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 The COVID-19 pandemic has enormously affected the economic situation 

worldwide, including in Indonesia resulting in 30 million Indonesian 

tumbling into penury. The Ministry of Social Affairs initiated a program to 

distribute social assistance aimed at the poorest households. ‘Aplikasi Cek 

Bansos’ is a public service application that aims to validate their status 

towards the social assistance program. Understanding the public sentiment 

and factors affecting public satisfaction levels is crucial to be performed. 

The goal of this study is to perform a comparative study of supervised 

machine learning to learn the sentiment of the public and the dominant 

variable resulting in public satisfaction. Support vector machine, Naïve 

Bayes dan K-nearest neighbor (KNN) are performed to seek the highest 

accuracy. This experiment discovered that the KNN algorithm produced 

outstanding performance where the accuracy hit 99.21%. Sentiment 

prediction indicated negative perception as the majority covering 83.81%. 

Trigrams analysis is performed to learn themes affecting satisfaction levels 

toward the application. Negative themes are grouped into the following 

categories: App instability, hope for improvement, navigation issues, and 

low-quality content. Some recommendations are offered for the Ministry of 

Social Affairs and developers, to overcome negative feedback and enhance 

public satisfaction level towards the application.  
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1. INTRODUCTION 

The pandemic era of COVID-19 has resulted in the downfall of the economy to the worst situation 

since World War II. In Indonesia, 1.1 million people have affected and dragged into poverty, which resulting 

nearly 30 million Indonesians was falling into poverty in 2020. Estimated more than 2.1 million people have 

been categorized as unemployed due to the laid-off process impact of the pandemic situation until May 2020. 

[1]. As an effort to press the poverty rate, the Indonesian government represented by the Ministry of Social 

Affairs launched a social protection program called ‘Family Hope Program’ (PKH) which distributes social 

assistance in the form of cash assistance to households [2]. It is well knowns as a conditional cash transfer. 

The main target of this program is the poorest households both in urban and rural areas [3]. The government 

of Indonesia allocated Rp 28.31 trillion for the PKH program in 2021 targeting 10 million households [4].  

To promote e-services, the Ministry of Social Affairs, Republic of Indonesia released an application 

called ‘Aplikasi Cek Bansos’ in Google Play Store. The application which was launched in Aug 2021, has 
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been downloaded by more than 5 million users. Aplikasi Cek Bansos is aimed for the Indonesian people to 

check their status toward some social assistance programs, to facilitate the public to act as a whistleblower 

and provide objection of the recipient who is deemed unqualified to receive the social assistance. 

Furthermore, each household could submit their application or their neighbors who are fully qualified to 

receive the social assistance programs. To conclude that this is not a mandatory application for each 

recipient, but rather accommodating the public to check their eligibility or raise a request as the recipient. 

This effort has followed the legal regulation of the Law No. 25 of 2009 on Public Services, article 23 [5] 

stating that a national information system needs to be organized to assist information availability. Referring 

to another legal baseline as stated in President Regulation No. 95 of 2018 on E-Government System [6], the 

necessity of government performance and accountability improvement through the implementation of e-

services to enhance the quality and reliability of public services. Another article stated that the quality of e-

service needs to be improved systematically and continually to increase the efficiency of the e-government 

system and enhance the satisfaction of the users, in this case, all Indonesian people.  

Referring to the official website of Electronic Procurement Institution (LPSE), the Ministry of 

Social Affairs has completed two tender packages related to the procurement and development of PKH 

application in 2018 with contact value worth Rp 8.6 billion [7] and in 2020 worth Rp 4 billion [8]. Both 

projects consumed Indonesia’s state budget. Indonesia’s state budget is an annual planned budget of the 

government of Indonesia which is collected from various sources, and one of the key sources is from taxes 

variable [9]. Hence, the utilization of the state budget needs to be efficient and precisely aimed for the benefit 

of all Indonesian. Considering an enormous budget required to develop Aplikasi Cek Bansos, it is eminently 

essential to examine public opinion toward the application which is funded by Indonesia’s state budget. The 

public services through e-government could be strengthened by sentiment analysis, opinion mining, and text 

analytics [10].  

