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 Integration and deployment of big data and business analytics application with 

cloud computing are more attractive as a service and are trending practice. 

This hybrid workflow is rapidly increasing and will trigger a revolution for 

enterprise data handling, information retrieval and computing. This paper 

presents hybrid workflow management framework for big data and multi 

cloud computing systems in a two-step approach. Linear optimization-based 

resource assessment algorithm is planned in the first step. Cluster oriented 

elastic resource allocation and workflow management techniques are 

concentrated in the second step. This paper also focus on performance 

evaluation parameters includes execution time, through put with multi task 

work flow optimization model. The proposed framework is efficiently 

managed the implementation of hybrid workflows by finetuning the 

evaluation attributes and provides improvement in terms of response time an 

average of 6%. 
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1. INTRODUCTION 

Voluminous data processing and pre-processing [1] is required for big data applications has become 

a major challenge in several incipient domains including scientific, space research, gaming [2], astronomy [3] 

and healthcare [4]. The need for real data analytics is recognized by the companies like banks are focused on 

detection of frauds in based on analysing transactional data and smart cities [5] by analysing data from various 

data sources includes traffic cameras, social media, remote sensing data [6], and global positioning system 

(GPS) data. For enterprises the cloud based bigdata applications [7] provides business intelligence [8], business 

strategy adoption and strategies for customer retention. Graphical processing unit (GPUs), tera bytes of storage, 

datacentres and high speed inter connections are demanded for deployment of hybrid cloud and big data 

applications. Hence organizations select the cloud computing as fundamental resource provisioning platform 

[9] to their big data applications. Although each piece of technology has value on its own, many businesses are 

attempting to integrate them to profit from security and on-demand services. Cloud computing is preferred 

technology for enterprises to maintain their transactions on demand, reliable deployment of big data in cloud. 

With the help of cloud computing [10], enterprises can perform better data analysis from the massive amounts 

of structured and unstructured data [11] in their data processing. This feature of the cloud is origin for the 

migration of cloud computing across numerous industries and enterprises. Multi cloud computing systems are 
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beneficial for enterprises to implement when integrated to the large-scale big data resources that organizations 

have used before. Cloud computing also provides platform enables companies to integrate data from numerous 

different heterogeneous sources with different data formats and can produce better visualization of results with 

a more consistent performance [12] to facilitate decision making. 

In multi cloud environment cooperative virtual machine [13] form as cluster as processing streams with 

nearby resources and form as middleware layer to backing cloud services. Clusters has a substantial role in dealing 

out massive data and only uploads processed data to clouds in multi cloud computing systems for improvement 

in service availability. Hybrid workflow management require the development of well-organized resource 

provisioning and forecast techniques which coordinate the execution of hybrid workflows [14] on various clusters. 

 

 

2. RELATED WORK 

Saovapakhiran et al. [15] focus on coordination and controlling of clusters in multi cloud environment. 

The authors concentrate on quality of service (QoS) parameters, how to optimize these parameters during 

integration of clusters to provide cloud services. Latency based stream processing [16] for computational 

oriented work flow scheduling is demonstrated by Udoh and Kotonya [17]. The author described the procedure 

for data aggregation, network synchronization and model prediction of clusters in big data applications. 

Mastroianni et al. [18] illustrated significance of elastic state, dynamic virtual machines consolidation and job 

scheduling in bigdata framework. Shi and Chen [19] illustrates cost time optimization algorithm for deadline 

and budget distribution among clusters. The scheduling of tasks is carried out with parent and child groups 

depending on service request. 

 

 

3. METHODOLOGY 

The cluster cloud model is suitable for hybrid task execution paths, because the watercourse tasks with 

latency sensitivity [20] can benefit from the availability of resources, whereas batch tasks with hefty workloads 

can be handled at powerful computation nodes in the multi cloud. Generally, hybrid workflow framework includes 

three layers namely physical layer, cluster layer and application layer. Physical layer contains servers, internet of 

things (IoT) sensors that provides fundamental resources for multi cloud infrastructure and storage that handles 

computational intense applications [21] includes business intelligence, complex visualization [22], and data 

analytics [23]. Cluster layer facilitates data communication between workflow tasks through hybrid resource 

scheduling algorithm for multi cloud and big data environment. Application layer provides interaction layer for 

users and is responsible for collecting information and performing operations in order to provide service. 

Workflow management is required to estimate resource allocation for workflows based on quality 

attributes to choose efficient virtual machines for task execution with the help of selected scheduling algorithm 

[24]. In proposed work hybrid workflow is a combination of stream and batch tasks. The start and end tasks 

are fake tasks and not considered for hybrid workflow execution. The main aim of hybrid workflow 

management is to provide best cluster-based task execution framework to provide service with minimum 

execution time as in Figure 1. 

