorithm on VI data will produce land cover predictions for the next season. The spatial distribution 

of land cover data can be predicted using a computational process using the ordinary kriging method. 

The color scale on the spatial object prediction map for areas that are not observation areas shows a 

different range of values and is interpreted as a tsunami wave hazard level. Red to yellow colors indicate 

areas of open lands, built-up lands, non-vegetated lands, grasses, bushes and shrubs. Green to blue colors 

indicate areas of agriculture, plantation and forest or areas of aquaculture ponds, and densely vegetated areas. 

The prediction results were tested for their accuracy and validation using the mean square error 

(MSE) and mean absolute error (MAE) methods. The MSE and MAE accuracy tests are used to calculate the 

difference between the predicted value and the observed value. If the difference between the two values is 

getting closer to zero, the prediction results are more accurate. 

In the classification process, SVM divides the data set for each vegetation index into two parts and 

limits them with a line called a support vector. This line is referred to as hyperplane, which is a line that 

separates two parts that are not connected by n dimensions in Euclidean space (Table 2). The maximum 

distance between the hyperplane and the vegetation index data set in each space is referred to as optimal 

hyperplane. 

 

 

Table 2. Classification of new data classes using SVM algorithms 
Vegetation Index Very Low Low High Very High 

NDWI >-0.35-<-0.30 >-0.30 - <-0.25 > -0.25 - < -0.20 >-0.20 
MNDWI >-0.40-<-0.35 >-0.35 - <-0.30 > -0.30 - < -0.25 >-0.25 

NDVI > 0.20-<0.15 >0.15 - <0.10 > 0.10 - < 0.5 >0.5 

MSAVI >-0.50 -<-0.40 >-0.40- <-0.30 >-0.30- <-0.20 >-0.20 

NDBI >-0.10-<-0.05 <-0.05 – 0.00 >0.00-<0.10 >0.20 
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The SVM algorithm will read each vegetation index data, which data with an extreme value will be 

labeled as identifier to determine whether the data is a limit on a very low class or a very high class. Each 

new formed class will be determined by the dividing line of the same two parts, namely the very low-value 

data class and the very high-value data class as shown in Figure 2.  

New classes resulting from SVM classification from historical data are: (a) NDWI, (b) MNDWI, (c) 

NDVI, (d) MSAVI, and (e) NDBI, which they have different Optimal Hyperplane values, so that they have 

different data range of width for each class and their interpretations will also be different.  

SVM algorithm is a method for recognition, classification and prediction of pattern by forming a 

multidimensional hyperplane to distinguish between data classes. This algorithm uses a nonlinear kernel 

function so that it transforms the input space into multidimensional space. SVM algorithm separates data sets 

into multidimensional forms and creates a hyperplane linear line to optimally separate dimensional data 

(support vectors). Of the thousands of VI data, there are some data that are not easily separated, so that kernel 

functions must be formed to form higher dimensions. This data separation results new data of VI which is 

then tested for statistical accuracy as shown in Table 3. SVM algorithm is accurate in predicting and 

generating new data on NDBI data with MSE value of 0.003, NDVI and NDWI with MSE value of 0.004. 

The k-NN algorithm forms the assumption that the data is not independent and will tend to be near 

the same or similar data. Formation of data classes in k-NN uses the concept of majority vote, which same or 

similar data will be in the same class. In vegetation index data, there are 4 classes, namely very low, low, 

high and very high classes of data set. The criterion used to enter data into classes is the ability to measure 

the Eucledian distance from the center of data set or data class. The new data class is the result of 

classification using k-NN algorithms on the vegetation index data as shown in Table 4. 

 

 

   
(a) (b) (c) 

  

 

(d) (e)  

 

Figure 2. New class of SVM historical data classification: (a) NDWI, (b) MNDWI, (c) NDVI, (d) MSAVI, 

and (e) NDBI which are interpolated with ordinary kriging 

 

 

Table 3. The prediction test of VI validation using SVM method  
NDVI MSAVI NDWI MNDWI NDBI 

MSE 0.005 0.018 0.004 0.004 0.003 

MAE 0.048 0.084 0.043 0.043 0.011 

 

 

Table 4. Classification of new data classes using the k-NN algorithm 
Vegetation index Very low Low High Very high 

