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 Health insurance fraud is a complex problem that also has a significant 

financial impact. Recently, with the availability of large volumes of data and 

the evolution of computing power, machine learning techniques have 

become the preferred method for fraud detection. However, the main 

difficulty facing researchers in this field is the lack of real data sets and the 

absence of reliable fraud labels. Most published studies use aggregated 

provider-level or simulated data to test fraud detection algorithms, which 

may not deliver accurate results. The present study aims to provide a more 

accurate assessment of fraud detection methods by using real detailed health 

insurance claims data to compare six of the most common supervised 

classification algorithms including neural networks and the use of two 

categorical feature preparation methods. The study was conducted under the 

guidance of insurance experts, who provided the fraud label inference rules 

and reviewed the results. A comprehensive description of the benchmarking 

process and an interpretation of the results are provided in this paper. The 

results show that supervised classification can be used effectively to detect 

health insurance fraud, improving detection accuracy by a factor of 4.2  

(84% recall for a positive rate of 20%). 
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1. INTRODUCTION  

Insurance fraud is a major issue that has important financial and business impacts. Gee and Button 

[1] covering 33 health organizations from 7 countries, the average loss of expenditure caused by fraud 

between 1997 and 2013 is estimated to be 6.19%, which represents, according to the same study, a loss in 

global healthcare expenditure of $455 billion (€350 billion) in 2013 alone. Every insurance company has 

implemented methods and processes to detect fraud that are more or less sophisticated, but most of them lack 

clear visibility on the extent of the issue. Due to the generalization of health coverage in developed countries, 

as well as the rising number of claims and pressing deadlines, manual processing and investigation by 

auditors are no longer efficient. Thus, machine learning techniques have become widely used by insurance 

companies, analyzing large amounts of claims data to identify potential fraud cases. This paper presents a 

comparison of six machine learning algorithms, including neural networks and two categorical feature preparation 

methods, which are implemented and tested on real data from an insurance company operating in Africa. 

Many papers in the literature address the application of machine learning techniques to health 

insurance fraud detection. However, most of the papers we examined focus on provider fraud using 

aggregated claims data. Indeed, it is very difficult to access detailed claims data at the patient level due to the 

constraints of data protection regulations. Bauder and Khoshgoftaar [2] performed a comparative study with 

https://creativecommons.org/licenses/by-sa/4.0/
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supervised, unsupervised, and hybrid machine learning approaches using four performance metrics and class 

imbalance reduction via oversampling and 80-20 under-sampling method. Results show that the 80-20 under 

sampling method demonstrates the best performance across learners. Furthermore, supervised methods such 

as random forests (RF), naive Bayes (NB), gradient boost machine, and deep neural networks (DNN) 

performed better than unsupervised or hybrid methods. In a different study, Bauder and Khoshgoftaar [3] 

conducted an empirical analysis of several unsupervised machine learning methods to detect outliers, 

indicating fraudulent medical providers, using the medicare part B big dataset [4]. They used receiver 

operating characteristic (ROC) curve and area under the curve (AUC) metrics to evaluate algorithms’ 

performance. Results show a relatively good discriminative performance of the local outlier factor (LOF) [5] 

with AUC equal to 0.63. However, the AUC measure is not suitable for evaluating algorithm performance in 

the case of highly unbalanced datasets. On the other hand, the AUC precision-recall cure provides a better 

assessment, as it is sensitive to the minority class (cases of fraud). 

Other types of algorithms have been proposed in the literature to detect health insurance fraud, each 

focusing on a specific type of fraud. Xu et al. [6] apply the PageRank algorithm to the Medicare-B dataset [7] 

to identify medical providers who prescribed significantly different medical procedures than other providers 

with the same specialties. Full Bayesian inference using probabilistic programming was used in [8] to detect 

outliers in Medicare datasets by generating payment probabilities based on provider specialties. The 

researchers used ensemble methods combining clustering, association rule mining, and support vector 

machines (SVM) to detect the most frequent and outlier patterns in claims data [9], [10]. 

