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 Degenerative cervical myelopathy must be diagnosed with magnetic 

resonance imaging (MRI) which predicts spinal cord injury (SCI). The 

growing volume of medical imaging data can be managed by deep learning 

models, which provide a preliminary interpretation of images taken in basic 

care settings. Our main goal was to create a deep-learning approach that 

could identify SCI using MRI data. This work concentrates on modeling a 

novel 2D-convolutional neural networks (2D-CNN) approach for predicting 

SCI. For holdouts, training, and validation, various datasets of patients were 

created. Two experts assigned labels to the images. The holdout dataset was 

used to evaluate the performance of our deep convolutional neural network 

(DCNN) over the image data from the available dataset. The dataset is 

acquired from the online resource for training and validation purpose. With 

the available dataset, the anticipated model attains 94% AUC, 0.1 p-value, 

and 92.2% accuracy. The anticipated model might make cervical spine MRI 

scan interpretation more accurate and reliable. 
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1. INTRODUCTION 

Spinal cord injury (SCI) prediction is extremely complex. Hence strong statistical methods and 

efficient clinical predictive models (CPMs) must be developed [1]. CPMs establish a connection between a 

desired result, statistical rules, a predictor variable, or variables. Clinicians commonly use CPMs to 

determine the best course of treatment, manage patient expectation and anticipate an illness's course [2]. 

Pathophysiological alterations on both traumatic and non-traumatic SCI cause glial scarring and the creation 

of cystic cavities, which prevent neuronal regeneration and repair [3]. Clinically, this seems a significant, 

maybe permanent functional, decline that affects people, families, and society as a whole [4]. 

Machine learning (ML) is an acronym for a group of computer algorithms that may now find 

connections between datasets used more and more in creating this CPMs [5]. ML has many advantages over 

conventional predictive models that incorporate logistic regression in some way [6]. First, because it 

frequently uses the dataset automatically, ML rarely needs prior knowledge of significant predictors. Second, 

ML typically has fewer limitations than most predictors that can be used in a given dataset with logistic 

regression [7]. Therefore, ML is advantageous for huge datasets (like those in cancer and 

pharmacogenomics), where many predictors are present but not always clear links between them [8]. Due to 

these advantages, it is usually discovered that ML is more precise and effective than logistic regression 

approaches when applied to the same dataset. This comparative advantage has increased the usage of ML in 
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SCI predictive modeling to the idea that several research teams have just started to develop ML-based CPMs 

for SCI [9]. Thirdly, ML can uncover intricate, nonlinear correlations in datasets that logistic regression is 

less suited to creating and analyzing [10]. 

In supervised ML, the user labels the data's inputs and outputs before forming the model [11]. In 

other words, by labeling the data in advance, the user effectively "supervises" the algorithm, using ML to 

build a model that links inputs and outputs [12]. Unsupervised ML does not label the input or output of the 

data. Instead, the algorithm searches for characteristics in the data that let it combine various data pieces. The 

algorithm in reinforcement learning looks at its surroundings to find the action that would maximize reward. 

As an example, a robot that has been taught to play tennis is taught to choose moves in a certain situation that 

maximize decreasing the penalty (total points) while increasing reward (total points) (i.e., tennis court) [13]. 

In SCI, supervised or unsupervised learning are more suitable for using epidemiological datasets than 

reinforcement learning. Supervised learning models, which incorporate regression and classification 

techniques, make up the vast bulk of ML models created in SCI [14]. 

Training dataset is used to build and optimize an ML model, while a different collection of testing 

data is utilized to build supervised ML techniques. An illustration of the train test split is shown. An effective 

ML model must maintain a training-testing split because it guards against overfitting and offers an exhaustive 

preliminary assessment of the model's external validity. It is crucial to understand that ML is not a single,  

all-encompassing concept; rather, ML models can be created using various algorithms. Support vector 

machines (SVMs), naive Bayes (NB), decision tree (DT), and k-nearest neighbors (KNN) are examples of 

these supervised methods. Additionally, ensemble approaches like bagging and boosting can be used to 

modify ML models further. For instance, various subsets of the training data can be used to train distinct 

classification trees [15]. The final step is to create a random forest model by setting the combined majority 

result of the individual classification trees as the result of bagging the classification trees. Stacking may be 

used by similarly mixing the results of completely separate ML models. ML is the preferred tool for creating 

high-performance predictive models due to its variety and computing capacity. Furthermore, the nonlinear 

correlations that would be extremely challenging to incorporate in a straightforward logistic regression can be 

found because of the structure of these models. The major research contributions are: 

a. The dataset is taken from the online available resources, i.e. SCI-based magnetic resonance imaging 
(MRI) dataset and pre-processing is performed to eliminate the noise of the model using gray matter 

