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ABSTRACT

In general, uncapacitated exam timetabling is conducted manually, which can
be time-consuming. Many studies aim to automate and optimize uncapacitated
exam timetabling. However, pinpointing the most efficient algorithm is chal-
lenging since most studies assert that their algorithms surpass previous ones. To
identify the optimal algorithm, this research evaluates the performance of four
algorithms: Hill climbing (HC), simulated annealing (SA), great deluge (GD),
and tabu search (TS) in addressing the exam timetabling problem. The Kempe
chain operator’s influence on optimization solutions is also examined. A simple
random method is employed to select the low-level heuristic (LLH). The Carter
(Toronto) dataset served as the test material, with each algorithm undergoing
200,000 iterations for comparison. The results indicate that the TS algorithm
is superior, providing the best solution in 13 instances. The use of a tabu list
enhanced the search process’s efficiency by preventing redundant modifications.
The Kempe chain LLH exhibited a tendency towards achieving better solutions.
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1. INTRODUCTION
The uncapacitated exam timetabling is a prevalent issue encountered by educational institutions and

private or state companies. This problem falls within the realm of optimization, which aims to find solutions that
take into account limitations or constraints. Specifically, optimization seeks to identify the optimal solution by
minimizing an objective function [1], [2]. In previous studies [3]-[7], a variety of algorithms, especially single-
based metaheuristic algorithms, have been used to address uncapacitated exam timetabling problems. Many
of these studies claim that the developed algorithms outperform others. However, the challenge lies in the fact
that each study utilizes different comparative algorithms, making it challenging to determine which algorithm
performs the best. Moreover, there are several factors that can impact the results of these studies, including the
utilization and selection methods of low-level heuristics (LLH) or neighborhood operators.

To address this issue, this study employs a variety of algorithms and compares their performance in
order to determine the most effective solution of metaheuristic single-based solution in hyper heuristic method
to solve exam timetabling. The algorithms that will be compared include hill climbing (HC), simulated an-
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nealing (SA), great deluge (GD), and tabu search (TS). The HC algorithm is inspired by the strategies used
by mountain climbers in finding the most efficient path to their destination [8]. The SA algorithm is a meta-
heuristic technique inspired by the annealing process, and modified to find global optimum solutions [9], [10].
The GD algorithm is a local search procedure that has been widely used in research to solve exam timetabling
problems at universities [11], [12]. The TS algorithm is another local search metaheuristic that is commonly
used to solve combinatorial optimization problems [13], [14]. These algorithms will be evaluated in terms of
their cost penalty values, in order to identify the algorithm that yields the most optimal solution for the exam
timetabling problem. Additionally, this research also investigates the Kempe chain LLH, which has produced
great results in previous studies [15].

The research will be presented in several sections. Section 2 will include a literature review,
section 3 will outline the methodology, and section 4 will present the results and discussion. Finally, section 5
will provide a conclusion, allowing readers to gain a comprehensive understanding of the research process and
findings.

2. DATASET CARTER
This research utilizes the Carter dataset as the primary source of data. The Carter dataset is well-

known for its stability and its variables that are representative of real-world scenarios [16]. The characteristics
of the Carter dataset can be seen in Table 1.

Table 1. Dataset Carter
Dataset Timeslots Exams Students Conflict Density
Car91 35 682 16,925 0.13
Car92 32 543 18,419 0.14
Ear83 24 190 1,125 0.27
Hec92 18 81 2,823 0.42
Kfu93 20 461 5,349 0.06
Pur93 42 2,419 30,029 0.03
Rye92 23 486 11,483 0.07
Sta83 13 139 611 0.47
Tre92 23 261 4,360 0.18
Uta92 35 622 21,266 0.13
Ute92 10 184 2,749 0.08
Yor83 21 181 941 0.29

The examination timetabling problem in the Carter dataset involves allocating a set of exams to spe-
cific time slots while adhering to the constraints that are present. These constraints can be divided into two
categories: soft constraints and hard constraints. Soft constraints refer to requirements such as ensuring that
the allocated exam time is sufficient for students to have adequate time for studying and making improvements.
Hard constraints, on the other hand, refer to restrictions that must be strictly followed, such as ensuring that no
student is scheduled to take more than one exam during the same time period [17].