The main difficulty facing researchers in the field of health insurance fraud is the lack of real data 

sets and the absence of reliable fraud labels. Indeed, most studies in the literature use aggregated data at the 

provider level [2], [3], [11], [12] or simulated data [13]. The current study provides a detailed comparison of 

the six most common supervised machine learning algorithms applied to real detailed health insurance claims 

data. Fraud labels were inferred using rules proposed by domain experts and based on reimbursement 

decisions, which are available and fully reliable. These labels capture auditor knowledge that can be applied 

to new, larger-scale data using machine learning algorithms to help identify health insurance abuse. The 

results were also reviewed by insurance auditors. The contributions of this paper are: i) providing a detailed 

comparison of six machine learning algorithms for fraud detection applied on a real insurance dataset where 

the results were validated by domain experts; ii) showing that supervised classification algorithms can 

achieve good accuracy on the basis of fraud labels deduced from auditors’ historical reimbursement 

decisions; and iii) offering a comparison of categorical embedding and one-hot encoding data preparation 

methods. 

This paper is structured as follows: section 2 presents a high-level description of the fraud detection 

process and highlights some specific features of health insurance datasets, followed by an overview of the 

main machine learning algorithms used for fraud detection. In section 3, a more detailed description of the 

data used for testing, data preparation methods, algorithm hyperparameter tuning process, and evaluation 

metrics is provided. The findings of the benchmark tests and their analysis in terms of business interpretation 

are presented in section 4. Section 5 concludes by identifying unresolved issues not covered in this study and 

prospects for future research. 

 

 

2. HEALTH INSURANCE FRAUD DETECTION PROCESS 

The fraud detection process in the health insurance domain relies on the analysis of historical claims 

to identify unusual patterns or anomalies and generate scores for each instance to indicate the likelihood of 

fraud. Knowing that final confirmation of fraud can only be done with a further investigation by domain 

experts, the main goal of the fraud detection process is to limit the scope of work for investigators so that 

they can focus on the most likely fraud cases. The schema in Figure 1 is a high-level representation of the 

fraud detection process. 

Fraud in the health insurance domain comes in different types depending on the fraudster’s role and 

the data that was altered. To our knowledge, there is no general fraud detection method that can detect all 

fraud types, so targeting a specific type in advance is required to prepare the data accordingly. For example, 

if the goal is to detect fraud committed by service providers, then the data should be aggregated at provider 

levels and specify fraud labels by the provider. 

Reliable fraud labels are generally not available in insurance claims datasets. Evidently, labels are 

required for the training phase of classification algorithms, but they are also required to evaluate and compare 

the performance of unsupervised anomaly detection algorithms. The predominance of categorical attributes 

that are generally very correlated (diagnostic, provider specialty, patient gender, and treatment) is another 

characteristic of health insurance datasets. On the other side, most of the common machine learning 

algorithms require numerical inputs, so it is necessary to transform categorical attributes accordingly.  
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Many methods are available to achieve this goal, the most common being one-hot encoding and 

ordinal encoding when the order of class labels is relevant. For neural networks, it has been proven that an 

embedding layer to process input categorical features gives better results than one-hot encoding [14]. Both 

methods, one-hot encoding, and categorical embedding, are tested and compared in the present study. 

Finally, the tests conducted in this benchmark show that the depth of the historical data and the splitting 

method-random or based on a cut-off date-used during the training phase of the classification methods can 

greatly influence the accuracy of the results. Indeed, business rules, prices and fraudsters’ practices evolve 

over time, so a long data history does not necessarily improve fraud detection, as it is irrelevant to mix 

different data related to completely different contexts. 

