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 Chemical engineers' formulation, development, and stance processes all 

heavily rely on models. The physical and economic consequences of these 

decisions can have disastrous effects. Attempts to employ a hybrid form of 

artificial intelligence for modeling in various disciplines. However, they fell 

short of expectations. Due to a rise in the amount of data and computational 

resources during the previous five years. A lot of recent work has gone into 

developing new data sources, indexes, chemical interface designs, and 

machine learning algorithms in an effort to facilitate the adoption of these 

techniques in the research community. However, there are some important 

downsides to machine learning gains. The most promising uses for machine 

learning are in time-critical tasks like real-time optimization and planning that 

require extreme precision and can build on models that can self-learn to 

recognize patterns, draw conclusions from data, and become more intelligent 

over time. Due to their limited exposure to computer science and data analysis, 

the majority of chemical engineers are potentially vulnerable to the 

development of artificial intelligence. But in the not-too-distant future, 

chemical engineers' modeling toolbox will include a reliable machine learning 

component. 
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1. INTRODUCTION 

For the past 130 years, mathematical modelling has been a crucial tool in chemical engineering, allowing 

engineers to quickly identify and design chemical processes [1], [2]. Keeping up with the ever-changing demands 

of today's world is harder than ever. No matter if you're trying to discover and synthesize active pharmaceutical 

ingredients to treat new diseases or increase process efficiency to conform to stricter environmental legislation, 

the ability to predict the outcomes of certain events is essential. The efficiency of a chemical interaction, the 

choice of a reactor, and the regulation of a heat source are all examples. Theories that have been refined over time 

of several centuries, one can make predictions [3]–[5]. Consequently, for reasonable processes, several of these 

models can somehow be modeled mathematically and necessitate a great deal of supercomputing capacity to solve 

numerical results. Because of this limitation, most engineers resort to more elementary models when attempting 

to explain the world around them. Prandtl's boundary layer model [6] is a notable example of a model from the 
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past that is still useful today. Scientists and engineers in the field of computational chemistry often compromise 

precision for the sake of efficiency. It is because of this openness that concentration structural functionalism has 

become so widely used in place of more advanced theoretical models. 

On the other hand, there are many scenarios where greater precision is preferred. Scientists and 

engineers in the field of chemical technology now has access to a wealth of data collected over many years of 

modeling, simulation, and experimentation, giving researchers an additional modeling tool in the form of the 

ability to draw on prior experience to make predictions. To put it simply, machine learning models are a subset 

of statistical and mathematical models that can "learn" from data by watching their environment and 

"uncovering" relationship between the data without the usage of predetermined rules. Figure 1 shows the block 

diagram explains the working of machine learning algorithm. 

Machine learning is an AI subfield (AI). Definition of artificial intelligence (AI): the computer's 

ability to mimic human thought and behavior in certain situations. The study of these topics is not a cutting-

edge endeavour. The term "artificial intelligence" was first used in 1956 at a summer meeting at Dartmouth 

College, USA, attended by mathematicians interested in developing smarter robots.  

Efforts to implement AI in the field of chemical engineering didn't begin to gain traction until well 

after the year 2000 [7]. Rule-based expert systems, one of the earliest and most basic types of AI, saw increased 

use in the field during the 1980s. The field of machine learning had already begun to expand by that point, but 

with a few notable exceptions, the chemical engineering community lagged behind by roughly ten years. 

During the 1990s, there was a rapid uptick in articles on artificial intelligence progress in the field of chemical 

engineering due to the widespread use of cluster analysis, optimization computation, and, most effectively, 

artificial neural networks (ANNs) (ANNs). However, this fad did not last, and experts point to the absence of 

potent modelling and the challenging charge of developing the algorithms as potential reasons. In the past ten 

years, advancements have been made in deep learning, a branch of machine learning that builds ANNs to 

simulate the human brain. While ANNs did see increased adoption in the 1990s, the advent of the deep learning 

era made it possible to develop multi-layered neural networks, or "deep neural networks," which had previously 

been computationally prohibitive.  

Chemical engineers were set off by these innovations, as evidenced by the meteoric rise in related 

research papers. The question of whether or not artificial intelligence techniques have advanced to the point 

where they can be considered a typical chemical engineering tool [7]–[9]. In this review article, we will begin 

by providing an overview of the three major links that currently exist in machine learning as it relates to 

chemical engineering. We will examine the benefits and drawbacks of machine learning in chemical 

engineering, presenting a set of hypotheses explaining why machine learning might be useful in the field of 

chemical engineering, will continue to either be a "hot" topic or become obsolete in the near future. 
 