Sentiment analysis, also known as opinion mining, is widely utilized to understand the semantic 

relationship, and meaning in reviews. In regards to customer reviews, it could be constructed by subjective or 

objective reviews [11]. In terms of analyzing products, sentiment analysis is commonly performed to 

assemble and categorize reactions for improvement as well as grasp public preferences and satisfaction over 

products or services. Previous studies have concluded that sentiment analysis is suitable to understand the 

satisfaction level of a product [12]–[15]. Reactions of the product indicate whether it is useful or not. The 

outcome of sentiment analysis calculation could illustrate the input and criticism provided by the client [16], 

[17]. The government has user-generated content to assess the performance of products and services [18]. 

Various method has been explored to examine and measure satisfaction as a theoretical construct through 

various instruments [11], [19]. Sentiment analysis based on machine learning approaches is an achievable 

method that provides information about the application’s effectiveness as the negative views from users 

could highlight the quality issues and gaps faced by users [20]. This approach is divided into some categories 

based on the characteristics of the dataset. When the classification task has a specific set of classes, 

supervised learning is most suitable to be performed. Supervised learning has various algorithms, covering 

support vector machine (SVM), Naïve Bayes (NB), and K-nearest neighbor (KNN) [11], [19]. However, the 

best classifier methods of supervised learning based on user reviews from the online platform are still 

arguable.  

Previous studies have explored the approaches and challenges of sentiment analysis based on 

various machine learning [16], [19], [21] and its implementation across board research areas: in the tourism 

context [11], in the medical field for coronary angiography [22], and geography are related to shallow 

landslide susceptibility mapping [23]. The data input for the machine learning process could be derived from 

various sources: Twitter data [24]–[31], journaling entries [32], movie dataset [33], [34], reviews on various 

applications: Traveling application [35] and Shopping application [36], [37], and user’s review on Google 

Play Store [21], [38]–[40] and App Store [20]. Machine learning approaches are performed to categorize the 

polarity of sentiment based on a train and test dataset. These approaches are classified depending on the 

characteristic of the dataset. It could be divided into supervised, unsupervised, semi-supervised, and 

reinforcement machine learning. Some algorithms that are classified as supervised machine learning cover 

SVM, NB, and KNN [19]. Some conducted studies concluded that SVM performed superior accuracy 

compared to other classifier methods [21], [24], [25], [33]. While other studies summarize that Naïve Bayes 

provided better results illustrated by the highest value on the accuracy variable [38], [40]. On the other hand, 

various experiments summarized that KNN has the highest accuracy compared to other supervised machine 

learning algorithms [16], [41]–[43]. To assess the most suitable method to be performed using user review on 

online platforms as data, a comparative study is performed using those three methods covering SVM, NB, 

and KNN.  

Nowell et al. [44] summarized a pragmatic approach to perform a trustworthy thematic analysis to 

systematize and improve the traceability and verification of the analysis. One of the most used methods is N-

gram which is performed respectively with machine learning algorithms [18], [45]. Zhang et al. [45] 
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performed term frequency-inverse document frequency (TF-IDF) and N-gram to classify the ransomware 

families as well as employed five machine learning methods to execute ransom classification. Summarizing 

the previous works, TF-IDF and N-gram are implemented in this experiment to extract word frequency and 

identify the features that influence user experience. Thematic analysis by categorizing the reviews into 

various categories conducted by [20], [46] is utilized as a baseline for this research.  

Furthermore, the application rating on Google Play Store only earned 2.3 stars rating whereas the 

‘1’ rating is dominantly submitted by the users. In total, more than 39 thousand reviews have been posted 

[47]. The star rating is strongly impacted by the consolidated sentiment and emotion in the review [48]. The 

assumption of star ratings summarizes the customer’s opinion as stated in the content of the review is 

debatable. Nevertheless, the limitation of a discrete 5-point scale of star rating is insufficient to grasp the vast 

opinion contained in the reviews [49]. The public typically shows their emotions and experiences towards the 

product acquired or services received through online opinion in the form of text comments [48]. Hence, it is 

essential to perform qualitative methods to understand thoroughly the opinion mentioned by users toward the 

application. Thematic analysis is a suitable qualitative method that can be performed to analyze bulk 

qualitative data sets. It is used to identify, analyze, organize, describe, and report themes found within a data 

set. The main benefit of thematic analysis is a greatly adaptable method that could be adjusted and 

implemented in a broad variety of fields, resulting in a robust and thorough outcome, yet high complex 

account of data [44]. This leads us to our research questions: 

RQ1: How is the public’s sentiment of the Aplikasi Cek Bansos using the best performing 

supervised machine learning? 