(GM) analysis;  

b. Then feature learning is done with the proposed convolutional neural networks (CNN) model where the 

proposed network works with two phases, i.e. 2D-CNN slice level and 3D-CNN subject level. Here, the 

slicing network performs learning rate and batch normalization. 

c. The simulation is done in MATLAB 2020a environment where various metrics like training and 

validation accuracy, hold out, sensitivity and precision are evaluated and compared with other 

approaches. The model establishes better trade-off compared to the given approaches.  

This review addresses recent studies that developed predictive models based on ML to forecast SCI 

outcomes. The following is the order: the methods utilized to create the body of research examined in this 

article are presented in section 2, methodology is presented in section 3. ML provides predictions for 

traumatic and non-traumatic SCI, as described in sections 4. Section 5 gives the work summary.  

 

 

2. RELATED WORKS 

Both individuals and the healthcare system are significantly impacted by traumatic spinal cord 

injury (tSCI). In western countries, it influences 20 and 50 individuals/million annually. The fact that affected 

individuals usually experience the aftereffects of chronic neurological dysfunction across different functional 

domains makes tSCI particularly problematic [16]. These consequences severely impact the healthcare 

system and cause permanent impairment. Many concerns need to be answered by ML due to the catastrophic 

effects of tSCI and the numerous unresolved problems surrounding its management and prognosis [17]. Due 

to ML's relative novelty and the propensity to focus on a more well-known regression modality instead, there 

is currently a relatively little body of work on its use to predict outcomes in tSCI [18].  

Despite the lack of information, some important studies using numerous SCI fields have published 

work on using ML to improve tSCI. To identify SCI in individual axial spinal cord slices derived from 

diffusion tensor imaging (DTI), [19] used ML approaches DTI. The authors employed fractional anisotropy, 

a DTI metric that expresses the degree of tissue orientation and water diffusion in an image. It serves as a 

proxy for the tissue's structural integrity. Before beginning their work, the authors devised strategies to 

separate the spinal cord image [20]. The authors discovered a significant association between motor tests 

performed before and after admission and the degree of the contusion damage based on this segmentation 

(i.e., how much the spinal cord is that the CNN evaluated to be injured) [21]. New research using ML to 
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predict tSCI has achieved significant advancements in predicting functional results after SCI imaging 

prediction [22]. Using information from the risk hansen spinal cord injury registry (RHSCIR) dataset related 

to tSCI, DeVries [23] recently constructed an unsupervised ML system to predict the ability to walk 

independently after tSCI at discharge or after a year [23]. The performance of the unsupervised ML method 

and the previously developed logistic regression models, which both predicted identical outcomes, were then 

compared [24]. The authors discovered no appreciable differences between the two. Although this 

comparability could be more encouraging at this point for comparisons was established between ML and 

well-known statistical models [25].  

ML has been used to forecast the use of opioids [26]. A damaged intervertebral disc is removed, and 

two nearby vertebral bodies are fused during the surgical operation known as anterior cervical discectomy 

and fusion (ACDF) which is used to treat dilated cardiomyopathy (DCM). Researchers found anti-depressant 

use, nicotine use, medicaid insurance status, and preoperative opioid prescription contributed to long-term 

opioid usage following ACDF. Litjens et al. [27] improved the applicability of their machine-learning 

techniques in clinical settings by developing a website to execute the model developed during the study by 

creating ML algorithms that predict prolonged by [28] to the lumbar domain by examining lumbar disc 

herniation. Instrumentation, preoperative opioid usage and concurrent depression are strongest predictors of 

prolonged opioid. Logistic regression model with elastic-net penalization (area under the receiver operating 

characteristic (ROC) curve (AUC) = 0.81 with appropriate calibration) demonstrated the best performance 

