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 In this work, we propose a novel backbone search method for object 

detection for applications in intrusion warning systems. The goal is to find a 

compact model for use in embedded thermal imaging cameras widely used 

in intrusion warning systems. The proposed method is based on faster 

region-based convolutional neural network (Faster R-CNN) because it can 

detect small objects. Inspired by EfficientNet, the sought-after backbone 

architecture is obtained by finding the most suitable width scale for the base 

backbone (ResNet50). The evaluation metrics are mean average precision 

(mAP), number of parameters, and number of multiply–accumulate 

operations (MACs). The experimental results showed that the proposed 

method is effective in building a lightweight neural network for the task of 

object detection. The obtained model can keep the predefined mAP while 

minimizing the number of parameters and computational resources. All 

experiments are executed elaborately on the person detection in intrusion 

warning systems (PDIWS) dataset.  
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1. INTRODUCTION 

In recent years, object detection algorithms using deep learning have achieved remarkable results. 

They have been widely used in the implementation of practical systems such as intrusion warning systems 

[1], [2]. In these systems, object detection algorithms are used to detect human intrusions early by processing 

images from surveillance cameras [3]. With large systems, processing locally is essential because it is timely 

and reduces the load on the central server [4]. However, implementing deep learning algorithms on such 

device surveillance cameras is generally difficult because of hardware constraints [5]. Therefore, scientists 

have proposed methods to compact deep learning models, to efficiently implement them in practice. 

In general, there are two approaches to deep learning model compaction: network architecture 

search (NAS) and model compression [6]. For the first approach, an optimal network architecture will be 

searched in a large space of potential architectures. This method is proven to be effective in cases where the 

designer has almost no knowledge of the data used [7]. The popular methods for object detection problems 

can be mentioned as: Detection NAS (DetNAS) [8], method in [9], feature pyramid network NAS (FPN-

NAS) [10], auto feature pyramid network (Auto-FPN) [11], structural-to-modular NAS (SM-NAS) [12]. The 

common property of these methods is that they give a relatively good performance because the preset criteria 

are achieved during searching. In return, the computational cost for them including training time, power 

consumption is often very expensive and often have to run on powerful hardware. 

https://creativecommons.org/licenses/by-sa/4.0/
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For the second approach, the design of the neural network requires the programmer to have data 

knowledge such as the variety of data based on previous studies [13]. After that, a regular neural network 

model called the base model will be established without regard to the compaction criteria. To optimize the 

network, one will take advantage of model compression methods including pruning and quantization. These 

methods observe the base model to remove unnecessary parameters or approximate parameters with fewer 

byte representations. Methods of this type are usually not specific to any task, but rather general in machine 

learning. Well-known methods can be mentioned as: Filter pruning via geometric median (FPGM) [14], 

method in [15], method in [16], quantization after training (QAT) [17] and binarized neural networks (BNN) 

[18]. Compared with neural network architecture search, model compression methods significantly reduce 

the computational cost while maintaining the optimal criteria. 

In this work, to save computational resources, we propose a simple neural network architecture 

search model for object detection. We refer to previous literature to design an object detection model based 

on faster region-based convolutional neural network (Faster R-CNN) [19] and ResNet50 [20]. We were 

inspired by EfficientNet [21] to find the width scale for the base model ResNet50 so that the scaled model 

meets the criteria for mAP, the number of parameters and the number of multiply-accumulate operation 

(MAC) operations. The reason we only looked for the width scale is that we found that many efficient object 

detection models use the feature pyramid network (FPN) structure [22], so scaling to the width should not 

affect it. Our main motivation is to suggest a simple, low-cost method that still guarantees reservation 

requirements. 

 

 

2. RELATED WORKS 

2.1.  Faster R-CNN 

The premier model within the R-CNN family is Faster R-CNN, introduced in 2015 [19]. Subsequent 

versions of R-CNN family networks have undergone enhancements primarily focused on computational 

efficiency, incorporating diverse training phases, reducing inference time, and boosting overall performance 

measured by mean average precision (mAP). These networks typically consist of: a) an algorithm to find 

"bounding boxes" or possible object positions in the image; b) the stage of extracting the features of the 

object, usually using a convolution neural network (CNN) network; c) a classification network to predict the 

class of object; and d) a regression layer to make the coordinates of the bounding boxes more accurate. 