 

 

 
 

Figure 1. High-level insurance fraud detection process 

 

 

2.1.  Fraud detection algorithms 

Fraud detection is addressed by two families of machine learning algorithms: unsupervised anomaly 

detection and classification. Unsupervised models look for the underlying structure and patterns in the data to 

identify anomalies. They rely on assumptions to define what an anomaly is by using different criteria such as 

distances, densities, and probabilities. On the other hand, classification models rely only on the fraud labels 

to support the training process and make predictions. Evaluating the performance of both types of algorithms: 

unsupervised and classification, requires fraud labels, which in most cases are not available or are not 

reliable. The main algorithms in each family are presented in the rest of this section. 

 

2.1.1.  Unsupervised anomaly detection 

The goal of unsupervised anomaly detection is to calculate a score for each data instance to indicate 

the likelihood of fraud. Anomaly scores reflect specific criteria used by the algorithm to define anomalous 

instances. To extract predicted labels (anomaly or normal), a threshold is used and compared to generated 

scores. However, it is not easy to interpret scores and choose the right threshold to use, as it is not always 

consistent across datasets and depends on the normalization method applied to data.  

Many algorithms for unsupervised anomaly detection have been proposed in the literature. Many 

reviews [6], [8], [15] provide a description of unsupervised anomaly detection algorithms and grouping them 

into the following main categories: i) nearest neighbors based, ii) tree based, iii) clustering based,  

iv) statistical, v) probability based, vi) subspace based, and vii) deep learning based. Nearest neighbors based 

methods: anomaly detection based on nearest neighbors relies on the assumption that anomalies are isolated 

in the dataset according to a certain distance metric, and will therefore have fewer instances in their 

neighborhood than normal instances. Examples of algorithms based on nearest neighbors include the k-

nearest neighbors (KNN) anomaly detection method, which defines the score of an anomaly as the average of 

the distances to the KNN, the LOF method [5], which uses relative density to calculate the anomaly score, 

and numerous other variants of LOF that have been proposed to improve its performance and efficiency for 

specific types of dataset [8]. 

Tree based methods: the isolation forest algorithm proposed in [16] introduces a new family of tree-

based anomaly detection. It assumes that anomalies can be easily isolated using a randomly constructed tree, 

called an isolation tree, fitted to the data. This means that a reduced number of edges in the isolation tree will 

be traversed to reach the anomalous instances. Consequently, the isolation forest algorithm defines an 

anomaly score that is inversely correlated with the average path length to reach an instance in the isolation 

tree. Numerous variants have been proposed to extend isolation forest, including extended isolation forest 

[17] and k-means-based isolation forest [18].  
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Clustering based methods: clustering based anomaly detection defines anomalies as instances that 

do not belong to any of the identified clusters, or are far from them [8]. This is only possible if the clustering 

algorithm generates flexible membership scores or allows certain instances (i.e. anomalies) to belong to no 

cluster at all. Known clustering algorithms can be used for this purpose, but they may not be effective in 

identifying anomalies, as they are not designed for anomaly detection in the first place. The anomaly 

detection process presented in [7] uses a variant of k-means clustering that generates dynamic clusters and 

then identifies anomalies using minimum spanning trees (MST). Other variants of k-means have been 

proposed to improve its robustness and perform both clustering and anomaly detection tasks, for example: k-

means [9] and k-means clustering with outlier removal (KMOR) [10]. The cluster-based local outlier factor 

(CBLOF) [19] is a local anomaly detection method that can be based on any clustering algorithm. CBLOF 

distinguishes between large and small clusters to define anomaly scores combining cluster size and distances 

from clusters centers. 

Statistical methods: statistical anomaly detection assumes that the data follow an underlying 

probability distribution, and that anomalies lie in areas of low probability. Parametric statistical methods infer 

the parameters of the data distribution, then generate anomaly scores using the probability density function or 

a statistical test. Gaussian model is an example of statistical anomaly detection, which assume that the data is 

generated from a Gaussian distribution and uses maximum likelihood estimation (MLE) to infer its mean and 

variance. Any instance that deviates from the mean beyond a predefined threshold is considered an anomaly. 