NDWI <-0.50-<-0.40 >-0.40-<-0.30 >-0.30-<-0.20 >-0.20 

MNDWI <-0.70.-<-0.60 >-0.60-<-0.50 >-0.50-<-0.40 >-0.40 

NDVI <0.10-<0.20 0.20-<0.30 0.3-<0.40 > 0.40 
MSAVI <-1.0 0.20-<0.40 0.40-<0.60 >0.60 

NDBI <-1.0 <-1-<0.80 -0.80-<-0.60 >-0.60 
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The prediction results using the k-NN algorithms on the vegetation index data are interpolated using 

ordinary kriging to see the pattern of data distribution as can be seen in Figure 3. The data groups in the new 

class produced by classification k-NN from historical data are: (a) NDWI, (b) MNDWI, (c) NDVI, (d) 

MSAVI, and (e) NDBI. In accordance with the concept of k-NN algorithm, the experimental results show 

that there is a close Euclidean point distance between the VI training data and the VI testing data. The value 

of the VI classification and prediction results as the new data is determined based on the level of proximity of 

the VI value of the training data to the testing data (similarity values). The Euclidean VI distance is 

determined by calculating the square root of the sum of the squared differences between the predicted VI data 

and the observation point. The closer the Euclidean point distance between the training data and the predicted 

VI data, the more accurate it is, when measured using the MSE and MAE methods, in which they show 

values closer to zero (Table 5). The k-NN algorithm is accurate in predicting and generating new data on 

NDVI, NDWI and MNDWI data with MSE value of 0.001. 

The RF algorithm works by forming a large number of decision trees to produce new data that work 

independently or data that are not correlated with each other. Vegetation index data will be grouped as 

training data and each group will be arranged as a decision tree. From all decision trees, their average will be 

calculated as new data which is then classified according to the specified class. The new data classes 

resulting from classification using the RF algorithm on the vegetation index data are shown in Table 6. 

 

 

   
(a) (b) (c) 

  

 

(d) (e)  

 

Figure 3. New class of k-NN historical data classification: (a) NDWI, (b) MNDWI, (c) NDVI, (d) MSAVI, 

and (e) NDBI extrapolated with ordinary kriging 

 

 

Table 5. The prediction test of VI accuracy using the k-NN method  
NDVI MSAVI NDWI MNDWI NDBI 

MSE 0.001 0.003 0.001 0.001 0.073 

MAE 0.014 0.024 0.012 0.013 0.003 

 

 

Table 6. Classification of new data classes using the RF algorithm 
Vegetation index Very low Low High Very high 

NDWI <-0.40-<-0.35 >-0.35-<-0.30 >-0.30-<-0.25 > -0.25 

MNDWI <-0.40-<-0.35 >-0.35-<-0.30 >-0.30-<-0.25 > -0.25 

NDVI <0.20 - <0.25 <0.25-<0.20 <0.20-<0.15 > 0.15 
MSAVI <-0.70 - <-0.60  <-0.60-<-0.50 <-0.50-<-0.40 > -0.40 

NDBI <0.16 - <0.15  <0.15-<0.14 <0.14-<0.13 > 0.13 

 

 

New classified data are predicted using the RF algorithm using ordinary kriging to see the pattern of 

data distribution as can be seen in Figure 4. Grouping data into new classes which are not observation areas 

or not sampling points, spatial distribution predictions are carried out using the ordinary kriging interpolation 

method as in Figure 4. Groups of data in new classes resulting from classification RF. from historical data 
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are: (a) NDWI, (b) MNDWI, (c) NDVI, (d) MSAVI, and (e) NDBI. RF is an algorithm in the machine 

learning that works based on the concept of ensemble learning. VI data group is represented by a large 

amount of data that always increases and becomes more diverse over time. RF randomly forms nodes by 

selecting the best features and multiple decision trees to produce a more accurate VI prediction value. VI data 

is in the form of numeric which must be separated based on specific features in the form of classes, which the 

more various numerical data be separated, the more nodes will be formed and the more decision trees will be 

generated. The class with the largest number of VI data and the lowest correlation will be used as a predictive 

VI data model. 

The results of the accuracy test of predictive data using RF show a high accuracy as that of other 

machine learning methods as shown in Table 7. RF algorithm is accurate in predicting and generating new 

data on NDBI, NDWI and MNDWI data with MSE value of 0.001. 

