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 The use of javascript object notation (JSON) format as a not only structured 

query language (NoSQL) storage solution has grown in popularity, but has 

presented technical challenges, particularly in indexing large-scale JSON 

files. This has resulted in slow data retrieval, especially for larger datasets. In 

this study, we propose the use of JSON datasets to preserve data in resource 

survey processes. We conducted experiments on a 32-gigabyte dataset 

containing 1,000,000 transactions in JSON format and implemented two 

indexing methods, dense and sparse, to improve retrieval efficiency. 

Additionally, we determined the optimal range of segment sizes for the 

indexing methods. Our findings revealed that adopting dense indexing 

reduced data retrieval time from 15,635 milliseconds to 55 milliseconds in 

one-to-one data retrieval, and from 38,300 milliseconds to 1 millisecond in 

the absence of keywords. In contrast, using sparse indexing reduced data 

retrieval time from 33,726 milliseconds to 36 milliseconds in one-to-many 

data retrieval and from 47,203 milliseconds to 0.17 milliseconds when 

keywords were not found. Furthermore, we discovered that the optimal 

segment size range was between 20,000 and 200,000 transactions for both 

dense and sparse indexing. 
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1. INTRODUCTION 

In the era of data explosion, the demand for javascript object notation (JSON) files as a not only 

structured query language (NoSQL) storage solution has surged. However, this growth introduces several 

technical challenges, especially regarding indexing techniques for large-scale JSON datasets. Since JSON files 

data often exceeds random access memory's (RAM) capacity, it is infeasible to query all data in a single access. 

Instead, an equal division of the data is necessary, with each segment queued in RAM for processing by the 

central processing unit (CPU), as illustrated in Figure 1. This research posits that retrieving for data by key 

eliminates the need to load all segments into RAM, thereby improving processing efficiency. Furthermore, the 

index file can help identify the segment containing data that matches the retrieve key, enabling the skipping of 

some segments when loading data into RAM and ultimately boosting performance. 
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Figure 1. The case of no index being made for a large dataset 

 

 

This study employs the JSON format to investigate indexing techniques for large-scale datasets in 

NoSQL systems. A review of related studies offers a comprehensive understanding of the state-of-the-art 

research in this area. Prior research on indexing has explored numerous applications, such as improving index 

efficiency. Chang et al. [1] proposed a keyword-index-based metadata search method for large-scale file 

systems, leveraging spatial locality and load characteristics. The proposed partitioning technique offers 

improved efficiency compared to non-partitioning methods. Chopade and Pachghare [2] proposed indexing on 

MongoDB's query performance and relevance in database forensics. The study highlights how indexing can 

significantly enhance efficiency by reducing document scan time, making it a crucial aspect of application 

development and forensic analysis. Yuan and Liu [3] proposed a two-level embedded k-Means algorithm for 

approximate nearest neighbor search, using multi-assignment operations and pruning strategies for efficiency. 

Experiments show improved performance, lower memory usage, and complexity compared to state-of-the-art 

approaches. Zineddine et al. [4] proposed a novel binary tree-based indexing structure to organize image 

properties (color, shape, and texture) for efficient large-scale image search. It introduces index construction 

and k-nearest neighbors (KNN) search algorithms, utilizing container concepts to enhance complexity 

performance evaluated on real data sets. Jin et al. [5] proposed adapting balanced tree plus (B+tree) and log-

structured merge-tree (LSM tree) index structures for zoned namespaces (ZNS) solid state drives (SSDs), 

which have lower overhead and over-provisioning costs but only accept sequential writes.  

Abdulkadhem and Assadi [6] proposed a geographic information system (GIS) based method for 

constructing important road landmarks using corner points and multimedia data. As a preprocessing step for 

roadmap discovery from video films, it aims to enable multimedia queries within the GIS environment. In 

addition, we have also studied research related to applying indexes. Alqatawneh [7] proposed a novel technique 

for orthogonal frequency-division multiplexing (OFDM) systems using zero-pilot symbols to transmit extra 

data bits without affecting channel estimation accuracy or system error performance. Minimum mean square 

error (MMSE) based detection is employed, and simulation results show improved system throughput and a 

lower error rate at high SNR. Mouneshachari and Pande [8] proposed an electroencephalogram (EEG) based 

emotion quantification index using KNN classification, enabling analysis of similarity and dissimilarity 

between individual signals and benchmark data. The results demonstrate the potential for understanding basic 

emotional feelings in individuals. Zeffora and Shobarani [9] proposed an adaptive attribute selection method 

for the random forest, considering structural changes in datasets. Applied to myocardial infarction data, it 

improves accuracy and avoids under/over-fitting. Tan and Lim [10] proposed a wireless fidelity (WiFi) sniffer-

enabled surveillance camera system with a 3-stage WiFi frame inspection filter, using WiFi signal strength for 

filtering and tagging media access control (MAC) address to video frames. This technique leverages metadata 