Hard constraints are constraints that must be met, while soft constraints are met as much as possible.
When the hard constraint has been met, then the objective function is used to reduce the penalty value. The
penalty value is obtained from how much the soft constraint is violated. The objective function formula to
calculate the penalty is (1):

fitness =
(
∑4

s=0 ωs ×Ns)

S
(1)

The distance between the two timeslots is calculated with the weight ωs = 2s. While Ns is a repre-
sentation of the number of students who violate the soft constraint. And S is the total number of students in the
schedule. For example, a student has 2 exams a and b, where the 2 exams are separated by 3 timeslots so that
the weight of the penalty is 21, while Ns represents the number of students who violated the soft constraints on
the two exams and S is the total of all students.
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3. METHOD
This section outlines the procedures implemented to generate and improve solutions through the use of

HC, SA, GD, and TS algorithms. It discusses the methods for forming the initial solution, developing the local
landscape heuristic, and the algorithms utilized in the study. Each algorithm employed in this study contributes
to the optimization process by providing distinct strategies for improving solutions.

3.1. Formation of initial solution
This study used the saturation degree with backtracking algorithm to produce a feasible initial solu-

tion. The saturation degree determines the timeslot in the exam by prioritizing the exam that has the lowest
probability of entering the timeslot. If there is no proper timeslot for an exam, a backtracking algorithm will be
performed.

3.2. Hyper-heuristic
The hyper-heuristic method is composed of two main components: high-level heuristic (HLH) and

LLH [18], [19]. The HLH component comprises two subcomponents: LLH selection and move acceptance.
The algorithms compared in this study focus on the move acceptance component. For LLH selection, a random
method is employed to select LLH randomly in each iteration. In the LLH component, six distinct LLHs are
utilized, which will be discussed in detail in section 3.2.

3.3. Low level heuristic
In this study, a variety of LLH operators are utilized as components that undergo modification in each

iteration. These operators are crucial in the optimization process and contribute significantly to the overall
performance of the algorithm. The operators employed include:

– Random move: select an exam at random, then move the exam randomly from the original timeslot to
another timeslot.

– Random swap two: choose two exams at random, then swap the timeslots of the two exams.
– Random move two: select two exams at random, then move the two exams randomly from the original

timeslot to another timeslot.
– Random swap three: randomly pick three exams, and then exchange the timeslots assigned to those

exams. For example, exams a, b, c are selected randomly, then exam b timeslot is changed to exam
a timeslot, exam c timeslot is changed to exam b timeslot, and exam a timeslot is changed to exam c
timeslot.

– Random move three: the same as random move two, but using three random exams.
– Kempe chain: two sets of exams that do not conflict with each other, the timeslots are swapped. In a

study conducted by [20], concluded that Kempe Chain is the right choice to optimize the solution of the
examination timetabling problem.

3.4. Implementation of hill climbing algorithm
The HC algorithm, a local search technique, follows an iterative approach. It starts by selecting an

initial population from the problem’s solution space and then iteratively modifies one element at a time to
create new solutions. If a new solution is superior to the current one, it is accepted, and this iterative process
continues until further improvements are not possible [8]. In this study, the general HC algorithm is employed,
commencing with a randomly generated move and utilizing local search heuristics (LSHs) to discover new
solutions. The HC algorithm maintains the best solution found throughout its execution, which is set to a total of
200,000 iterations while utilizing the random move operator. The pseudo-code for this study’s implementation
can be found in Algorithm 1.

3.5. Implementation of the simulated annealing algorithm
SA is a meta-heuristic search technique inspired by the process of heating a solid to its melting point

and then cooling it [21]. The purpose of this method is to efficiently find the optimum solution without spending
excessive time, and its ability to avoid local optimality is considered an advantage [20], [22]. In this study, SA
is compared with different combinations of LSHs. The first combination, referred to as SA1, utilizes all LLHs
except for the Kempe Chain operator. In contrast, the second combination, referred to as SA2, uses only
three LLHs: random move, random swap two, and Kempe Chain operators. This variation is implemented to
investigate the impact of the Kempe Chain operator, which is known to be time-consuming. Consequently, the
second combination relies on just two simpler operators. The initial temperature is set to 10, and the cooling
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rate is set to 0.0000115. The iteration continues until the temperature drops below 1. These parameter values
have been determined as optimal to ensure approximately 200,000 iterations, facilitating a fair comparison
against other algorithms. The pseudo-code for implementing this algorithm can be found in Algorithm 2.