The ANN algorithm works with a large number of nodes that act as processors. The first layer is 

called the input processor which plays a role in receiving vegetation index data. It is then calculated and the 

results of the calculation process become input nodes in the next layer. Each node in tier n will be connected 

to many nodes in tier n-1, the input data is in tier n+1. The new data classes resulting from classification 

using the ANN algorithm on the vegetation index data are shown in Table 8. 

 

 

   
(a) (b) (c) 

  

 

(d) (e)  
 

Figure 4. New RF Classification Historical data: (a) NDWI, (b) MNDWI, (c) NDVI, (d) MSAVI, and (e) 

NDBI interpolated with ordinary kriging 

 

 

Table 7. Validation test of VI prediction using the RF method  
NDVI MSAVI NDWI MNDWI NDBI 

MSE 0.002 0.006 0.001 0.001 0.001 

MAE 0.033 0.055 0.031 0.027 0.007 

 

 

Table 8. Classification of new data classes using the ANN algorithm 
Vegetation Index Very Low Low High Very High 

NDWI <-0.20- -0.25 -0.25- -0.30 -0.30- -0.35 >-0.35 

MNDWI <-0.05- -0.10 -0.10- -0.15 -0.15- -0.20 >-0.20 
NDVI <0.20 - 0.25 0.25-0.30 0.30-0.35 >0.35 

MSAVI <-0.40 - -0.30 -0.30- -0.20 -0.20- -0.10 >-0.10 

NDBI <-0.140 - -0.135 -0.135- -0.130 -0.130- -0.125 >-0.125 

 

 

The new data that have been classified using ANN algorithms are predicted using ordinary kriging 

to see the data distribution pattern as seen in Figure 5. The data is grouped into new classes, and the spatial 

pattern of distribution is analyzed using the ordinary kriging method as in Figure 5. The grouping of data into 

new classes resulting from classification using the method ANN from historical data are: (a) NDWI, (b) 

MNDWI, (c) NDVI, (d) MSAVI, and (e) NDBI. ANN is an algorithm that works based on human brain’s 

system, in the form of a network of neurons and dendrites that transmit external stimuli from sensory organs, 
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transformed into electrical signals that travel along the destination nervous system. VI data enters the input 

layer node which each node will transform VI data in the hidden layer by adding a weight factor. Each data 

that has a weight factor is propagated to the next hidden layer node. The results of the prediction data 

accuracy test using ANN show a high accuracy as other machine learning method (Table 9). ANN algorithm 

is accurate in predicting and generating new data on NDBI data with MSE value of 0.004, MNDWI data with 

MSE value of 0.005. 

MARS algorithm works by making an assumption that data input and output are linier to create the 

best classification of vegetation index with a large number of non-linier variables. The new class data from 

the classification result using MARS algorithm on vegetation index can be seen in Table 10.  

 

 

   

(a) (b) (c) 

  

 

(d) (e)  
 

Figure 5. New Class of Historical Data of ANN Classification: (a) NDWI, (b) MNDWI, (c) NDVI, (d) 

MSAVI, and (e) NDBI which is interpolated using ordinary kriging 

 

 

Table 9. Validation test of VI prediction using ANN method  
NDVI MSAVI NDWI MNDWI NDBI 

MSE 0.008 0.024 0.007 0.005 0.004 

MAE 0.070 0.116 0.064 0.056 0.016 

 

 

Table 10. New Class Data from classification result using MARS algorithm 
Vegetation Index Very Low Low High Very High 

NDWI <-0.40- -0.38 -0.38- -0.36 -0.36- -0.34 >-0.34 

MNDWI <-0.35- -0.30 -0.30- -0.25 -0.25- -0.20 >-0.20 

NDVI <0.24 - 0.26 0.26- 0.28 0.28 - 0.30 >0.30 
MSAVI <-0.40 - -0.30 -0.30 - -0.20 -0.20 - -0.10 >-0.10 

NDBI <-0.22 - -0.20 -0.20- -0.18 -0.18- -0.16 >-0.16 

 

 

New data that have been classified using MARS algorithm are then predicted using ordinary kriging 

to find out the data distribution pattern as seen in Figure 6. The data is grouped into new classes, and the 

spatial pattern of distribution is analyzed using the ordinary kriging interpolation method as in Figure 6.  