 

 
 

Figure 1. The block diagram explains the working of machine learning algorithm 
 

 

2. MACHINE LEARNING; DATA, REPRESENTATIONS, AND MODELS 

Machine learning relies on three main components: data, representations, and models. In order to train 

a machine learning model, it is necessary to first collect the necessary training data. We'll get into how the data 

ends up being the machine learning process's biggest flaw in its own right later on. All sorts of data, from 

experiments to theoretical findings to simulation results, can be used to train a model. However, due to the high 

cost of data collection in massive quantities, it is common practice to employ big data, which involve the use 

of large databases culled from a variety of existing sources. Because of the high cost of conducting actual 

experiments, to get such enormous amounts of data, experts use quick algorithms or information extraction of 

trademarks and publications. Due to researchers' growing comfort with using digital tools, there are now many 

free and paid databases available to them [10]–[12]. In order to compare the performance of different machine 

learning models, several benchmark datasets have been created. Standard reference materials for quantum 

chemical properties include QM9 and Alchemy [13], while standard reference materials for solubility include 

estimated SOLubility (ESOL) [14], and FreeSolv [15]. Before incorporating a dataset into a model based on 

machine learning, there are a number of checks and checks and balances that need to be carried out to guarantee 

adequate system performance. Data curation refers to the process of monitoring and maintaining data quality 

at every stage, from creation to archiving. When it comes to how they utilize data, machine learning and deep 

learning approaches differ significantly from more conventional forms of modeling. To begin with, ANNs are 



Int J Artif Intell  ISSN: 2252-8938  

 

Application of machine learning in chemical engineering: outlook and perspectives (Ashraf Al Sharah) 

621 

capable of self-learning and training, but this process requires a large amount of data. Therefore, enormous 

amounts of data points are typical in training datasets. Second, instead of dividing the dataset in half, it is 

divided in three: the training set, the validation set, and the test set. In contrast to training data, verification data 

is kept separately used to objectively assess the training phase model's accuracy. The test set is the main 

indicator of model quality because it evaluates the final model fit with unseen data [9], [10], [16]. 

A machine learning method's representation of data in the model is also essential. Even when the data is 

already numeric, the model's performance can be greatly affected by the variables or features chosen to comprise the 

input. The process of feature selection has been the subject of research in a number of published works [9], [17]. 

Time and money could be saved by reducing the number of features used in training if the model's accuracy is not 

compromised. Deep learning methods weigh feature selection less. Thus, convolution layers of basic process 

variables [18]–[20]. Representing non-numerical data such molecules and reactions is much harder. 

Molecules and/or chemical reactions are frequently involved in chemical engineering tasks. Until reliable 

numerical representations of these datasets are established, they cannot be used. Common methods of representing 

molecular structure in software include line-based identifiers like the simplified molecular-input lineentry system 

(SMILES) or the international union of pure and applied chemistry (IUPAC) international chemical identifiers 

(InChIs) [21], [22] or as three-dimensional (3D) coordinates. 

Recently, a molecular string representation tailored to machine learning applications called self-referencing 

embedded strings (SELFIES) [23] has been developed. As input to a deep neural network or other machine learning 

model, the molecular data is transformed into a feature vector or tensor. The molecular weight, dipole moment, and 

dielectric constant are examples of good molecular descriptors that can be used to represent molecules [24], [25].  

The 3D geometry of the molecule can also be used as a starting point for generating a feature vector. 

Examples of geometry-based representations include coulomb matrices [26], bond bags [27], and distance, angle, 

and dihedral histograms [28]. Nonetheless, many uses don't have access to 3D coordinates or calculated properties. 

When this is the case, so-called topology-based representations can be built from a molecular graph [29]. 

The only form of identification possible in topological representations is a line label. Natural language 

processing (NLP) techniques can be used by some encoders to directly convert the line-based identifier into a 

representation [30], [31]. This is accomplished by adding some simple characteristics to the linear combination, such 

as particles and interactions, and then passing data back and forward between them in an incremental way [32]. 