Algorithm 1: Hill Climbing
bestScoreHc=intialScore;
hcSolution=intialSolution;
counter=0;
maxCounter=200000;
while counter < maxcounter do

generate new solution with LLH Random Move;
newScore=evaluate(newSolution);
if newScore < bestScore then

hcSolution=newSolution;
bestScoreHc=newScore;

end
counter++;

end

Algorithm 2: Simulated Annealing
currentSolution=initialSolution;
bestSolution=intialSolution;
while temp > 1 do

newSolution=generateNewSolution(LLH);
d=evaluate(newSolution) - evaluate(currentSolution);
if d > 0 then

currentSolution=newSolution;
else if random[0, 1 < exp(−d/T0) then

currentSolution=newSolution;
end
if evaluate(currentSolution) < evaluate(bestSolution) then

bestSolution=currentSolution;
end
updateTemp();

end

3.6. Great deluge algorithm implementation

The GD algorithm, introduced by Dueck in 1993, is a real-world applicable local search technique that
allows slight degradation of solution quality to reach new maxima. It leverages the concept of descending a
hill temporarily to avoid rain and thereby reach greater heights efficiently [23]. In this study, the GD algorithm
from [24] is modified to include the Kempe Chain operator in every iteration. Additionally, a count variable
triggers a reheating procedure if there’s no improvement in the solution for 1,000 iterations, incrementing until
reaching 50 iterations, at which point the reheating procedure is activated, involving the random move and
random swap operators applied to the current best solution, as detailed in Algorithm 3.

3.7. Implementation of the tabu search algorithm

The TS algorithm, a heuristic method, employs short-term memory to prevent getting trapped in local
optima. It utilizes a tabu list to store recently evaluated solutions, and during each optimization iteration, the
solution is compared to the tabu list. If it’s already in the list, it’s not reevaluated in the next iteration. When
there are no new solutions outside the tabu list, the best obtained value becomes the actual solution, enabling
the algorithm to escape local optima and enhance the chances of finding the global optimum [25]. In this study,
we use the TS algorithm, which is based on the method described in [24]. The algorithm employs the use of
a tabu list to store recently evaluated solutions. At each iteration, the solution to be evaluated is first matched
with the contents of the tabu list. If the solution is already on the tabu list, it is not considered in the next
iteration. If all remaining solutions are members of the taboo list, the best solution found so far is considered
as the actual solution. The pseudocode for this algorithm can be found in Algorithm 4. In this study, the
maximum taboo list size is set to 10 solutions and all LLH operators are used, with a total of 200,000 iterations.
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Algorithm 3: Great Deluge Pseudo-code
bestSolution = initialSolution;
level = initialScore;
counter = 0;
maxCounter = 200000;
notImprovingCounter = 0;
rehatingCounter = 0;
while counter < maxCounter do

newSolution = KempeChain(generateNewSolution(Random(LLH1, LLH2)));
if evaluate(newSolution) < evaluate(bestSolution) then

bestSolution = currentSolution = newSolution;
notImprovingCounter = 0;

end
else

notImprovingCounter++;
end
if notImprovingCounter ≥ 1000 then

notImprovingCounter = 0;
rehatingCounter++;

end
if rehatingCounter ≥ 50 then

bestSolution = RandomSwapTwo(RandomMove(bestSolution));
currentSolution = bestSolution;

end
updateLevel();
counter++;

end

Algorithm 4: Tabu Search Pseudo-code
sBest=initialSolution;
bestCandidate=intialSolution;
tabuList={};
counter=0;
maxCounter=200000;
while counter < maxcounter do

sNeighbhor=getNeighborByRandom(bestCandidate);
for sCandidate in sNeighbor do

if not tabuList.contains(sCandidate) andfitness(sCandidate)fitness > (bestCandidate then
bestCandidate=sCandidate;

end
end
if fitness(bestCandidate > fitness(sBest then

bestCandidate=sCandidate;
end
tabuList.append(bestCandidate);
if tabuList.size > maxTabuSize then

tabuList.pop[0];
end
counter++;

end

4. EXPERIMENT RESULT
The testing of these algorithms was conducted using the Python programming language on a Jupyter

Notebook environment. The experiments were performed on a Windows 10 Pro operating system, utilizing
specific hardware specifications for the testing setup. The hardware configuration employed during the experi-
ments consisted of an Intel (R) Core(TM) i7-4510U CPU running at a base frequency of 2.00 GHz, which can
boost up to 2.60 GHz, and the system was equipped with 8 GB of RAM.