Faster R-CNN combines 2 modules shown in Figure 1. The first module is to use a deep neural 

network (DNN) to propose the regions, called region proposal network (RPN) and the second module is the 

Fast R-CNN model that uses the proposed regions. Fast R-CNN will take the suggested regions from the 

RPN to determine the object corresponding to the anchor. Faster R-CNN also has a CNN backbone network, 

a region of interest (ROI) pooling layer and a full connectivity layer, followed by two sub-branches to 

perform the two tasks of classifying objects and finding the best bounding box based on the regression. 

 

 

 
 

Figure 1. Faster R-CNN architecture [23] 

 

 

2.1.1. Region proposal network (RPN) 

Region proposal network RPN is the main innovation that makes faster R-CNN the best in the R-

CNN family. RPN solves problems by training the neural network to substitute for selective search in 

previous versions, which is very slow. A region proposal network takes as input an image of any size and 
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outputs a region proposal (set of locations of rectangles that can contain objects), along with the 

corresponding rectangle's probability of containing the object. 

RPN has 2 main steps: 

− Feed forward images via DNN to get convolutional features (We can use the available backbone 

networks such as VGG-16, ResNet50). 

− Using the convolutional features slide up window: to create region proposals, we use a convolutional 

layer with sliding windows called anchors. The output of this layer is the input of two fully-connected 

layers that predict the location of the regions (Box-regression layer), as well as the probability of 

containing the object (Box-classification) of that box as shown in Figure 2.  

 

 

 
 

Figure 2. RPN architecture with anchor boxes [19] 

 

 

2.1.2. Loss function 

For each module in Faster R-CNN, we define a different loss function. With the Fast R-CNN 

module, the loss used is traditional cross-entropy. Whereas for the RPN module, the loss function is defined 

as follows,  

 

𝐿({𝑝𝑖}, {𝑡𝑖}) =
1

𝑁𝑐𝑙𝑠
∑ 𝐿𝑐𝑙𝑠(𝑝𝑖 , 𝑝𝑖

∗) +
𝜆

𝑁𝑟𝑒𝑔
𝑖 ∑ 𝑝𝑖

∗𝐿𝑟𝑒𝑔(𝑡𝑖 , 𝑡𝐼
∗)𝑖  (1) 

 

where 𝑖 is the index of the anchor in the mini-batch and 𝑝𝑖  is the predicted probability of anchor 𝑖 
being an object. The ground-truth label value 𝑝𝑖

∗ is 1 if the anchor is positive, and 0 when the anchor is 

negative. 𝑡𝑖 is a 4-dimensional vector representing the predicted bounding box coordinates. 𝑡𝑖
∗ is a  

4-dimensional vector representing the coordinate value of the ground-truth box corresponding to the positive 

anchor. 𝑁 is the number of anchor boxes taken out for consideration, 𝜆 is the equilibrium coefficient (=1). 

𝐿𝑐𝑙𝑠 is the loss cross-entropy of 2 classes (Object and non-object), 𝐿𝑟𝑒𝑔 uses SmoothL1Loss. 

 

2.2.  PDIWS dataset 

PDIWS [2] is a rare thermal image dataset for human detection in intrusion warning systems. The 

special feature of this dataset is that it is artificial data, synthesized by the method of image editing in the 

gradient domain. Each image in the dataset is made up of a human subject with an intrusive pose and a 

background. The detailed specification of the dataset is described in Table 1. Accordingly, the data set 

includes 2,000 training images and 500 test images in a ratio of 80:20. Note that the subjects in these two 

subsets are completely distinct, so it ensures randomness when testing. In addition, the subjects are also 

scaled in different proportions before being glued to the background, so it describes the various distances 

from the camera to the subject. Figure 3(a) shows an example of a creeping subject, Figure 3(b) shows an 

example of crawling subject, Figure 3(c) shows an example of stooping subject, Figure 3(d) shows an 

example of a climbing subject, and Figure 3(e) show an example of other subject in the dataset. In this paper, 

we divide the training set of the PDIWS dataset into two parts: training (1,750 images) and validation (250 

images) at a ratio of 7:1, evenly distributed across classes. The purpose of this is to observe and evaluate the 

training process to decide to stop at the right time to avoid overfitting. 
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Table 1. PDIWS dataset description 
Dataset specification 