Non-parametric statistical methods do not assume a specific distribution for the data. These methods use 

histograms or kernel density estimation to estimate the probability density function and generate anomaly 

scores. An example of a non-parametric statistical algorithm for anomaly detection is histogram based outlier 

score (HBOS) [20], which uses histograms for each feature of the input data to estimate the density under the 

assumption that they are statistically independent. HBOS has the advantage of supporting mixed (numerical 

and categorical) data, and is highly efficient for large datasets. 

Subspace based methods: subspace-based anomaly detection assumes that there is a subspace of 

data in which anomalies are more clearly identified than normal cases. Anomaly detection process therefore 

involves first reducing the dimensionality of the data, then identifying anomalies in the resulting subspace. 

Shyu et al. [21] proposes an anomaly detection method using robust principal component analysis to reduce 

the dimensionality of the data, and taking into account only the scores of the major and minor components. 

For high-dimensional data, priority is given to the efficiency of anomaly detection and to overcoming the 

problems associated with the curse of dimensionality [22]. The projection indexed nearest-neighbours 

(PINN) algorithm [23] uses distance-preserving random projection to find the nearest neighbors in a pre-

processing step, then calculates LOF score using the exact distances in the original space. Locality-sensitive 

outlier detection (LSOD) [24] uses locality-sensitive hashing as a pre-processing step to rank the dataset 

instances before performing an approximate nearest-neighbor search to calculate the anomaly score. 

Probability based methods: probability based anomaly detection assumes a generative model of the 

data and uses probability inference techniques to learn its parameters. Like statistical methods, probability 

based anomaly detection defines anomalies as instances having a low probability according to the assumed 

model. Examples of this approach are presented in [11], [13]. 

Deep learning based methods: deep learning methods have many applications in the field of 

anomaly detection. They can be used for feature extraction, feature representation learning and end-to-end 

anomaly score learning [25]. Replicator neural networks (RNN) [26] is the earliest anomaly detection deep 

learning method. The RNN concept involves learning a representation of the data using a three hidden-layer 

perceptron neural network that is trained to reproduce the input by minimizing the reconstruction error. The 

RNN assumes that anomalies will have a larger reconstruction error than normal cases. The same approach is 

proposed by autoencoders [27], which use a different neural network structure to learn a representation of the data 

in a latent space of lower dimension. Like RNNs, autoencoders use the reconstruction error as an anomaly score. 

Other types of neural network have been proposed for anomaly detection; a detailed review is available in [25]. 

 

2.1.2.  Classification 

Fraud detection can be considered a special case of binary classification with a very unbalanced 

distribution. Therefore, using classification algorithms for fraud detection requires additional data preparation 

and hyperparameter tuning to balance the dataset using oversampling, undersampling or weighted cost 

methods to put more costs on anomaly cases. However, the main limitation of classification for anomaly 

detection is the lack of reliable labels, which leads to a high rate of false negatives in the dataset. In addition, 

classification learns to identify anomalies on the basis of historical cases in the training set, so its ability to 

detect totally new fraud patterns will be very limited. Classification algorithms are the subject of extensive 

research in the literature. In the current benchmark, tests are limited to five algorithms belonging to five 
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different classification families: logistic regression (LR) [28], extreme gradient boosting (XGBoost) [29], RF 

[30], SVM [31], and neural networks [32]. 

 

 

3. CASE STUDY PRESENTATION 

This paper presents a real case study on fraud detection in a health insurance company operating in 

many countries, which is referred to as “the insurance” in the rest of the paper. Health insurance abuse is a 

major concern for the insurance. Moreover, it has no visibility on the extent of the problem and related 

losses. The audit department is responsible for controlling and checking claims validity rules and 

investigating any potential fraud cases. Auditors work when necessary to identify potential fraud cases, 

which is a very challenging task considering that the number of submitted claims can be more than 20,000 

per month in one country alone. The goal of this study was to provide auditors with a solution that will 

identify most likely fraud and abuse cases to limit the scope of work and increase efficiency. Six 

classification methods were compared in this benchmark: LR [28], XGBoost [29], RF [30], SVM classification 

[31], neural network with one-hot encoding (NN-OHE), and neural network with entity embedding (NN-EE) 

[14], [32]. Implementation is based on scikit-learn [33], XGBoost, and PyTorch [34] libraries. 