4.1. Test results
The experimental results from the steps that have been carried out can be seen in Table 2. The TS

algorithm demonstrated superior performance over other algorithms by producing the best average and optimal
solutions for all 13 instances. Both the GD and SA2 algorithms yielded relatively comparable outcomes.

The performance analysis of hyper-heuristics algorithms over examination ... (Ahmad Muklason)



2160 ❒ ISSN: 2252-8938

However, for some datasets, SA2 provided superior results, while in others, GD emerged as the better option.
SA1 underperformed compared to SA2, an outcome attributable to the effects of the employed Kempe chain,
which will be elaborated upon in the subsequent subsection. Of the four algorithms assessed, the HC algorithm
consistently recorded the least favorable outcomes across all datasets.

In this study, the HC algorithm was designed as a direct approach that only acknowledges improved
solutions. This method, while straightforward, bears the inherent risk of becoming ensnared in local optima,
thus hampering its potential to identify the global optimum. Additionally, the exclusive reliance on a singular
heuristic, specifically the random move within the LLH implementation, limits the exploration of alternative so-
lutions, often leading to less-than-optimal results. These observations underscore the importance of integrating
advanced algorithms and a diverse heuristic portfolio to mitigate these limitations and enhance the optimization
process’s search efficacy.

Table 2. Optimization result

Dataset
HC SA1 SA2 GD TS

Best Avg Best Avg Best Avg Best Avg Best Avg
Car91 9.03 10.3 8.6 8.7 6.7 6.7 6.4 6.5 6.0 6.1
Car92 8.0 9.5 7.3 7.4 5.3 5.4 5.1 5.2 4.8 4.9
Ear83 70.3 79.8 52.0 53.4 40.5 41.9 40.7 41.6 39.1 40.5
Hec92 16.1 18 15.9 16.5 11.2 11.5 11.3 11.5 11.1 11.5
Kfu93 22.2 23.9 21.6 22.3 16.9 17.3 16.5 16.8 15.1 15.5
Lse92 18.5 19.2 17.7 18.4 13.0 13.5 12.7 13.4 12.1 12.3
Pur93 9.5 9.7 9.3 9.3 8.1 8.2 7.7 7.8 7.1 7.2
Rye92 15.6 17.1 14.6 15.2 11.2 11.6 10.9 11.0 9.8 10.1
Sta8 172.5 174.1 172.4 173.4 152.2 154.2 157.3 157.4 157.1 157.4
Tre92 12.9 13.1 12.7 12.8 9.6 9.7 9.4 9.7 9.5 9.4
Uta92 6.3 6.5 6.1 6.2 4.3 4.4 4.2 4.2 4.0 4.0
Ute92 37.1 38.3 36.9 38.0 26.7 27.4 26.1 27.1 25.6 26.6
Yor83 54.1 55.2 53.7 54.0 40.3 40.9 40.5 41.3 39.6 40.6

4.2. Kempe chain effect
From these results, it can be seen that the Kempe Chain LLH plays an important role in producing

good optimization. The HC and SA1 algorithms, which do not use the Kempe Chain, produced worse results in
all datasets compared to the other three algorithms that use the Kempe Chain. Figure 1 illustrates the difference
in cost reduction between the SA1 and SA2 algorithms on the Ear83 dataset. In SA1, which does not use the
Kempe Chain, the cost reduction occurs gradually. Meanwhile, in SA2, from the beginning of the iteration, the
cost reduction occurs drastically. At iteration 100,000, a drastic increase in cost is seen, followed by a drastic
decrease in cost. This is caused by the Kempe Chain, which can change many exams directly without damaging
the feasibility of a solution. The application of the Kempe Chain and the SA algorithm that allows accepting
worse solutions leads to drastic cost jumps like in Figure 1 . However, this is a beneficial thing, as it shows
massive solution exploration, and in the end, the results prove that the produced solution is better.