Some of the earliest molecular representations used in machine learning were circular fingerprints [33], 

[34] constructed using the Morgan algorithm [35], including the extended-connectivity fingerprint [36]. Due to the 

fact that they remain unchanged throughout the machine learning model's training process, these fingerprints are 

known as fixed molecular representations. They continue to be widely used in drug design because of their speed 

and accuracy in predicting physical, chemical, and biological properties of potential new drugs [37]. Given that the 

definition of a deep neural network assumes it will learn the important features, a fixed representation vector's use as 

an input layer seems at odds with this assumption [38], [39], so the focus has shifted from manually engineering the 

feature vector to learning how to represent a molecule [40]. To aid in this foresight, a model is constructed that 

incorporates learned molecular representations. Through training, a molecular representation is constructed and 

refined, beginning with elementary properties of molecules like heavy atoms, bond types, and ring features. 

This choice also hints at the fact that there are different molecular representations suitable for different 

kinds of prediction jobs. Gilmer et al. [41] summarize the message-passing neural network framework, which is used 

to characterize a variety of learned topology-based representations [40]. An important feature of message-passing 

neural networks is the weighted transfer of atomic and bond information across the molecular graph. Even though 

many representations exist, their levels of complexity range widely, and no single representation has been developed 

to work for all types of molecular properties [42], [43]. When compared to molecules, chemical reactions are much 

more complex. Reactions can be identified using line-based molecular identifiers like reaction SMILES [44] and 

reaction InChI (RInChI) [45], while reaction mechanisms can be determined using the SMIRKS [44] system. Like 

molecular interactions, chemical reactions can be vectorised for incorporation into machine learning models. For the 

quickest and easiest results, begin with the molecular descriptors (such as fingerprints) of the reagents and add, 

subtract, or concatenate [46], [47]. An alternate approach is to memorize a representation of the reaction that is built 

around the atoms and bonds that are actually involved in the process. A neural machine translator can be used to 

translate the names of organic reaction products that have been stored as text (typically InChI) [45], [48]. 

The final step in any machine learning procedure is a modeling strategy. There are many different 

kinds of machine learning models. While regression and classification are two of the most common uses for 

models, there are other classification schemes available, such as those based on various forms of machine 

learning (unsupervised, supervised, active, or transfer learning) [49], [50]. As commonly understood machine 

learning can be thought of as any method that implicitly models correlations within datasets. Accordingly, 

many of the techniques we now refer to as machine learning were in fact employed for some time before the 

term was coined to describe them. Two such methods are principal component analysis (PCA) and the Gaussian 

mixture model, both of which emerged in the late 1800s [51] and early 1900s [52]. These two use-cases are 

now formally represented as unsupervised machine learning algorithms. Many unsupervised clustering 
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methods exist, including t-distributed stochastic neighbor embedding (t-SNE) [53] and density-based spatial 

clustering of applications with noise (DBSCAN) [54]. The goal of unsupervised learning is to train a model 

without giving the algorithm any "solutions" or "labels" to work with as it discovers patterns on its own. 

Unsupervised learning techniques have found a number of uses in chemical engineering. Palkovits R and S 

Palkovits [55] used the k-means algorithm [56] to classify groups of catalysts, and t-SNE was used to visualize 

the resulting high-dimensional representations. t-SNE has been implemented in several different fields outside 

of catalysis, including chemical process fault diagnosis [57] and reaction-state prediction [58]. Principal 

component analysis (PCA) is another dimensionality reduction algorithm commonly used by chemical 

engineers to find the features that best explain the data in the training set [59]. Additional applications of PCA 

include the detection of outliers [60]. Other algorithms for spotting anomalies include deep belief subspace 

analysis (DBSCAN) and long short-term memory (LSTM) [61]. 

Supervised classification methods like decision trees (and, by extension, random forests) can be used 

[62] when the dataset is labelled, meaning the correct classification of each data point is known. Alternative 

supervised classification strategies include support vector machines [63]. While initially developed for 

classifying data, support vector machines have since had their functionality expanded to also perform 

regression. Although in principle any supervised learning method can be incorporated into an active learning 

approach, it is necessary to use supervised or active learning techniques for regression problems. ANNs, in 

their many forms [64], [65] are the method most commonly associated with machine learning. Feed-forward 

ANNs are used for feature-based classification and regression, while convolutional neural networks are used 

in image processing, and recurrent neural networks are used in natural language processing (for anomaly 

detection). It is possible for a chemical engineer to come across ANNs [66], [67] support vector machines [63], 

or kernel ridge regression [68] used to predict the properties of the representations, as well as convolutional 

neural networks used to represent molecules [69]. Many applications in catalysis [70], chemical process control 

[71], and chemical process optimization [72] have used ANNs as a black-box modeling tool. For example, k-

nearest neighbors has been implemented in applications such as chemical process monitoring [73] and catalyst 

clustering [74] because it is effective at classifying data when the labels are already known. Figure 2 shows 

three main connections between machine learning and chemical engineering.  