 

3.1.  Data preparation 

The data corresponds to the history of patient claims and reimbursement decisions for two years 

(2018 and 2019) in a country where the insurance operates with an average number of claims per month 

equal to 17,000. Each data instance corresponds to an individual claim and is composed of categorical, 

numerical, and date features. Table 1 lists all features that were used for fraud detection. 

 

3.1.1. Features transformation 

Different transformation methods have been applied to the data, depending on the type of features. 

For categorical features, the one-shot encoding transformation is used, and entity embedding for the neural 

network algorithm. For numeric features, the standard scaling transformation is used. Date features are extracted 

with the month as a categorical feature and the day of the year as a numerical feature, after being divided by 366 

to normalize the values. A summary of transformation methods for each feature is illustrated in Table 2. 

 

 

Table 1. Claims features used for fraud detection 
Attribute Type No of classes/range 

Pathology code Categorical 1369 

Medical intervention code Categorical 635 

Health provider specialization Categorical 17 
Patient relationship with subscriber Categorical 5 

Reimbursement type Categorical 3 

Medical intervention date Date 5-Jan-2018/31-Dec-2019 
Claimed amount Numerical 0.01/27,800,192 

Reimbursed amount Numerical 0.01/27,800,192 

 

 

Table 2. Features’ transformation methods 
Attribute Transformation method 

Pathology code One-hot encoding, entity embedding 

Medical intervention code One-hot encoding, entity embedding 
Health provider specialization One-hot encoding, entity embedding 

Patient relationship with subscriber One-hot encoding, entity embedding 

Reimbursement type One-hot encoding, entity embedding 
Medical intervention date One-hot encoding, entity embedding 

Claimed amount Normalization by dividing by 366 

Reimbursed amount Standard scaling 

 

 

3.1.2. Entity embedding for neural networks 

Entity embedding is a special neural network layer that uses different weights for each class of input 

categorical feature. The goal is to transform categorical features into relevant continuous numerical features. 

Entity embedding was successfully tested in many cases and is proven to be better than one-hot encoding, 

which is not adapted for neural networks [14]. 

Figure 2 shows the neural network model used for the benchmark tests. It includes an embedding 

layer for each categorical feature to map classes to weight vectors. The outputs of embedding layers are 

concatenated with transformed numerical features to be processed by three fully connected neural network 



                ISSN: 2252-8938 

Int J Artif Intell, Vol. 13, No. 2, June 2024: 1925-1934 

1930 

layers using the rectified linear unit (ReLU) activation function. The final layer of the neural network returns 

a numerical value which is used to generate scores (probabilities) and predictions using the sigmoid function, 

and to calculate classification metrics such as mean accuracy and the precision-recall curve. The same output 

is used to calculate loss with the binary cross-entropy method using different weights for normal and positive 

classes (3 times weight ratio) to compensate for dataset imbalance. In the present study, the same neural 

network illustrated in Figure 2 is tested but without entity embedding in order to assess the effect of the 

categorical feature transformation method on classification performance. For this second neural network, 

categorical features are transformed using the one-hot encoding method. 

Figures 3(a) and (b) shows the evolution of training and validation loss per epoch for the neural 

network with feature embedding and one-hot encoding. In both cases, the loss decreases during the training 

and validation phases, and the minimum loss in the validation data is reached after only 25 epochs. Training 

loss continues to decrease after 25 epochs, but this is due to model overfitting and brings no benefit to 

generalization. Further tests were carried out with different neural network configurations, but the use of more 

than 8 nodes per layer resulted in an over-fitting of the training dataset with no benefit to test performance. 