RQ2: What are the dominant variables affecting the public’s satisfaction/dissatisfaction toward 

Aplikasi Cek Bansos? 

This study aims to perform a comparative analysis of various supervised machine learning 

algorithms based on user reviews on Google Play Store, to evaluate the public’s sentiment and opinion 

towards the e-government platform: Aplikasi Cek Bansos, and to discover the major satisfaction or 

dissatisfaction factors influencing the overall rating. The main novelty of this work is assessing the 

performance of supervised machine learning algorithms on user review datasets. In addition, the public 

sentiment, and the thematic analysis of Aplikasi Cek Bansos have not been explored before. In the last 

section, some recommendations are provided for the organization to enhance the user journey on the public 

services application. Hence, this work can contribute as a baseline for the Ministry of Social Affairs, 

Republic of Indonesia to improve its e-government products and services which will strengthen public trust 

in the government.  

 

 

2. METHOD 

Cutting-edge computational processes and techniques are employed to achieve the main objective of 

this paper. The data is collected from the Google Play store, then annotated into positive and negative labels. 

It is followed by preprocessing phase and vectorization step to building the model, then it is applied to all 

data to obtain the overall sentiment and thematic results.  

 

2.1.  Data collection 

User’s review of Aplikasi Cek Bansos on Google Play Store is used as raw data. Web scraping 

method is used to extract data from websites [19]. The data contains both reviews and ratings from all users 

gathered using Google Play Reviews Scraper on Python. The data was crawled on January 3rd, 2023, at 3:00 

PM and it contains 28,584 reviews with ratings.  

 

2.2.  Data annotation 

The next step is to create a training dataset through a random sampling method following Slovin’s 

formula. By using error 5%, 380 random reviews are categorized as training data. Supervised machine 

learning technique requires a model data called training data which assigns the polarity of data based on the 

context of the sentences. Data annotation can be based on manual labeling [11], [38], or based on the given 

rating [20]. Table 1 demonstrated the sample of manual labeling applied for some reviews in this paper.  

The polarity of sentences can be based on the rating as the rating provides insight into the overall 

polarity of a review whether the user feels very satisfied or even on the opposite side, very dissatisfied. A 

numeric rating is sufficiently used to extract sentiment scores as an exchange of human judgment to eliminate 

human subjectivity [18]. Reviews with a rating of ‘3’ are excluded as it does not provide the polarity 

explicitness of whether it falls under positive or negative sides. Data labeling rules are described in Table 2. 

Both manual annotation and rating based are performed in this experiment to reveal the impact of both 

approaches.  
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Table 1. Instance of manual data labelling 
Comment Label 

Initially, I didn't know I would receive the BLT (cash assistance), but after watching a tutorial, I 
succeeded. The process only took 2 days. Thank you, Mr. Jokowi. 

Positive 

Easy to use and has accurate result Positive 

The application is very bad. My account is already registered, but when I try to open it, it hasn't 
been activated yet, and it shows an error message saying that I'm not registered. 

Negative 

I have already updated to the latest version, but the application still cannot be opened. I only 

need to verify through this application (I have received two emails from the Ministry of Social 
Affairs for verification). Every time I log into the application, there is always an error message: 

JSON PARSE ERROR. Please fix it!" 

Negative 

 

 

Table 2. Data labelling rules 
Rating Description Sentiment polarity 

1 Very dissatisfied Negative 

2 Dissatisfied Negative 

3 Okay Not used 
4 Satisfied Positive 

5 Very satisfied Positive 

 

 

2.3.  Data preprocessing 

Data preprocessing necessities to be performed before any analysis process to eliminate any type of 

noise and all errors in terms of spelling and grammar. The goal of preprocessing includes obtaining better 

analysis as well as degrading the dimensionality of input data as many words are inefficacious and need to be 

removed as they do not affect the text polarity [19]. Data preprocessing consists of some tasks as illustrated 

in Figure 1 and described below,  

a. Case folding: This step standardizes all letters into lowercase to provide a simpler classification of the 

sentiment and accelerate the comparisons during the indexing process [25], [33], [38].  

b. Tokenization: This process divides the script into pieces of elements which are called tokens [19], [38].  

c. Stemming: This task enables all words to be converted into a base form to lessen the total words and 

improve the computational speed [19], [25].  

d. Stopword Removal: The goal is to eliminate the stop word as it does not have any contribution to 

analysis and to be focused on words that are used for sentiment analysis [19], [25]. The stop words are 

applicable for adverbs, conjunction, prepositions [33], or any word that is considered an obstacle or noise 

to fully understand the context [38].  