[29]. Recovery ratio computes the postoperative ratio for ideal enhancement. It is used to predict outcomes 

for imaging interpretation (pre-operative baseline recovery to maximal modified Japanese Orthopedic 

Association (mJOA) score). During the 1-year follow-up, patients are partitioned into two groups based on 

classification algorithms, whether the recovery ratio is "good" or "poor." Authors used multivariate logistic 

regression and supervised machine learning techniques (SVM, KNN) in their investigation. These methods 

made predictions regarding the recovery rate using DTI characteristics such as mean diffusivity, axial 

diffusivity, and fractional anisotropy (where the rate of molecule dispersion in various directions is known as 

diffusivity) [30]. The SVM model outperformed the logistic regression model in performance in terms of 

prediction accuracy; however, the deep learning (DL) model did poorly (59.2%) in terms of recovery rate 

prediction accuracy.  
 

 

3. METHODOLOGY 

This section discusses two types of convolutional network models, i.e., 2D-CNN and 3D-CNN 

model SCI prediction. The proposed methodology undergoes pre-processing to eradicate the artifacts and 

classification with the proposed idea as in Figure 1. The evaluation is done with MATLAB 2020, and various 

metrics like accuracy, precision, F1-score, and recall are compared and with other approaches. The analysis 

proves that the model works well and establishes a superior decision support system to assist the experts.  
 

 

 
 

Figure 1. Proposed model’s flow 
 

 

3.1.  Pre-processing 

Here, two pre-processing methods are employed over MRI images: grey mapping was produced 

using pre-preprocessing. Using the N4 strategy, scans were non-uniformity corrected before being translated 

to spinal space by registering masks using similarity transformation. This minimum pre-processing enabled 

the creation of MRI images. A rigid transformation with isotropic scaling is known as a similarity 
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transformation. Elastix registration software was used to complete registrations. The SCI mask was altered to 

contain images with a zero mean and unit variance to accommodate for variations in signal strength. GM 

density was encoded using modulated maps. Pair-wise registration was used to establish the group template 

space and compute these maps without bias toward individual MRI images.  

An affine, non-rigid and similarity-based transformation model was sequentially used for the pair-

wise registrations. To determine the template space, we choose a portion of the images. This template set 

consisted of SCI patient images chosen randomly while maintaining the number of diagnostic groupings. 

Using the same registration process, the additional images from the data sets from the template area had 

registrations for SCI. The template space creation process was modified for the current work to include non-

uniformity correction, skill-stripping, and template space-matched SCI space. This work adopts similarity 

registration with SCI masks to compute the coordination space to every image which is concatenated with 

average pair-wise transformation. Probabilistic GM maps are produced using statistical parametric mapping 

(SPM8's) unified tissue segmentation method. To create the final feature maps, which included compression 

and expansion, the probabilistic GM maps are transferred and multiplied using Jacobian model over 

deformation field. Modified GM maps are split by intracranial volume to account for image size.  

 

3.2.  Classifier 

This research aims to develop a technique for detecting SCI by examining MRI spinal sequences. 

The spinal-based indications used in the samples are considered a reference that can be used to categorize the 

seriousness of SCI illness. Its range is 0 to 2, with 0.5 signifying an extremely mild condition, 1 denoting a 

light condition, and 2 denoting a severe condition (severe). A classification model using two, three, or four 

classes is created depending on the degree of precision. We combined the categories because they had fewer 

data than the other two classes, allowing us to compare the outcomes of models with two and three classes. 

The architecture chosen for the different tests impacts the model's input. Investigations have been conducted 

on 2D (slice-level) and 3D (subject-level) methodologies. A 2D solution is typically used. The benefit that 

enables a larger collection of instances is provided by the 176 slices that make up each MRI volume. As a 

result, training convergence may be improved, and overfitting may be decreased. However, the third axis of 

2D techniques needs to be improved in information. When working with 3D things, this knowledge could 

offer specifics that lead to a more precise solution, such as human tissues and organs. Both well-known and 

unique architectures are considered for 2D and 3D techniques. ResNet18 gave the greatest results when the 

residual network (ResNet) family was evaluated against inception, Xception, and other well-known 

architectures. Both 2D and 3D convolution techniques have been applied to construct custom networks. Next, 

the network architectures that have been developed and compared are described. 