In addition, the comparison of feasibility between Kempe Chain LLH and other LLH shows a sig-
nificant difference. Table 3 shows the level of feasibility produced in its application using the SA algorithm.
LLHs other than Kempe Chain show a very high probability of producing new solutions that are not feasible.
The random move LLH recorded a level of producing feasible solutions at 15.8%. While other LLHs produced
percentages below 6%. Despite in the random swap three and random move three LLHs, the percentage of
producing feasible solutions was below 1%. This shows that the use of LLHs other than Kempe Chain is dom-
inated by producing infeasible solutions. So in the iteration that produces infeasible solutions, this iteration
becomes wasted. This is what causes the significant difference between algorithms that use Kempe Chain and
those that do not.

4.3. Algorithm ranking
To figure out the best algorithm, we ranked them based on test scores. For each dataset, we gave

each algorithm a rank, then averaged those ranks for all datasets. Table 4 gives the average ranks for the five
algorithms. From this, the TS algorithm did the best on the carter dataset with an average rank of 1. SA2 came
in second, with GD in third.
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Figure 2 shows how the five algorithms differ when working on the Ear83 dataset. The TS algorithm
we used is a lot like the HC algorithm, but with a twist. It only takes on better solutions, and it uses a ’tabu list’
to avoid doing the same work over and over. This makes it get to better solutions quickly without getting stuck.

Figure 1. Comparison of SA 1 with SA 2 on Ear83 Dataset

Table 3. LLH comparison
Neighbor Search Feasible Amount Number of Solutions Not Feasible
Random Move 372 (15,8 %) 1971 (84,2 %)
Random Swap Two 143 (5,7 %) 2345 (94,3 %)
Random Move Two 60 (2,5 %) 2340 (97,5 %)
Random Swap Three 13 (0,5 %) 2421 (99,5 %)
Random Move Three 4 (0,2 %) 2331 (99,8 %)
Kempe Chain 4824 (100 %) 0

Table 4. Algorithm rangking
Algorithm Rangking
TS 1
SA2 3
GD 3.7
SA1 4
HC 5

The SA and GD algorithms are different from TS. They sometimes take worse solutions to explore
more options, which helps them avoid getting stuck. The GD algorithm has a special ’reheating’ step. This
helps it do really well on some datasets but not as well on others. You can see this reheating in Figure 2 where
costs sometimes go up, especially at the end. The SA algorithm is less likely to accept worse solutions as it
nears the end of its work. But in this case, that didn’t always lead to the best results.
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Figure 2. Illustration of the solution search process from the five algorithms on Ear83

5. CONCLUSION
This research aimed to evaluate and compare the performance of four optimization algorithms: SA,

GD, TS, and HC, in addressing the exam timetabling problem. The study also investigated the influence of the
Kempe Chain operator on the derived solutions. The algorithms were tested using the Carter dataset, and their
outcomes were systematically analyzed. Results indicated that the TS algorithm outperformed its counterparts,
securing an average rank of 1. SA2 followed in second place, with GD ranking third. This performance
disparity can be attributed to the intrinsic characteristics of each algorithm. While the TS algorithm, mirroring
HC, predominantly accepted superior solutions, its incorporation of a tabu list augmented search efficiency.
In contrast, both SA and GD were more exploratory, occasionally accepting suboptimal solutions, facilitating
easier evasion of local optima. The Kempe Chain operator markedly enhanced solution quality. Algorithms
utilizing this operator demonstrated superior performance; a comparison between Kempe Chain and other
neighborhood operators revealed a stark difference. Specifically, Kempe Chain yielded over 94% feasible
solutions, whereas other operators hovered below 6%. Future studies might consider hybridizing optimization
algorithms, particularly integrating TS with either SA or GD, given their notable efficacy demonstrated herein.
Furthermore, delving into alternative neighborhood operators, especially those evolving from the LLH Kempe
Chain, might provide insights tailored to the unique challenges of exam timetabling, potentially leading to even
higher solution quality.
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