 

 

 
 

Figure 1. The steps of data pre-processing [51] 

 

 

2.4.  Data vectorization 

Next, each review is extracted into unigrams and vectorized by using term frequency-inverse 

document frequency (TF-IDF) method. It is aimed to count both frequency and relevance when assigning 

weight to terms or words [20]. TF-IDF is implemented as it demonstrated a promising performance for 

automated text analysis which covers text classification on sentiment analysis [51]. The process is performed 

in RapidMiner tools.  

 

2.5.  Sentiment classification 

Supervised machine learning models are executed to classify each user reviews into either positive 

or negative sentiment polarity. Three promising classifiers are performed covering NB, SVM, and KNN, 

which are categorized as supervised machine learning in RapidMiner tools. The evaluation of classification 

algorithms, in terms of performance, is commonly assessed through k-fold cross-validation. Some research 

proposes to perform k-fold cross-validation repeatedly to result in reliable accuracy estimates. A procedure to 

apply k-fold cross-validation follows the guideline: 10-fold cross-validation is executed first and if the testing 



                ISSN: 2252-8938 

Int J Artif Intell, Vol. 13, No. 2, June 2024: 1608-1618 

1612 

result of every fold could satisfy the large-sample condition, then it should be executed only once [52]. The 

performance of three classifiers is compared using four variables: accuracy, precision, recall, and F1 score.  

 

2.6.  Thematic analysis 

Thematic analysis is performed to identify the vibrant factors affecting the public’s satisfaction and 

dissatisfaction with the application based on both positive and negative reviews [20]. The N-gram method is 

used as it has the ability to forecast the occurrence of phenomena. The length of N-grams varies with the 

number of feature N-grams [45]. It needs to be acknowledged that bigram refers to n-gram of size 2 and 

trigram of size 3 [18]. N-grams (N = 3) are executed in this experiment by using the Natural Language 

Toolkit (NLTK) package on Python to gain more insight into the features affecting user experiences of the 

application.  

 

 

3. RESULTS AND DISCUSSION 

3.1.  Sentiment classifiers performance 

A comparative study has been performed to evaluate the best-performing classifier methods under a 

supervised learning machine. It can be determined by comparing the accuracy value. Accuracy is used as the 

indicator as it is one of the comprehensive evaluation variables of the classifier [45]. As shown in Table 3, 

the KNN method with rating based labeled achieved the best overall accuracy of 99.21%, followed by the 

KNN algorithm with manual labeling with an accuracy of 94.21%. The second-best performing algorithm is 

the SVM method with an accuracy level reached 90.26% by using training data following rating rules. In 

contrast, Naïve Bayes approaches performed well with manual annotation of training data with an accuracy 

of 87.89%, while rating-based data only produced 77.63% of accuracy rate. In terms of precision, recall, and 

F1-score, the KNN algorithm produced a satisfied outcome specifically when utilizing rating based on the 

training dataset with 99.55%, 97.22%, and 98.37% respectively.  

 

 

Table 3. Classifier performance by data annotation 
Classifier Data annotation Accuracy (%) Precision (%) Recall (%) F1-score (%) 

NB Manual 87.89 65.03 73.62 69.06 

Rating 77.63 61.31 66.11 63.61 
SVM Manual 83.16 65.96 90.86 76.43 

Rating 90.26 79.67 94.33 86.38 

KNN Manual 94.21 78.95 90.77 84.45 
Rating 99.21 99.55 97.22 98.37 

 

 

Three classifiers used in this experiment are categorized as machine learning techniques. Sentiment 

analysis works based on the modeled data and produces a classified class including positive or negative 

classes. Training data is essential as the model learns to perform comparative tasks of specific input data to 

respective output data based on test instances utilized for the training process [16]. Hence, the data annotation 

approach is highly impactful toward the performance of the classifier method. Referring to Table 3, manual 

labeling works better with the NB method while SVM and KNN produced high-grade performance which is 

reflected by its accuracy and F1-score.  