Recent advances have provided ways to counteract some of the most significant criticisms of machine 

learning methods, while the methods' much strength open up a wide range of potential applications. Nearly all 

trained machine learning methods have exceptionally fast execution speeds, making them ideal for use cases 

where precision and throughput within strict system constraints are paramount. High-frequency, real-time 

optimization and feed- forward control of processes are two examples of such uses [75], [76]. Although detailed 

fundamental models are usually not fast enough to avoid computational delays, empirical models are often 

inaccurate for these applications. By being trained on the same fundamental model, machine learning models 

can rival the accuracy of empirical models while only requiring a fraction of the processing power. Here, a 

model is trained using high-level data to estimate the discrepancy between the observed result and the correct 

one [77], [78]. It has been shown that unsupervised algorithms are superior to supervised ones for spotting 

anomalies in real-time data, which is useful in process control applications. Better digital twins and improved 

control could lead to more productive chemical processes if faster, more precise predictions were combined 

with trustworthy industrial data [79], [80]. 

The same holds true for multiscale modeling approaches, where phenomena are modeled at multiple 

scales. This leads to an extremely intricate and tightly coupled system of equations. Machine learning's 

potential in such contexts is highly context-dependent. Machine learning is not recommended if the goal is to 

gain fundamental insights into the lower scale phenomena because of its black-box nature. With the 

incorporation of the lower dimensions into the strategy to create a more appropriate prediction for grander scale 

processes [81]–[83], machine learning has the potential to substitute the slow core frameworks for the smaller 

scales without harming the comprehensibility of the larger scale behaviours. 

One last chance can be found in fixing machine learning's most serious shortcoming: its inability to 

be understood by humans. As it turns out, chemical engineering problems aren't the only ones where the 

problem of interpretable machine learning systems arises [83]–[85]. In the area of catalysis, researchers have 

tried to put numbers on just what it is that machine learning models pick up on [86]. Despite this effort, no 

direct interpretation of the model results is provided. The flow process that can be used to describe how and 

why a certain end result is reached, with a good result from the model, like the correct product from a chemical 

reaction predictor, should not be blindly accepted without first investigating the model's assumptions. It is 

helpful to get a sense of the model's confidence in its own decisions by first quantifying the individual 

prediction uncertainties and then moving on to the model's output [87]–[89]. Ensemble modeling is one easy 

method for doing so. For decades, meteorologists have relied on this method, which can be used in tandem 

with practically any model [90], [91]. Several algorithms have also been developed to ascertain the extent to 

which particular input features affect the output, or to ascertain the training points used by the model to produce 
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a particular output [91], [92]. Given that human interpretation of the molecular fingerprints used as input to 

very complex recurrent neural networks is already a formidable challenge, the task of interpreting the output 

of such a model becomes even more so. In risk management, the as low as reasonably practicable (ALARP) 

principle is widely applied. A similar "as simple as reasonably possible" principle could be proposed for 

machine learning models to ensure they are as interpretive as possible [83], [93]. 

The fields of chemical chemistry and chemical engineering have seen a rise in the popularity of 

machine learning techniques because they can find trends in data that human researchers miss. Contrary to 

mathematical model, which are based on clear physical formulas, machine learning models are not intended to 

tackle a particular issue (resulting from discovered patterns). In contrast, physical models can be thought of as 

representations of the real world. This indicates that solving classification problems does not necessitate the 

programming of a single explicitly defined decision function. Accordingly, solving regression problems does 

not necessitate deriving or parameterizing specific model equations [83], [91]. These advantages allow for 

efficient upscaling to large systems and datasets without requiring a large amount of computing power. 

Predicting quantum chemical properties using machine learning has seen a recent uptick in interest. 