 

3.3.  2D convolution 

The proposed custom network is a small size. A single output is considered available for the entire 

volume, with the input data being at the subject level of 3D images. Here, 𝑀, 𝑁, and 𝐾 comprise the input 

data, where 𝐾 specifies total slices. Each slice sizes are 𝑀 and 𝑁. Slice-by-slice processing of the data using 

reduced spatial resolution is achieved by using 2D convolutional layers and maximum pooling layers, which 

produce a sample of high-level descriptors typical of the data. 2D max pooling layer and the 2D 

convolutional layer with 3 filter sizes are present in each of the four convolutional blocks. There are no extra 

completely connected layers introduced. "Softmax" refers to the activation mechanism for exclusive classes. 

Categorical cross-entropy is the loss function. The model shows the addition of batch normalization layers, 

an enhancement method. Working with 3D images can provide information that will help in providing a 

more accurate response, just like it does with human tissues and organs. Both well-known and atypical 

architectures are considered for 2D and 3D techniques. With inception, Xception, ResNet, and other well-

known architectures, ResNet18 produced the best outcomes. Both 2D and 3D convolution techniques have 

been applied to construct custom networks. The developed and compared network architectures are then 

described. A simple custom network is suggested using 2D conv. A single output is considered available for 

the entire volume, with the input data being at the level of a 3D topic. Here, 𝑀, 𝑁, 𝑎𝑛𝑑 𝐾 make up the input 

data, where 𝐾 specifies total slices. Slice-by-slice processing of the data using reduced spatial resolution is 

achieved by using 2D convolutional layers and maximum pooling layers, which also produce a sample of 

high-level descriptors of typical data. The 2D max pooling layer and the 2D convolutional layer with 3 filter 

sizes are present in each of the four convolutional blocks. There are no extra completely connected layers 

introduced. "Softmax" refers to the activation mechanism for exclusive classes. Categorical cross-entropy is 

the initial loss function. Comparing two iterations of the same design, Figure 2 depicts the fundamental 

structure of the 2D system. It shows the addition of batch normalization layers as an enhancement method.  
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Figure 2. Fundamental 2D system 

 

 

3.4.  3D model 

It is suggested to use a custom 3D network with a true 3D approach similar to the prior one. Here, 

𝑀, 𝑁, 𝐾, and 1 are the input data, with 𝐾 indicating the total number of slices and the letters 𝑀 and 𝑁 

denoting the size of a slice. Utilizing five convolutional blocks, each consisting of a 3D max pooling layer 

and a 3D convolutional layer, is advised. Because it is more in tune with biology and human cognition, this 

technique may produce more favorable patterns of SCI creation. The filters specify total filters and filter size 

for every convolutional layer. Five convolutional blocks contain 8, 16, 32, 64, and 128 filters, with an 

average filter size of 3. The 3D global average pooling layer is applied after the embedding phase. There are 

only a few new, fully connected layers added. "Softmax" refers to the activation mechanism for exclusive 

classes. Categorical cross-entropy serves as the first loss function. It displays two versions of the same 

architecture.  

The Net2D network employed batch normalization. An original 3D network that employs a true 3D 

method is suggested. It is comparable to the prior network. Here, 𝑀, 𝑁, 𝐾, 𝑎𝑛𝑑 1 are the input data, with 𝐾 

indicating the total number of slices and the slice's size indicated by 𝑀 𝑎𝑛𝑑 𝑁. It is recommended to utilize 

five convolutional blocks, each comprising a 3D convolutional layer and a 3D max pooling layer. This 

strategy may result in more advantageous patterns of brain formation because it is more in line with biology 

and human cognition. The filters specify number of filters and ∗ specifies filter size for every convolutional 

layer. Five convolutional blocks contain 8, 16, 32, 64, and 128 filters with an average filter size of 3. The 3D 

global average pooling layer is applied after the embedding phase. There aren't any more completely 

connected levels. "Softmax" refers to the activation mechanism for privileged classes. Categorical cross 

entropy serves as the first loss function. Figure 3 depicts the 3D architecture. We compare two iterations of 

the same design once again. The baseline Net3D architecture and the batch normalization layers are added as 

a tool for enhancement.  