Hybrid workflow scheduling management allows seamless cooperation between clusters to select 

execution path based on quality parameters. The resource assessment [25] for the cluster is the optimized 

workflow configuration that is combination of execution time and number of clusters. In the proposed work a 

cluster can be number of virtual machines as a single core. After resource assessment allocation and scheduling 

to tasks of each of a cluster is carried out in the multi cloud environment. Each cluster need to consider 

execution time (T) and cost (C) and need to achieve as (1). 

 

𝑀𝑖𝑛(𝑇, 𝐶) (1) 

 

Workflow configuration is carried out with cluster request arrival rate and minimum execution time 
with a smaller number of resources (section-1), prioritize the cluster based on section-1 attributes then assign 

cluster to the path with the help of cluster-oriented hybrid workflow management algorithm. This approach 

can enhance the efficiency and accuracy of data processing and analysis in scenarios where data exhibits natural 

clusters or groups with different characteristics. 

 

Algorithm: Cluster oriented hybrid workflow management 
Input: Group of Clusters (G) and Available Computational Resources (D) 

Procedure COHWM (G, D) 

Initialize P is set of Paths: P = { } 

Findexecutionpaths(G) 

while clusters do 
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Set cluster to path 

Broadcast message to all clusters 

while cluster proposal arrives do 

Collect proposal from clusters 

Prioritize clusters 

end while 

Broadcast message for cluster allocation 

while clusters parameter arrives do 

Collect parameter message from cluster 

end while 

while cluster disagree proposal do 

for all cloud users do 

Build new cluster 

end for 

  end while 

end while 

End Procedure 

 

 

 
 

Figure 1. Hybrid workflow scheduling 

 

 

4. IMPLEMENTATION AND RESULTS 

A cluster-oriented hybrid workflow algorithm is a type of algorithm that combines elements from 

different workflow and clustering techniques to solve specific problems efficiently. This algorithm is often 

used in data analysis, machine learning, and optimization tasks. The multi-cloud and big data environment with 

hybrid workflow is deployed with Peacock [26] as a self-governing component with Java [27] Spark [28] add-

ins composed with Scala [29]. The proposed work utilised Sparrow [30] combined with code from Eagle [31] 

to serve the big data enterprise trials as in Figure 2 and the characteristics of the workload are described in 

Table 1. 
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Figure 2. Proposed system environment 

 

 

Table 1. Workload characteristics 
Workloads Taskset count Task count Average task duration 

Google 5,04,482 17,80,043 68 

Yahoo 29,262 9,92,497 119 
Cloudera 21,033 5,76,097 102 

 

 

To assess average cluster workloads, the task influx time is distributed with a poisson process and a 

mean task arrival time is estimated based on a predictable average workload percentage, mean task execution 

time, and mean number of tasks per cluster. Due to heterogeneous tasks, the workload also becomes 

heterogeneous during the execution of tasks, and the average execution time is 6% and the execution time is 

illustrated in Figure 3. The proposed work contains 30%, 40%, and 70% light cluster workloads and 100%, 

150%, and 200% heavy cluster workloads. The cumulative distribution of task completion for 10,000 clusters 

is described in Figure 4, (Figure 4(a) Google 300%) illustrates the integrated distribution of tasks termination 

for 10000 clusters and (Figure 4(b) Google-50%) demonstrates that, with a 50% load, sparrow can only do 

2.2% of jobs in less than 100 seconds, compared to 21.6% for Peacock in the same amount of time. As seen in 

Figure 4(c) Google-300%, when under 300% load, Sparrow completes 0.3% of tasks in less than 100 seconds, 

compared to 31.8% for Peacock. The Yahoo! trace has longer task durations, so we check for 1000 seconds. 

At 50% load in Figure 4(d) Yahoo-50%, the percentages for Sparrow and Peacock are in order of 5% and 

23.5% but with Cloudera the 300% and 50% comparision is shown in Figure 4(e) Cloudera 300% and  

Figure 4(f) Cloudera 50% respectively. The workload distribution of a cluster is demonstrated in Figure 5. 

 

 

 
 

Figure 3. Execution time 
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(a) (b) 

  

  
(c) (d) 

  

  
(e) (f) 

 

Figure 4. Integrated distribution of tasks termination for 10000 clusters, (a) Google-300%, (b) Google-50%, 

(c) Yahoo-300%, (d) Yahoo-50%, (e ) Cloudera-300%, and (f) Cloudera-50% 

 

 

 
 

Figure 5. Workload of clusters 
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5. CONCLUSION 

Generally, the big data frameworks split jobs into various parallel processing tasks that are executed 

with small partition of data with low latency. Such frameworks depend on distributed schedulers to handle the 

attached overhead. The existing algorithms not efficiently performed during workload variations with 

heterogeneous jobs. The hybrid workflow management algorithm considers heterogeneous jobs both stream 

and batch provide improvement in terms of execution time an average of 6%. 
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