The KNN algorithm was raised as the best-performing classifier method under supervised machine 

learning. This is caused due to its easiness to understand and implementation as well as its powerful method 

which results in better accuracy [16]. This finding supports prior experiments that the KNN algorithm 

performs better towards data from social media [16], [42], but it is also applicable for data fetched from a 

user review on the online platform, in this case, Google Play Store.  

 

3.2.  Sentiment prediction 

Next, the best-performing machine learning classifier (i.e., KNN) was applied to classify all user 

reviews of the application covering 28,584 reviews. Referring to the predicted outcome, 23,955 reviews were 

classified as negative, while only 4,629 reviews were categorized as positive. The dominant sentiment is 

negative, covering 83.81% of overall reviews as shown in Figure 2. As concluded by previous papers that 

sentiment polarity represents customer satisfaction [12]–[15]. Hence, it implies that most of the public feels 

displeased with this e-government application. Due to the high percentage of dissatisfaction level from the 

user’s perspective, it is crucial to understand the factors behind this number.  
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Figure 2. Sentiment prediction of ‘Aplikasi Cek Bansos’ 
 

 

3.3.  Trigrams result 

Thematic analysis is conducted to reveal the factors affecting the public’s satisfaction or 

dissatisfaction with the application using the N-grams method. To acquire better contexts, the trigram is 

implemented in this paper. The positive reviews are categorized using trigrams as illustrated in Figure 3. 

Three combination of words which repeatedly appear covering ‘aplikasi cek bansos’, ‘thank you application’ 

and ‘application helpful public’ within 45, 42 and 36 reviews respectively. This outcome reveals that the 

application facilitates the public in terms of checking their qualification to receive the cash assistance 

program. This public service application provided by the Ministry of Social Affairs is perceived as a 

beneficiary for some of the program recipients.  

The previous section of sentiment analysis revealed that the majority of users submitted negative 

reviews of the application. The factors affecting negative experiences can be learned through trigrams 

analysis. More contexts can be learned through trigrams analysis as shown in Figure 4. It can be concluded 

from the graph that ‘error json parse’ is frequently displayed on the application which resulting a bad 

experience from the user’s perspective. Furthermore, ‘register error always’ appears 105 times which 

indicates that an error issue on create account feature is consistently displayed resulting in frustrating 

conditions from the public point of view. ‘please fix application’ demonstrates the public’s wishes that 

significant update is provided by the developer side to resolve major error.  
 

 

 
 

Figure 3. Trigrams of positive theme 
 
 

3.4.  Variable affecting user dissatisfaction and recommendation 

Next, trigram analysis results of negative themes, covering 23 themes, are classified into some 

categories: app instability, hope for improvement, low-quality content, and navigation issues. The 

categorization result is shown in Figure 5. The graph concluded that the unstableness of the application is 

leading to users’ frustration when using the public service application and followed by their aspiration of 

refinement. 
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Figure 4. Trigrams of negative theme 

 

 

 
 

Figure 5. Category of negative theme and the corresponding number of negative theme 

 

 

3.4.1. App instability 

The chart illustrates that app instability issue is dominantly complained about by the users, reaching 

40% of overall reviews. App instability reflects the poor rate of system quality. System quality, in terms of 

mobile application adoption, encompasses some items, covering stability, reliability, response time, and 

appropriate and accurate functions [53]. The absence of stability and reliability of the application, in the form 

of errors and bugs, is negatively affecting users’ perception of the system, information, and services, as 

shown in the comments below,  

 

“Mau daftar aja susah banget keterangan ERROR JSON PARSE, padahal sinyal kuat pakai WiFi dan data, 

gini amat pemerintah buat aplikasi.” 

 

When the application has been released to the production environment, it should have been free of 

blockers and crashes. A thorough testing activity has to be performed for all scenarios across targeted mobile 

platforms, device types, and screen sizes [20]. Hence, the developer's team needs to execute bug fixes, fully 

retest the app, and deploy a new version of the app including all fixes of the issues. Furthermore, a user-

friendly error modal needs to be implemented to provide clarity for the user of the error and increase the 

user’s perception. 

 

3.4.2. Hope for improvement 

The second most mentioned category is hope for improvement. It reflects the user’s frustration 

caused by app instability and their wishes that it can be resolved immediately. As shown in the sample 

comment below, the user highlighted the issue they faced and their hope for fixes to be provided. 