 

 

 
 

Figure 3. Proposed 3D network model 
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3.5.  Slice network 

The network architecture's performance is comparable to 2D slices. It implies that each image has a 

corresponding categorization output and that the network only receives a single slice of 𝑀, 𝑁, and 3 sizes. 

The three-channel input needed for ResNet family networks was produced using a single separate channel 

per slice duplicated, enabling ImageNet weights to fine-tune processes. Reference models were created using 

a tiny ResNet family model honed using ImageNet. Similar to the earlier networks, after the embedding 

phase, the loss function is "categorical_crossentropy," while the activation function is "softmax" It is 

important to remember that the final result of a full study is expressed as a "majority vote" across all 

sequence slices. People used to DL-based innovations are aware that the dataset and the specifics of the 

problem have some problems. The outcomes might be enhanced if best practices are considered. The 

following have been the more notable tactics used: the learning rate enables an iterative oscillation between 

two values for the learning rate. Conventional, well-known instructional techniques from the past typically 

consider gradually slowing down learning as time passes and utilizing various functions (linear, polynomial, 

and step). This tactic may cause the model to sink into regions with low loss values. With learning rate, it is 

simple to identify the ideal learning rate parameter, allowing for improved (and quicker) model tuning. After 

being defined, the learning rate will fluctuate between a minimum and a maximum value. It is possible to 

define the various working policies: simple triangular cycles include "triangular," "triangular2," and "exp 

range," which are all triangular cycles with the addition that in every cycle, the maximum learning rate is 

reduced by half. 

A method for training deep neural networks called batch normalization standardizes each mini-input 

batch to a layer before it enters the network. As a result, the learning process is stabilized, frequently 

improving training process and model performance. When a dataset is too small, one of the key problems is 

over-fitting. Batch normalization can help to mitigate this problem. The 3D-subject level technique is 

particularly notable for this over-fitting issue. BatchNormalization () method and a "rectified linear unit 

(ReLu)" activation are used in batch normalization, which comes before and after max pooling layer and 

convolutional layer. The proposed network model uses processing layers for reducing the input images to the 

related key features so that the provided samples can be easily categorized. The benefits of the proposed 

model over other classification approaches are its ability to learn the key characteristics of its own and reduce 

the necessity of hyper-parameters and filtering. Also, the modle provides better prediction outcomes with the 

provided input.  

 

 

4. DISCUSSION 

There were determined to be 289 individuals with MRI scans that may be used to build models. The 

201 patients in the training/validation dataset had 6,588 training images. The holdout dataset contained 2,991 

individual images of 88 patients. Each dataset's demographic data are displayed. The provided datatset did 

not significantly differ in patient variables like age and gender, nor did baseline mJOA, the manufacturer of 

the MRI scanner, or the MRI image parameters. Holdout dataset holds 2,991 images and training/validation 

dataset holds 6,588 images were examined by two independent raters who looked for images that showed 

signs of spinal cord compression that is circumferential or partial. On the training/validation dataset, 

concordance between the two raters shows Cohen's 𝜅 = 0.83 and 𝜅 = 0.83.  

The online available dataset served as the basis for model's training. The collection included 6,588 

distinct axial images from 201 patients. A training cohort (4,941 images) and a validation cohort (201 

patients) were created using the 201 patients' axial images and labels (1,647 images). In this study of learned 

models, the binary cross-entropy loss did not decrease after training seven distinct neural network topologies 

for 10 epochs. Model 6 was retained for additional testing due to its improvement on the validation dataset; 

accurate classification and minimal binary cross-entropy loss were accomplished. The ResNet-50 CNN in 

Model 6 included two entirely coupled layers that each included 512 neurons, two dropout levels with a 30% 

dropout, and two fully connected layers.  