The grouping of data into new classes resulting from classification using the method MARS from 

historical data are (Figure 6): (a) NDWI, (b) MNDWI, (c) NDVI, (d) MSAVI, and (e) NDBI. The basic idea 

of MARS algorithm is the existence of non-linear data from polynomial regression on VI data. The algorithm 

works by assessing each VI data and making knots, then looking for the intersection of the two linear 

regression line models formed from each VI data point, which the two linear line models will produce new 

candidate data and hereinafter referred to as the data of the results of VI prediction. In the test of accuracy of 

the predicted data compared to the observation data of VI, the results of the analysis are shown in Table 11. 

MARS algorithm is accurate in predicting and generating new data on NDBI data with MSE value of 0.001, 

and NDVI, NDWI and MNDWI with MSE value of 0.004. 
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From Table 2, Table 4, Table 6, and Table 8, it can be seen that the most accurate algorithm in 

predicting new data compared to other algorithms is k-NN as shown in Table 12. k-NN algorithm is accurate 

in predicting and generating new data on NDBI data with MSE value of 0.004, MNDWI with a value of 

0.005 and NDWI with MSE value of 0.007. 

On Table 10, it can be seen that k-NN algorithm in this study shows the best performance compared 

to other algorithms in terms of accuracy results using the MSE and MAE methods. To determine the relief on 

the earth's surface in the study area, a DEM analyses were performed. DEM shows the relief of the earth's 

surface by eliminating objects on the ground such as plants and housings, resulting in a smooth surface 

model. DEM is created using SRTM images to create an elevation model in meters (above the sea level). The 

experimental results show that the study area, the southern coast of Gunungkidul, Yogyakarta is the zone of 

hills of Mount Seribu with elevations of 0-400 meters above the sea level, and the field observation show 15 

coasts that become the sample of coastal elevation observation for coasts that are located 0-40 meters above 

the sea level at the distance of 1 to 2 km from the shoreline. The relationship between vulnerability and 

elevation is shown in Table 13 [30]. 

 

 

   
(a) (b) (c) 

  

 

(d) (e)  
 

Figure 6. New Class of MARS Historical Data Classification: (a) NDWI, (b) MNDWI, (c) NDVI, (d) 

MSAVI, and (e) NDBI extrapolated with ordinary kriging 

 

 

Table 11. The prediction test of VI validation using the MARS method  
NDVI MSAVI NDWI MNDWI NDBI 

MSE 0.004 0.018 0.004 0.004 0.001 

MAE 0.057 0.103 0.052 0.054 0.014 

 

 

Table 12. The most accurate algorithm on the MSE and MAE accuracy tests  
NDVI MSAVI NDWI MNDWI NDBI 

MSE k-NN RF k-NN k-NN MARS 

MAE k-NN k-NN k-NN k-NN k-NN 

 

 

Table 13. Relationship between vulnerability and elevation in meters [30] 
Elevation (meter) Vulnerability 

5.00 or lower High Vulnerability 

5.00 – 10.00 Rather Vulnerability 

10.00 – 15.00 Medium Vulnerability 
15.00 – 20.00 Rather Low Vulnerability 

20.00 – Higher Low Vulnerability 

 

 

Based on visual analysis at the location at the time of observation, calculation of elevation from the 

SRTM image and the results of the best classification (k-NN algorithm), a new class matrix is developed to 

determine the level of tsunami hazard on the built index. The new class of tsunami wave hazard level consists 



                ISSN: 2252-8938 

Int J Artif Intell, Vol. 13, No. 2, June 2024: 1535-1546 

1544 

of 4 scales and is symbolized by color, namely: Very Low (Blue), Low (Green), High (Yellow) and Very 

High (Red). Visual analysis includes 6 categories of built-up land objects. The decision matrix and scale for 

detecting the tsunami wave hazard to built-up land can be seen in Table 14. 

The purpose at this stage is to test the accuracy of the class of vegetation indices and land 

characteristics by comparing observation data and data of the classification of vegetation indices. The test 

show that the User Accuracy value (observation in the field by researchers) is 91.11% on average, the 

Producer Accuracy value (interpretation of classification data of vegetation indices from the remote sensing 

imagery) is 91.51% on average and the Overall Accuracy is 91.12% on average as shown in Table 15.  