Total number of training images 2,000 

Total number of test images 500 

Number of classes 5 

Number of subjects 1,000 

Number of backgrounds 50 

Image resolution 320x240 

Synthesis method Poisson editing 

Camera type Testo 875-2i 

Field of view 32°x23° 

 

 

 
 

Figure 3. Example subject images in PDIWS dataset. (a) Creeping, (b) Crawling, (c) Stooping,  

(d) Climbing and (e) Other 

 

 

3. METHOD 

In this section, we describe in detail the architecture of the proposed model, the backbone width 

search algorithm, and the criteria for method/model evaluation. An overview of the proposed method is 

shown in Figure 4. The core part of the object detection algorithm is Faster R-CNN with the feature extractor 

based on ResNet50 highlighted in orange. The neural network architecture search algorithm named random 

width search is represented by curved orange arrows.  

 

 

 
 

Figure 4. The architecture of the proposed backbone width search for object detection is based on Faster R-

CNN and ResNet50 

 

 

3.1.  Object detection architecture 

The proposed object detection architecture is based on Faster R-CNN. We divide this architecture 

into three parts for the convenience of description: feature extractor, region proposal network and output 

classifier (including region of interest (ROI) pooling and classifier). First, the input image is passed through a 

feature extractor to discover the features of the image. In the proposed architecture, the feature extractor is 

chosen as ResNet50 because it is popular in the object detection task along with visual geometry group 
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network (VGG). We add a factor called width scale (w) to modify ResNet50 architecture as shown in Table 2 

with the note that the number of output channels is the smallest upper bound divisible by 8. The output of the 

feature extractor is 2,048 feature maps with the size of each map reduced by 32 times in each dimension 

compared to the input. This 2048 feature map will go in two directions, one goes into the region proposal 

network and the other goes into the ROI pooling layer.  

 

 

Table 2. Proposed ResNet50 architecture with width scale 
Layer name Kernel size Output channels Number of blocks 

conv1 7×7 64×w 1 

conv2_x 

1×1 64×w 

3 3×3 64×w 

1×1 256×w 

conv3_x 

1×1 128×w 

4 3×3 128×w 

1×1 512×w 

conv4_x 

1×1 256×w 

6 3×3 256×w 

1×1 1,024×w 

conv5_x 

1×1 512×w 

3 3×3 512×w 

1×1 2,048×w 

fully-connected - 1,000×w 1 

fully-connected - 5 1 

 

 

At the region proposal network, at each pixel in the feature map, it is further fed into the convolution 

layer to generate feature vectors of length 256. The number of feature vectors is equal to the number of 

predefined anchor boxes. Then, a fully-connected layer is used to predict the object's presence and bounding 

box according to each anchor box. These predictions are then fed into ROI pooling to remove overlapping 

regions of the same object. An important point in the RPN network is the anchor box. They are usually 

preselected according to the size and proportions of the objects contained in the training data. In the proposed 

method, the recommended anchor boxes are 15 types with aspect ratios of 0.5, 1.0, and 2.0. 

Finally, the output classifier with ROI pooling and classifier is activated. The predicted bounding 

boxes then capture corresponding regions in the 2,048 feature maps. The non-maximum suppression (NMS) 

algorithm is then utilized to remove boxes containing the same object. Then the filtered boxes are reshaped to 

7×7 by the ROI pooling layer before passing through the classifier. The classifier is a fully-connected layer 

that projects the class of the object. Loss functions for the proposed method are the same as the original faster 

R-CNN described in section 2.1. 

 

3.2.  Backbone width search algorithm 

This is the most important part of the proposed method. As argued in the Introduction section, 

scaling the neural network in breadth is advantageous for inserting feature pyramid networks, which have 

recently been widely advertised. Therefore, we propose a simple solution to scale the width with the essence 

of changing the number of output channels of each hidden layer in the neural network. Our algorithm is 

described in Algorithm 1 as follows,  

 

Algorithm 1: Backbone width search 
input: width_scale ~ U{num_of_trial, 0; 