Calculating the characteristics of an individual atom using traditional ab initio approaches might take 

many up to several hours. Machine learning algorithm that has been properly trained can make precise 

predictions in a nanosecond. No doubt, other fast methods that can make accurate predictions have already 

been developed; however, in comparison to machine learning models, the application range for these methods 

is quite limited [94]. Machine learning's biggest shortcoming is that it can't extrapolate, but its usefulness can 

be greatly increased by simply analyzing more data. Using active learning [95], we can increase the scope with 

comparatively little additional information. This works wonderfully in situations where labels are costly to 

obtain (such as in quantum chemical calculations [96] or chemical experiments [97]). The amount of new data 

needed to increase the range can also be decreased with the help of active learning. In addition, preexisting 

machine learning models like ChemProp [98] and SchNet [99] can be utilized without the need for training or 

education. The accessibility of machine learning has increased thanks to the development of scikit-learn [100] 

and TensorFlow [101], as well as Keras [102] and PyTorch [103]. Because of these frameworks, deep learning 

model training is limited to a manageable number of lines of code. Since these libraries and frameworks already 

exist, scientists can focus on the implications of their work in the real world, rather than wasting time on 

developing abstract simulations [83]. Figure 3 shows the use of machine learning for predictive modeling in 

chemical engineering: opportunities, and benefits. 
 
 

 
 

Figure 2. Three main connections between machine learning and chemical engineering, opportunities and 

benefits 
 
 

 
 

Figure 3. Use of machine learning for predictive modeling in chemical engineering: opportunities, and 

benefits 
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3. CHALLENGES AND DRAWBACKS 

The scientific community benefits and faces risks from the widespread availability of machine 

learning models. Machine learning has the potential to benefit anyone with some programming experience, but 

it also leaves it vulnerable to abuse by those who don't have a thorough understanding of the underlying 

algorithms [91], [104]. Parameter and hyper parameter space in contemporary machine learning algorithms is 

vast. Even for the most experienced professionals, machine learning is largely a trial-and-error process. Some 

people view machine learning as a type of contemporary alchemy because researchers are frequently unwilling 

to actually identify how one system operates whereas other doesn't really [105]. While the fields of chemistry 

and chemical engineering are not as vulnerable to a reproducibility crisis as the social sciences [106], growing 

scepticism in the community may be a result of the increasingly irreproducible use of machine learning. After 

reaching the peak of exaggerated expectations [107] in Gartner's hype cycle [108], machine learning and deep 

learning now face the prospect of entering a period of disillusionment where interest is all but dead. Not 

properly understanding the results of algorithmic analyses is just as risky [83]. It can be very difficult to 

understand the reasoning behind an algorithm's output because of how opaque the algorithms themselves are. 

However, sometimes a model will get the right answer for the wrong reasons [87]. This means that researchers 

employing machine learning must keep in mind a fundamental statistical principle: Relationships, not 

causation, are what matter most. The misuse of a machine learning model occurs when it is applied to a setting 

for which it was not intended. 

Limitations on applicability result from the information that was used during training. Researchers 

need to make sure they're covering all of the bases by testing over a wide enough range. A user should be aware 

that the model's performance will suffer if the points are outside the range [91], [109]. There are open-source 

programs that employ clustering algorithms for evaluating the data's credibility and its applicability in different 

settings [110]. The growing skill gap in machine learning (ML) threatens the widespread implementation of 

ML in chemical engineering study. When applying computer and data science to chemistry and chemical 

engineering, expertise in both the tool and the process at hand is required. Therefore, it is possible that 

elementary training in employing machine learning algorithms will be insufficient in the near future [83]. 

Instead, it will become increasingly important for undergraduates to have a firm grasp of AI and 

statistical methods in the field of chemical engineering. However, there needs to be more collaboration between 

IT professionals and other specialists. Researchers who aren't adequately prepared to use computational tools 

may make mistakes, and computer and data scientists who don't have enough background in the field may have 

to settle for subpar results. If experts in machine learning and chemistry worked together more often, this period 

of disillusionment could have been avoided [83], [111], [112].  

It's a big problem that many forms of machine learning aren't particularly open to inspection. When a 

certain set of parameters is provided, all of the procedures yield the same output. A model's statistical 

performance on a test dataset can provide inferences about the quality of the generated output. Analyzing the 

model's hyperparameters (such as the ANN's node count) can provide insight into the relationships the model 

has learned to make, but it can be a time- consuming process. Machine learning models, despite being fast and 

accurate, are therefore not a good option for modeling in explanatory research [113]–[115]. 

This lack of interpretability adds complexity to the task of designing an efficient machine learning 

model. Like any other model, the best machine learning model will have some degree of optimal overfitting 

and under fitting. The risk of overfitting is typically much higher for machine learning models than the risk of 

under fitting, with both factors depending on the quality and quantity of the training data and the complexity 

of the model. There is no way to avoid an over fitted model when attempting to use a polynomial of very high 

order to fit a (noisy) linear dataset. In deep learning, overfitting typically manifests as overtraining. This means 

that the model will store away meaningless blips of data rather than actual patterns. Comparing the model's 

performance on the training data to that on the validation and test data is a sure-fire way to spot overtraining 

[83], [116]–[118]. 