 

“Agak kecewa sih aplikasi nya bisa dibilang gak stabil, apalagi pas mau login tuh ada aja kendalanya, entah 

itu koneksi sinyalnya, ataupun json parse, minimal kasih panduan lah buat mengatasi itu. Mohon cepat 

diperbaiki sihh.” 

57

78

81

84

88

89

105

119

132

161

0 50 100 150 200

('login', 'user', 'name')

('daftar', 'login', 'aplikasi')

('username', 'password',…

('login', 'username', 'ditemukan')

('niat', 'bikin', 'aplikasi')

('tolong', 'perbaiki', 'aplikasi')

('daftar', 'eror', 'mulu')

('login', 'username', 'password')

('aplikasi', 'cek', 'bansos')

('error', 'json', 'parse')

Trigrams of negative theme

40%

27%

16%

17%

Categorization of Negative Themes

App Instability

Hope for improvement

Low-quality content

Navigation issues



Int J Artif Intell ISSN: 2252-8938  

 

Assessing public satisfaction of public service application using supervised … (Ilham Zharif Mustaqim) 

1615 

App developers should actively review the negative feedback and respond politely to ease 

customers’ rage and dissatisfaction [54]. All valid negative reviews should be consolidated and retrospect 

whether they can be resolved in the next fetch version or not. A new version of the app should be in place 

regularly to accommodate all the public’s feedback to increase public satisfaction.  

 

3.4.3. Low-quality content 

The next category is low-quality content. Users regularly stated their inconvenience over impractical 

content and off-topic through application reviews. Those invalid contents resulted in frustration feeling from 

the user’s perspective as it was considered unhelpful toward the issue faced on the application, as indicated in 

the sample comment below.  

 

“Padahal udah isi data lengkap dan jelas loh. Waktu aplikasi ini di publis ke masyarakat, kayaknya 

gampang banget tuh mbaknya jelasin detail aplikasi ini melalui video.”  

 

This application is used by the poorest household in Indonesia. The preceding study found out some 

barriers to technology adoption in Indonesia are awareness, information communication technology (ICT) 

skills, and lack of relevant content [55] which also aligns with the current finding. Hence, developers should 

provide high-quality and accurate content which elaborates guidance on application usage and how to operate 

it clearly considering its targeted audience.  

 

3.4.4. Navigation issue 

The last category is navigation issues. The ease of use variable is highly affected by navigation 

controls [20]. Perceived ease of use indicates the level of simplicity expected from new technology to be used 

with minimal effort [53]. Some comments of aplikasi cek bansos reveal the uneasiness of navigating desired 

features, unresponsive navigation control, or even being stuck in error conditions without any proper 

suggested navigation to overcome the issue, as illustrated in the sample comment below. 

 

“Aplikasi error silakan hubungi admin, cara hubungi admin nya gimana ya?” 

 

There are three fundamental dimensions of the mobile experience, covering attractive interface, easy 

to navigate, and interest arousing. Easy navigation indicates a straightforward navigation mechanism that 

enables the user to navigate easily across the application [56]. Similarly, in terms of error, the app should 

navigate the user to an accurate screen where the issue can be resolved.  

An antecedent study found a positive correlation between information system quality towards user 

satisfaction and user acceptance. Users’ perception of the system, information, and services is highly crucial 

as it influences perceived usefulness. In addition, perceived usefulness is favorably influenced by trust. Trust 

is positively affected by the perceived easiness of use as it can result in a positive impression towards e-

government [53]. Hence, it is intensely crucial to increase the information system quality of Aplikasi Cek 

Bansos for improving user satisfaction and resulting in an appreciative impression of e-government 

implementation in Indonesia.  

 

 

4. CONCLUSION 

A comparative study of supervised machine learning performed in this experiment found that KNN 

is the best-performing classifier by using user’s review data which was indicated by its accuracy of 99.21% 

and F1-Score of 98.37%. Then, the classifier was used to predict the sentiment of Aplikasi Cek Bansos. The 

outcome showed that the foremost sentiment was classified as negative, covering 83.81% of overall reviews. 

Afterward, thematic analysis was conducted to uncover variables affecting dissatisfaction with the 

application. All negative topics are then classed into categories: App instability, hope for improvement, 

navigation issues, and low-quality content. By referring to the preceding research, we recommended some 

actions that can be adopted by the corresponding party to tackle the negative feedback and strengthen the 

information system quality which leads to public satisfaction improvement.  
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