1}, num_of_epoch, 

model=Faster_RCNN, backbone_hist=[ ] 

for interation = 1 to num_of_trial do: 

backbone.layer.out_channel *= 

width_scale[interation] 

if backbone in backbone_hist then: 

continue 

end if 

backbone_hist.add(backbone) 

for epoch = 1 to num_of_epoch do: 

loss_dict = model.train() 

mAP, num_of_param, MACs = model.eval() 

model.save() 

log.save(loss_dict, mAP, num_of_param, 

MACs) 

end for 

end for 

output: model, log 
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Accordingly, we have to predetermine the number of trials (num_of_trial) and select width scales 

following the uniform distribution U(0;1). At each value of the width scale, we rebuild the backbone by 

multiplying the number of output channels of each hidden layer with the width scale. The resulting network 

architecture is saved to check for duplicates in subsequent attempts. Then the model is trained from scratch 

with the new architecture and then the model along with the loss dictionary, mAP, number of parameters, and 

number of MACs values will be saved. In this paper, we choose 10 trials for simplification. The 

configuration parameters for the training process will be presented in the results section. 

 

3.3.  Evaluation criteria 

3.3.1. Mean average precision (mAP) 

In binary classification, the model assigns prediction scores to samples. Categorization into classes 

depends on a set threshold. If the score meets or exceeds the threshold, the sample is in one class; otherwise, 

it's in the other. Positive classification occurs when the score is at or above the threshold; negative 

classification applies when the score falls below it. We use the terms precision and recall to evaluate the 

performance of the binary classification for each class as shown in Figure 5,  

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 (2) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 (3) 

 

 

 
 

Figure 5. Illustration of binary classification predictions  

 

 

Of course, we want a model to have high precision and high recall. To take into account both 

metrics, we use the precision-recall curve, which is a plot of the precision (y-axis) and the recall (x-axis) for 

different probability thresholds. Then we compute average precision (AP) by averaging the precision values 

on the precision-recall curve where the recall is in the range [0,1],  

 

𝐴𝑃 = ∑ 𝑝 (
𝑖

𝑁
)𝑁

𝑖=0   (4) 

 

where N denotes the number of thresholds and p(r) denotes the value of the precision when the 

recall is equal to r. The mAP is calculated by the mean of AP values over all classes. 

 

3.3.2. Number of parameters and multiply-accumulate operations (MACs) 

For a fully-connected layer, given the number of input neurons is a and the number of output is b. In 

this case, the number of parameters and MACs is determined by,  

 

𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠𝐹𝐶 = 𝑎 × 𝑏 (5) 

 

𝑀𝐴𝐶𝑠𝐹𝐶 = 𝑎 × 𝑎 × 𝑏 (6) 

 

For a 2D convolutional layer, given the input is a×a×n, output of b×b×m and kernel size is k×k. 

Then the two terms parameters and MACs are defined by,  
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𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠𝐶𝑁𝑁 = k × k × n × m (7) 
 

𝑀𝐴𝐶𝑠𝐶𝑁𝑁 = k × k × n × b × b × m (8) 
 

 

4. RESULTS AND DISCUSSION 

Our experiments are performed on the PDIWS dataset with the following training parameters: 

number of epochs (100), batch size (2), learning rate (0.005), momentum (0.9), optimizer (Adam). They are 

executed using Pytorch framework on a computer with Intel i7 12700F CPU, 16 GB RAM, and 24GB Nvidia 

GeForce GTX 3090 GPU. We first present the results of the backbone architecture search Table 3 with the 

criteria mAP_50 is mAP at IoU=0.5, mAP_75 is mAP at IoU=0.75 and mAP_coco is the average mAP with 

IoU=[0.5, 0.95] with step 0.05. As expected, architectures with small-width scales perform worse than larger 

ones. This can be explained by the small size of the model, the number of neurons is not enough to learn the 

necessary features. Meanwhile, network architectures larger than a certain threshold will not improve 

performance. Specifically, width scale values greater than 0.5 results in mAP_50 not being too different. The 

mAP value increases gradually as the width scale increases but does not exceed 47.55%, the increased 

amplitude is only approximately 2%. This trend is also present in mAP_75 and mAP_coco. Meanwhile, with 

a width scale of less than 0.5, the survey mAP values decrease exponentially as the width scale decreases 

from 0.5 to 0.1. On a scale of 0.1, the value of mAP_50 is only 18.17%, mAP_75 is 16.05%, mAP_coco is 

13.54%, all extremely bad. In addition, for the number of parameters and MACs, the architectures searched 

had the number of parameters in million (M) exponential to the width scale (0.55M at 0.1 and 55M at 0.1). 