 

 

 
 

Figure 2. Classification neural network with entity embedding layers 

 

 

  
(a) (b) 

 

Figure 3. Neural networks training loss curves for (a) one hot encoding and (b) entity embedding 
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3.2.  Algorithms hyperparameter tuning 

The hyperparameter tuning step aims to set the optimal parameters for each tested algorithm. It was 

performed with a 10-fold cross-validation process using only the training dataset. Different hyperparameter 

values were tested for each algorithm, then the best values were chosen using the Matthews correlation 

coefficient (MCC), which represents a compromise between precision and recall, and produces a more 

informative and accurate score in the evaluation of binary classifications than precision and F1 score [35]. To 

address the imbalance between normal and anomaly classes, a higher cost has been assigned to anomaly 

instances in the algorithm parameters. Table 3 presents the optimal hyperparameters after the tuning. 

 

 

Table 3. Optimal hyperparameters and MCC scores after cross-validation 
Model MCC score Best parameter values 

Parameter Value 

LR 0.167 Inverse of regularization strength 
Classes weights 

Maximum number of iterations 

0.1 
Balanced 

10000 

XGBoost 0.361 Boosting learning rate 
Maximum tree depth for base learners 

Number of boosting rounds 

Balancing of positive and negative weights 

0.3 
5 

200 

3 
RF 0.282 Weights associated with classes 

The function to measure the quality of a split 
The maximum depth of the tree 

The minimum number of samples required to be at a leaf node 

Balanced 

Entropy 
None 

1 

SVM 0.231 Inverse of regularization strength 
Classes weights 

kernel type to be used in the algorithm 

1 
Balanced 

RBF 

 

 

3.3.  Evaluation metrics 

In order to compare algorithm performance on the test dataset, the MCC metric calculated during 

the hyperparameter setting stage cannot be used, as it depends on the default decision function of each 

algorithm, which may use different thresholds corresponding to different positive rates. The commonly used 

evaluation metric for classification is the ROC curve showing the performance of a classification model at all 

thresholds and the area under the ROC curve [36]. However, the AUC can produce inaccurate results if the 

dataset is unbalanced, particularly when the main objective is to predict frauds which constitute the minority 

class. In this benchmark, the evaluation metric used is the average precision score based on the precision-

recall curve [36], which is better suited to anomaly detection algorithms. 

 

 

4. RESULTS AND DISCUSSION 

Figure 4 shows the precision-recall curves and average precision for the algorithms tested. The 

results show good performance of XGBoost and RF algorithms with similar average precision, with values at 

0.37 and 0.32 respectively. Neural network algorithms with one-hot encoding and with entity embedding 

have similar average precisions at 0.21 and 0.18 respectively. SVM with radial basis function kernel (RBF) 

algorithm has 0.18 average precision and LR has the lowest performance with 0.13 average precision. One 

can notice in precision-recall curves that some algorithms have the same behavior: RF and XGBoost both 

based on decision trees have very similar curves, and neural networks with either one-hot encoding or with 

entity embedding have almost identical curves. On the other hand, the results show that entity embedding 

transformation doesn’t provide any benefit for the neural network algorithm in our case. Indeed, using the 

one-hot encoding transformation, the same average precision was achieved. 

 

4.1.  Results interpretation from a business perspective 

From a business perspective, the fraud detection solution is a tool to prioritize investigators’ efforts 

to focus on the most suspicious cases. The insurance has a time service level agreement to process claims but 

also has a limited capacity to review more than 20,000 claims per month. Auditors need an indicator that will 

aid them in deciding which claims to review while ensuring a high accuracy. Therefore, the auditors would 

be more interested in the performance of fraud detection within the top N potential fraud cases that they can 

investigate. This can be measured by the Recall@N evaluation metric which is one of the metrics used to 

evaluate recommender systems [37]. Recall@N calculates the recall considering only the N instances with 

highest scores, it represents the fraction of real fraud cases in the top results returned by anomaly detection 

algorithm. In the current study, recall at a specific positive rate: Recall@PR is used instead of Recall@N. For 
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example, if the number of instances in the test dataset is 40,000, then a positive rate of 0.2 means that the 

algorithm will make a positive prediction for the top 20% instances (N=8,000) with the highest scores. 