The model generated 94% AUC, 88% sensitivity, 89% specificity. The classification made by 

humans in the holdout dataset was compared to each slice's deep-learning classification output. ROC curve 

and an AUC measurement were produced by contrasting each slice's expected and actual classes of all 

patients. Holdout dataset's area under curve (AUC) was 0.94 as in Figure 4. Each sub-group AUC is 

evaluated for measuring performance. AUC did not substantially fluctuate from AUC of holdout dataset 

based on 𝑝 − 𝑣𝑎𝑙𝑢𝑒𝑠 >  0.05 as in Figures 5 and 6. Figure 4 displays activation maps for fewer samples of 

model's true positive (TP) and false negative (FN) predictions. To understand the traits that indicated whether 

or not a class was compressed, we looked at these images. TP classifications were considered for SCI and 

corresponding spaces. Two clinically sample regions of class activation maps (CAMs) looked to be active. 

The model occasionally appears to rely on elements encompassing the para-spinal muscles and vascular 



Int J Artif Intell ISSN: 2252-8938  

 

Design of a novel deep network model for spinal cord injury … (P. R. S. S. Venkatapathi Raju1) 

2137 

systems outside the spinal canal in the sample photographs of inaccurate negative classifications. The spinal 

cord had clinical importance, which appeared to be the algorithm's primary emphasis among the false 

negative images. Nevertheless, this led to an inaccurate categorization. 

This work used a dataset of 289 DCM patients to create and evaluate MRI imaging of the cervical 

spine and used it to determine spinal cord compression using the 2D-CNN model. We gave evidence that a 

unique medical imaging classification challenge may be accomplished by training an existing CNN model. In 

our holdout dataset, the model performed well across a range of patient classifications and scanner types 

(94% AUC). Our study is the first to develop a model for identifying spinal cord compression using a sizable 

prospective dataset of highly accurate cervical spine MRI scans. This methodology may be helpful in a 

clinical trial setting to enable quick automatic coding of cervical spine MRI data. This approach may enhance 

the impartiality and accuracy of reading MRI data for the cervical spine. The importance of ML methods 

using 2D-CNNs for future medical diagnoses is becoming more widely acknowledged. The automated 

interpretation of imaging in spinal diseases using CNNs has to be more thoroughly established, despite 

systems applying analogous methodologies having been created and given regulatory permission for chest 

radiography, mammography, and imaging of brain damage. Most studies similar to ours have concentrated 

on categorizing lumbar spine MRI images. Using available MRI scans, CNN is used to categorize disc 

narrowing, lumbar disc degeneration, upper/lower marrow changes, upper/lower endplate abnormalities, 

spondylolisthesis, and central canal stenosis. Table 1 describes the patient characteristics. The AUC and p-

value of the proposed model is described. The hold-out range is measured for < 40, 40–65 and >65. The age 

ranges from 88% to 95% and p-value ranges from 0.1 to 0.4.  
 

 

 
 

Figure 4. AUC 
 

 

  
 

Figure 5. Hold-out and p-value comparison 
 

Figure 6. P-value analysis 
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Table 1. Patient characteristics 
 AUC (%) p-value 

Holdout 94 -- 
Age (%) 

< 40 88 0.1 

40 – 65 95 0.7 
> 65 92 0.4 

 

 

Visual geometry group (VGG) CNN was used by these researchers, who trained the model using 

randomly initialized weights. The deep network architecture created a significant dataset. This study created 

2D-CNN with an accuracy of 84.5% for evaluating foraminal and lumbar canal stenosis. The intervertebral 

disks and vertebral bodies were divided up using a segmentation approach used by these authors, and the 

ResNet-50 CNN was used to classify the output of this model. T2-weighted images of spine were used to 

train the ResNet-50 CNN instead of going through a separate segmentation stage. Image segmentation allows 

it to automatically locate pathologic results, which was impossible with the more straightforward approach 

we employed. A model is developed to assess canal stenosis and lumbar disc herniation; 3,560 patients' 

lumbar spine MRI scan data were employed. Intervertebral disks were split during a segmentation step in 

their procedure, which is quite similar to the deep spine architecture. The next stage involved a specially 

designed 2D-CNN in evaluating the degree of disk herniation and channel stenosis. The AUC for the disk 

herniation detection by this study's authors was 0.808. Our approach was distinct from this one in that we 

used a binary classification technique to distinguish between compressed and uncompressed spinal cords 

rather than rating the severity of spinal cord compression. 