The Confusion Matrix test is carried out in 6 observational classes, namely: (i) Vegetation Class 

consisting of forest, shrub and meadow vegetation, (ii) Agriculture Land Class consisting of cultivated 

vegetation such as agriculture and plantation as indicated by the NDVI value. (iii) Man-Made Structure Class 

consisting of built-up lands, residential buildings, social facilities and local economic activities of the 

community as indicated by the NDBI value. (iv) Open Land Class consisting of open land for seasonal crops, 

bushland, grassland, vegetation and mixed land use as indicated by the MSAVI value. (v) Open Water Class 

consisting of rivers, aquaculture and rice fields as indicated by the MNDWI value. (vi) Public Mobility Class 

consisting social and economic activities of the population as indicated by the values of NDBI, NDVI, and 

MNDWI. Each Class is determined by its coordinate position on the map and matched whether it is visually 

the same as that of the location. The results of the comparison between the user accuracy and the producer 

accuracy show that the results of the classification and prediction on the map are the same as those in the 

field (Table 15).  

 

 

Table 14. The decision matrix and scale to detect tsunami wave hazard on a built land 
Visual analysis Very low Low High Very high 

Symbol Blue Green Yellow Red 

Activities of coastal, swamp, river or estuary fisheries  <-0.50-<-0.40 >-0.40-<-0.30 >-0.30-<-0.20 >-0.20 
Activities of irrigated paddy field, agricultural land, or 

other water bodies 

<-0.70.-<-0.60 >-0.60-<-0.50 >-0.50-<-0.40 >-0.40 

Activities of agriculture, plantation, forest and vegetation 
density  

<0.10-<0.20 0.20-<0.30 0.3-<0.40 > 0.40 

Open land, sandy beach, coastal water vegetation <-1.0 0.20-<0.40 0.40-<0.60 >0.60 

Social and economic activities and built land density in 
the form of public infrastructure 

<-1.0 <-1-<0.80 -0.80-<-0.60 >-0.60 

Above sea level elevation (m) [30] > 15.00 > 10.00 - < 15.00 > 5.00 - < 10.00 < 5.00 

 

 

Table 15. Testing of the confusion matrix of the class of vegetation indices between the interpretation of 

vegetation indices prediction using k-NN and the interpretation of vegetation indices classification during the 

observation at the study area 
No Class User Accuracy (%) Producer Accuracy (%) 

1 Vegetation (Coastal Forest, Vegetation Land) (NDVI) 93.33 93.33 

2 Agriculture Land (Cropland, Horticultural Land) (NDVI) 80.00 92.30 
3 Man-made Structure (Bult-up land) (NDBI) 86.66 92.85 

4 Open Land (Range Land, Herbaceous and Mixed Rangeland) (MSAVI) 93.33 100 
5 Water Surfaces and Water Bodies (MNDWI) 93.33 82.35 

6 Public Mobilities (Social and Economic Activity) (NDBI), (NDVI), (MNDWI) 100 88.23 

 Overall Accuracy 91.00 %  

 

 

4. CONCLUSION  

The results show that Sentinel 2A image has a built-up land component and can be extracted using 

VI algorithms of NDWI, MNDWI, NDVI, MSAVI, and NDBI. Each VI can be classified in a new class 

using ML, namely SVM, k-NN, RF, ANN, and MARS. Each VI is given a tsunami wave hazard label with a 

scale of Very Low, Low, High and Very High. Experiments show that the most accurate classification is the 

k-NN algorithm. The results of the accuracy test using the MSE method are 0.001 of NDWI, 0.003 of 

MNDWI, 0.001 of NDVI, 0.001 of MSAVI and 0.073 of NDBI. The MAE accuracy test results are 0.014 of 

NDWI, 0.024 of MNDWI, 0.012 of NDVI, 0.013 of MSAVI and 0.003 of NDBI. The SRTM extraction and 

analysis shows that the research area at the furthest distance of 1 Km from the coastline has an elevation 

between 0–15 M asl so that it is in the High Vulnerability to Medium Vulnerability category. The decision 

matrix for the tsunami hazard resulting from this research has been tested in the field using the Confusion 

Matrix method with a user accuracy of 91.11%, producer accuracy of 92.16% and average overall accuracy 
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of 91%. This research can be developed by adding the variables of daily mean and maximum height of sea 

wave and population density within a radius of 2 km from the coastline. 
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