If fraud cases are randomly predicted, the Recall@PR should be equal to the positive rate. 

Consequently, the gain obtained by using the fraud detection algorithm can be defined as the ratio between 

the Recall@PR and the positive rate. 

 

𝐺𝑎𝑖𝑛 =
𝑅𝑒𝑐𝑎𝑙𝑙@𝑃𝑅

𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒
 

 

The insurance can choose the minimum number of claims to be reviewed monthly to achieve a 

specific target gain. As the insurance auditors examine more claims, they will detect more cases of fraud, and 

the gain will improve. However, the false-positive rate will also be higher, resulting in lower precision.  

Table 4 shows the performance metrics and gains for specific false positive rates for each algorithm. 

XGBoost shows the best results overall. At 20% positive rate, XGBoost achieves a gain of 4.20, this means 

that the insurance improves fraud detection by a factor of 4.2 and detects 84% of fraud cases by investigating 

only 20% of claims with the highest scores. 

 

 

 
 

Figure 4. Precision-recall curves for tested algorithms 

 

 

Table 4. Algorithms’ performance metrics at specific detection rates 
  LR XGBoost RF SVM NN-OHE NN-EE 

5% positive rate Gain 4.80 8.80 8.00 6.60 6.60 6.00 

Recall 0.24 0.44 0.40 0.33 0.33 0.30 

Precision 0.19 0.34 0.31 0.25 0.25 0.23 
MCC 0.18 0.36 0.33 0.25 0.25 0.23 

F1 0.21 0.38 0.35 0.28 0.28 0.26 

10% positive rate Gain 3.90 5.70 5.40 4.90 4.70 4.60 
Recall 0.39 0.57 0.54 0.49 0.47 0.46 

Precision 0.15 0.22 0.22 0.19 0.18 0.17 

MCC 0.19 0.31 0.31 0.26 0.25 0.24 
F1 0.22 0.32 0.31 0.27 0.26 0.25 

15% positive rate Gain 3.93 4.67 4.60 4.53 4.40 4.40 

Recall 0.59 0.70 0.69 0.68 0.66 0.66 
Precision 0.11 0.13 0.14 0.13 0.12 0.12 

MCC 0.20 0.25 0.25 0.24 0.23 0.23 

F1 0.19 0.22 0.23 0.22 0.21 0.21 
20% positive rate Gain 4.00 4.20 4.00 4.20 4.10 4.10 

Recall 0.80 0.84 0.80 0.84 0.82 0.82 

Precision 0.08 0.08 0.09 0.08 0.08 0.08 
MCC 0.16 0.18 0.18 0.18 0.17 0.17 

F1 0.14 0.15 0.15 0.15 0.14 0.14 
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5. CONCLUSION 

The current study shows encouraging results for supervised machine learning methods in fraud 

detection. Indeed, the XGBoost algorithm achieved a recall of 84% for a positivity rate of 20%. This 

represents an improvement of the capacity of the insurance to detect fraud by a factor of 4.2 (gain=4.2). 

However, the processing of categorical variables in the current study was limited to two methods: one-hot 

encoding and entity embedding, which did not provide all the valuable information that could improve the 

accuracy and interpretability of fraud detection. One-hot encoding and entity embedding methods are not 

sufficient to prepare categorical variables for fraud detection and need to be complemented by other 

techniques to enrich the input data for machine learning algorithms. In future work, the focus will be on 

ensemble methods combining dimension reduction techniques and a probabilistic approach that are suitable 

for both numerical and categorical features to address aspects that have not been covered in the current study, 

including: i) detection of relationships and hidden patterns in categorical application variables, such as 

associations and correlations; ii) analysis of temporal (frequency of services) and spatial information on 

requests (location of patients and service providers); iii) correlation of claims submitted by patients belonging 

to the same groups (family or company); and iv) the business interpretation of fraud detection results based 

on a combined visual representation of categorical and numerical attributes. 
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