The lumbar spine has been the subject of earlier research on the automated analysis of degenerative 

spine images. However, several published publications have used deep-learning models to analyze neck or 

cervical vertebra images. CNN was trained to identify fatty infiltration in cervical spine MRI data to gauge 

the degree of fatty infiltration. They then showed how the model's output parameters matched clinical 

metrics, including neck discomfort and neck-related disability. Imaging dataset includes DTI analyses of 

individuals who later under-went surgery. Table 2 depicts the comparison of training and validation process 

as shown in Figures 7 and 8. The accuracy of the ML model this researcher built to predict a successful 

surgical result in their training cohort was 91.1% as shown in Figures 9 to 12. Due to the small size of their 

cohort of 35 patients-they could not fully validate their model. Two labelers looked at each image as part of 

our data labeling process and assigned either a compressed or uncompressed label. The two labelers' 

agreement was high on both datasets with Cohen's Kappa’s of 82% and 83%, respectively.  
 

 

Table 2. Training and validation process 

Dataset 
Training and validation Hold-out 

Compress (%) Non-compress (%) Compress (%) Non-compress (%) 

Label 1 24 77 21 79 

Label 2 21 80 20 81 

 
 

  
 

Figure 7. Training and validation-based compress and 

non-compress 

 

Figure 8. Hold-based compress and non-compress 
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Figure 9. Validation accuracy 
 

Figure 10. Validation loss 
 

 

  
 

Figure 11. Training accuracy 
 

Figure 12. Training loss 
 

 

Table 2 gives a training and validation with compress and non-compress. For label 1 and label 2, the 

compress is 24% and 21% and non-compress is 77% and 80% (training and validation). For label 1 and label 

2, the compress is 21% and 20% and non-compress is 79% and 81% (Hold-out). Table 3 describes the 

experimental outcomes of the proposed model for 50, 55, 60, 70, and 75 epochs respectively. The accuracy 

and loss during training and validation is provided. The proposed model shows an accuracy of 89.8% to 

92.4% accuracy during validation process and 97.1% to 99.1% accuracy during training process. Similarly, 

the loss during validation is 0.25 to 0.42 and loss during training process is 0.021 to 0.089 respectively.  

Although objective standards have been discussed, clinical evaluation is frequently subjective, 

making it challenging to gauge SCI. Images where the two raters disagreed usually showed modest 

degenerative alterations but no appreciable SCI. Finally, labeling was chosen. Instead of using a binary 

classification as we did, future studies in this field may classify the cervical spinal cord compression level 

and try to create a model. It can be achieved by labeling cervical spinal MRIs using a grading scheme. This 

approach yields subjective scores for four different types of SCI and internal rate of return (IRR) produced 

0.5 Cohen's Kappa. We achieved superior with simpler binary grading system.  
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Table 3. Performance comparison during training 

Training Epochs 
Validation Training 

Accuracy (%) Loss Accuracy (%) Loss 

1 50 89.8 0.42 97.1 0.089 

2 50 90.9 0.30 99.1 0.021 

3 50 91 0.39 98.9 0.029 
4 55 91.5 0.35 99.1 0.026 

5 60 90.7 0.29 99.1 0.024 

6 75 92.4 0.25 99 0.028 
7 70 92.2 0.25 99.2 0.023 

 

 

We experimented with different model architectures when training the models. All models were 

employed using the ResNet50 CNN architecture, which had fully linked layers that varied amongst the 

models and pre-trained weights. We discovered all of the evaluated models as shown in Table 3, whose 

accuracy ranged from 89.88% to 92.39%, performed admirably. Two layers with 512 neurons each made up 

the model with the best performance that was fully linked, and two layers, each with 30% dropout. The 

holdout dataset showed good performance for this model, with 94% AUC and p-value comparison is shown 

in Figures 4 and 5. A successful lumbar spine models developed have performance parameters equivalent to 

those utilized in this investigation. We used test images that were accurately categorized from the testing 

dataset (true positives) and wrongly classified (false positives) to create CAMs (false negatives) as in  