The number of MAC operations follows a similar trend, and varies in the form of an exponential function. 

 

 

Table 3. Performance comparison between different searched model width 
Model width 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

mAP_50 (%) 18.17 30.24 39.29 42.71 45.23 45.42 45.78 46.07 46.28 47.55 

mAP_75 (%) 16.05 28.4 37.85 41.01 43.32 43.61 44.00 43.98 44.78 46.24 

mAP_coco (%) 13.54 24.87 34.76 38.33 40.51 40.36 40.97 40.86 41.85 42.61 

Parameters (M) 0.55 2.12 4.99 8.89 13.79 19.76 26.99 35.35 44.82 55.15 

MACs (B) 0.08 0.28 0.62 1.13 1.89 2.89 4.09 5.54 7.31 9.48 

 

 

Visualization of the table results can be found in Figure 6. Here, we can easily observe the trend of 

the criteria when the width scale changes. In order to choose a suitable scale, some threshold values must be 

predefined. In this paper, we think that the mAP_50 value must be above 45% for the model to be called 

good because this is the near-convergence value of the model. Therefore, from Figure 6, we choose a width 

scale value of 0.5 as the best value with mAP_50 reaching 45.42%, mAP_75 reaching 43.32%, mAP_coco 

reaching 40.51%, the number of parameters is 13.79M and the number of MAC operations is 1.89 billion (B). 

In addition, we can also choose another threshold value such as model size if the hardware is constrained or 

inference time if it requires real-time calculation. 
 

 

 
 

Figure 6. Visualization of search results 
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To increase the credibility of the obtained model as well as of the proposed method, comparative 

experiments were conducted. Table 4 summarizes the mAP values (at IoU=0.5), the number of parameters, 

MACs and inference time of various methods/models with different backbones. Specifically, the 

methods/models selected for the survey are well-known names such as single shot detection (SSD) [24], fully 

convolutional one-stage (FCOS) [25], you only live once version 3 (YOLOv3) [26]. Following them are 

popular backbones such as VGG-16 [27], ResNet50 [20], and MobileNet-V2 [28]. The results show that the 

criteria have trade-offs, so we should have a metric to compare the methods and choose the best one. Figure 7 

shows some example results on test set with labeled bounding boxes over all classes.  

 

 

Table 4. Comparison between the obtained model with other object detection methods 
Method Backbone mAP (%) Parameters (M) MACs (B) Inference (s) 

Faster R-CNN VGG-16 45.76 23.92 41.45 0.647 

Faster R-CNN MobileNet-V2 37.48 4.35 1.64 0.036 

Faster R-CNN ResNet50 47.55 55.15 9.48 0.216 

SSD VGG-16 40.48 23.84 41.12 0.374 

SSD MobileNet-V2 34.73 4.21 1.45 0.027 
SSD ResNet50 43.39 54.84 9.22 0.127 

FCOS VGG-16 41.73 23.81 41.06 0.329 

FCOS MobileNet-V2 33.94 4.18 1.42 0.018 
FCOS ResNet50 43.43 54.85 9.13 0.105 

YOLOv3 VGG-16 44.17 23.72 40.85 0.246 

YOLOv3 MobileNet-V2 36.76 4.12 1.32 0.012 

YOLOv3 ResNet50 47.15 54.62 8.94 0.062 

Proposed 
0.5 ResNet50 45.23 13.79 1.89 0.068 

0.6 ResNet50 45.42 19.76 2.89 0.071 

 

 

 
 

Figure 7. Examples of predicted bounding boxes over five classes in a test set 

 

 

5. CONCLUSION 

We have proposed a new and simple backbone architecture search method for object detection based 

on Faster R-CNN and ResNet50. The proposed method is performed on the PDIWS dataset so that it can be 

deployed on intrusion warning systems. The obtained model exhibits object detection with over 45% mAP 

with only 13.79M parameters and 1.89B MAC operations, outperforming other model scales. Comparative 

experiments with classical methods are also performed to evaluate the value of the obtained model. In 

summary, this work has contributed to supplementing theory and experimental results for the trend of object 

detection model optimization. 
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