In the event that training performance greatly exceeds validation performance, the model may have 

been overtrained. Estimating the complete number of training iterations can be difficult. Similarly to other 

optimization problems, machine learning models require stopping criteria to prevent overfitting [119]–[121]. 

In most cases, machine learning models can perform quite accurately on the training dataset; rather, 

the difficulty lies in performing well on data that was not used to train the model. As a result, the validation 

dataset, which contains data that has not been used to train the model, should be used as the stopping criterion. 

It is standard practice in conventional modeling methods to use a separate, independent dataset called the test 

dataset to rigorously test the optimized dataset [113]–[115]. 

One last, often crucial, flaw in machine learning techniques is the data itself. According to the 

"garbage in-garbage out' (GIGO) principle [122], a network will produce garbage results if the dataset contains 

too many systematic errors. There are some mistakes that can be easily identified as to their cause or origin, 

while others, once they have been made, can be extremely challenging to track down. It's possible for outliers 
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to appear in any statistical technique. When compared to a large dataset, outliers have a greater impact on a 

model trained on a small dataset. Because of this, machine learning benefits from both high-quality data and 

large amounts of data. Manually removing these outliers from the dataset is one approach to dealing with 

systematic errors; alternatively, anomaly detection algorithms like principal component analysis, t-SNE, 

DBSCAN, and recurrent neural networks (LSTM networks) can be used. Anomaly detection methods based 

on self-learning unsupervised neural networks have recently been developed [83], [91], [114], [115].  

Many years of modeling, simulating, and experimenting have resulted in a massive amount of data 

for the chemical engineering community, but this information is typically locked away in private archives at 

universities and private companies. It is possible that even when data is readily available, such as from an 

internal database, the data is not optimal for machine learning. Text-mining methods used to extract 

information from scholarly articles and patents yield identical results [123]. For one thing, only positive results 

from experiments are typically reported, while negative results are often ignored. As a result of the engineer's 

superior wisdom and training, the chemical process is not subjected to absurd experimental or operating 

conditions. Machine learning algorithms, however, are unaware of these limitations, and excluding "trivial" 

data like this could have disastrous results. Figure 4 shows the use of machine learning for predictive modeling 

in chemical engineering: challenges and drawbacks. 

 

 

 
 

Figure 4. Use of machine learning for predictive modeling in chemical engineering: challenges and 

drawbacks 

 

 

4. CONCLUSIONS AND OUTLOOK 

In the last decade, machine learning has become an increasingly useful tool in the arsenal of a chemical 

engineer. There is a significant and expanding interest in machine learning among chemical engineers. The 

rapid processing times, adaptability, and user-friendliness of machine learning-based applications are all 

contributing to their growing popularity. 

The flip side of machine learning's rising popularity is the chance that it will be misused, or that 

chemical engineers will incorrectly interpret black-box results, leading to widespread scepticism. When people 

don't trust one another, it can cause problems on the playing field. Each of the three presented ideas has the 

potential to make machine learning models more credible and transform them into a more useful and 

trustworthy modeling strategy. 

First off, everyone in the community needs to be able to freely and unrestrictedly access the 

community's data and models. When researchers have access to high-quality data and open- source models, 

they are encouraged to use machine learning as a tool because it allows them to focus more on their research 

topic and less on the programming and data collection required for it. The second point, the creation of 

understandable models, is intrinsically linked to the first. New models for chemical applications often take 

their cue from preexisting algorithms, as machine learning is already well-established in other research fields. 

Therefore, instead of keeping things as black boxes, the field would benefit most from studying the 

reasons behind why a certain output is generated from a given input. As a final piece of guidance, consider 

using some of your resources to acquire a deep understanding of algorithmic theory. Understanding the 

computer science that lies behind the graphical interface is essential for any modeler, even though chemical 

engineers typically have very strong mathematical and modeling skills. This is due to the fact that the graphical 

user interface is employed to symbolize the information being modeled. In addition, this should make it 
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possible to specify the model's usable domain, which is crucial for figuring out whether the model is 

interpolating or extrapolating. Without a doubt, the most crucial consideration is the last one. Machine learning 

models should be trusted, but this is only possible if their credibility is monitored for any instances in which 

the model is being applied to data that was not included in its training set. 
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