Figures 7 and 8. There are problems with class activation maps, and they may experience issues with 

reproducibility or repeatability. CAMs have been demonstrated to be particularly ineffective at locating 

pathogenic characteristics. In this case, localization or segmentation models are suggested for medical 

imaging data. CAMs still only provide a marginal advantage, even when utilized to emphasize characteristics 

that a model thought were crucial for prediction during a post-hoc analysis. When labels were randomly 

permuted, they occasionally revealed visually convincing portions of the image. Based on these restrictions, 

we interpret the outcomes of our CAMs. The clinically relevant areas of the spinal cord and cerebrospinal 

fluid (CSF) space were highlighted in the true positive images when we looked at CAMs for a couple of 

sample images. In the false negative photographs, which made up a relatively minor fraction of the 

classifications, the CAMs frequently suggested activity over irrelevant image regions, such as the vascular 

systems or paraspinal muscles. It could imply that the model is giving more weight to the spinal cord 

compression features in the image rather than any other less significant abnormalities that might be present. 

However, this would need to be confirmed rather than only looking at a portion of the testing photographs. 

Although this is outside the purview of the current study, more investigation should be done into the CAMs' 

consistency, repeatability, and sensitivity to model weight randomization.  

Our research has a few drawbacks. First, only patients with a confirmed diagnosis of SCI who had 

surgery were included in our dataset. As a result, a small percentage of the patients in our sample had mild 

SCI or normal MRI results. A more diversified training image set and generalizable model is developed by 

integrating asymptomatic patients with mild symptoms throughout model's training. Because a significant 

fraction of the patients required MRI in the correct format, the total images used for model training needed to 

be increased. Two data labelers were utilized and we used a consensus mechanism to resolve discrepancies. 

Our set of ground truth labels would have been of higher quality with accurate assessment of model 

performance would have been possible. This work did not differentiate circumferential and partial SCI during 

data labeling and model training. Despite being more dangerous in clinical symptoms, circumferential SCI is 

a common clinical practice outcome.  

A classification scheme for cervical spinal cord compression of more than two groups may be 

created as a consequence of future research in this area. This model would be more useful therapeutically. 

MRI data from the cervical spine can be used to identify spinal cord compression as shown in Figures 6 and 

7. We developed 2D-CNN. Our model might be helpful for clinical studies that automatically code MRI 

scans as they stand now. The model might be applied in this scenario to automatically extract properties from 

MRI images recorded as part of a clinical trial, like the percentage of slices exhibiting spinal cord 

compression, which could provide information for follow-up research. We acknowledge that issues still need 

to be resolved before our model can be applied in a medical environment. Our model does a certain type of 

classification. A complete model will enable extremely precise diagnosis and distinction of a wide range of 

pathologies, including foraminal stenosis and disc herniation; some symptoms include spondylolisthesis, 

ligamentous hypertrophy, and posterior longitudinal ligament ossification. To build and test such a model, it 

is probably required to have a dataset with thousands of cases. According to other researchers, large imaging 

datasets are a major obstacle to developing ML algorithms with therapeutic relevance. Our findings imply 

that 2D-CNN can be trained in spine surgery for a unique medical imaging classification task. However, 

there are still issues to be resolved. A larger training dataset and a more general model might both be 
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produced using our strategy. From Table 4 it is obvious that the proposed model works well compared to 

various existing approaches and gives promising solution. 

 

 

Table 4. Overall performance comparison 
Methods Accuracy (%) Precision (%) Recall (%) 

PCA ensemble 66 68.64 60.25 

PSO ensemble 69 69.35 62.33 
SVM + linear kernel 72 73.84 64.65 

MMD 75 75 66.38 

Proposed model 92 91 92 

 

 

5. CONCLUSION 

Automated diagnostic technology of SCI has made significant strides in recent years, and this trend 

is predicted to continue. Here, a novel 2D-CNN model was trained and put through its paces using spine MRI 

data to determine spinal cord compression. With an AUC of 0.94, we successfully produced a model that 

performed well across a large patient group. We demonstrated how an existing standard CNN might be 

trained to complete a challenging medical imaging classification assignment. To evaluate the SCI severity, 

cervical spine deformity, cord signal alteration and nerve root compression, future research will need to 

concentrate on creating larger datasets. Improved radiology operations and clinical decision-making could 

result from increased objectivity and efficacy in cervical spine MRI interpretation.  
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