(smartphone MAC addresses) to prioritize video frame retrieval, reducing manual search efforts in public safety 

surveillance. Abdulsada et al. [11] proposed a practical multi-keyword similarity scheme for searchable 

encryption using compressed trapdoors generated via key-based hash functions. The scheme computes 

similarity scores through hamming distances and offers improved search efficiency and performance compared 

to existing methods while maintaining robust security. Finally, we also studied the relevant research on large-

scale data [12]-[29], exploring various techniques and applications in data retrieval, mining, and processing. 

Essential techniques include in-memory distributed indexing, internet of things (IoT), indexing and discovery, 

text mining, data clustering, and region-of-interest-based image retrieval. These studies improve data 

management, information extraction, and knowledge discovery in diverse domains such as media, internet of 

things (IoT), health, energy, and supply chain management, enabling more efficient and adequate decision-

making in large-scale data environments. 

The hypothesis of this research involves creating a dense index for one-to-one retrieves and a sparse 

index for one-to-many retrieves. This experiment aims to investigate how these indexing techniques can reduce 
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retrieving time. Additionally, we will explore the best segment size for efficient retrieving. The design process 

incorporated elements of relational dataset techniques, and we developed the research commands using Python. 

The results proved that the JSON files indexing technique for large scale datasets significantly improved data 

retrieval time. 

 

 

2. METHOD 

2.1.  Simulating large-scale dataset in JavaScript object notation files 

In this study, we generated a dataset named Bigdata.json, which consists of 32 GB and 1,000,000 

transactions. The dataset is formatted as a JSON file and includes fields such as First_name, Last_name, email, 

and hex data. These fields originate from transforming picture files into hexadecimal representations. The 

dataset's flexibility enables customization to meet specific research requirements. For instance, Figure 2 

illustrates some sample transactions from the dataset. 

 

 

 
 

Figure 2. Example transactions in JSON with a size of 32 GB and 1,000,000 transactions 

 

 

2.2.  Algorithm for retrieving without an index 

When handling large datasets in the form of NoSQL JSON files without indexing, the dataset, called 

Bigdata.json, is 32 GB and contains 1,000,000 transactions, as detailed in subsection 2.1 of this study. 

Importing all data into RAM simultaneously is impossible and challenging, making accessing and finding 

information problematic. This study presents a technique for retrieving and accessing information without 

indexing to address this issue. The pseudocode for retrieving without an index is displayed in Figure 3 and 

illustrated by a flowchart in Figure 4. This technique involves dividing the data from Bigdata.json into ten 

segments, each containing 3.2 GB and 100,000 transactions. It is important to note that during the process of 

segmenting Bigdata.json, the procedure does not involve splitting the file into ten separate files. Instead, it 

involves loading individually divided segments, one at a time, into the RAM. Afterward, the system retrieves 

information by retrieving each segment within the RAM. If the data matches the specified keyword, the system 

extracts and displays it after retrieving all segments. The retrieve covers all Bigdata.json segments. Although 

this technique helps retrieve and access data, it has significant drawbacks, such as consuming considerable 

RAM resources and processing power, leading to substantial delays. 

 

 

 
 

Figure 3. Pseudocode of retrieving without an index 

{ 
    "position": 1, 

    "First_name": "Luciana", 

    "Last_name": "Rodden", 
    "email": "Luciana.Rod@example.com", 

    "hex": "ffd8ffe000104a4649460001010100480048000..." (32MB) 

  },    ….  , 
  { 

    "position": 1000000, 

    "First_name": "Maryalice", 
    "Last_name": "Kosareff", 

    "email": "Maryalice.Kos@example.com", 

    "hex": "ffd8ffe000104a4649460001010100480048000..." (32MB) 

 } 

1. Import Bigdata.json and specify the keyword to search for. 

2. Divide Bigdata.json (size of 32 GB) into 10 segments. 

3. For each segment (i = 1 to 10):  

A. Load the segment i into RAM. 

B. Search for specified keyword in segment i. 

C. Retrieve the relevant data from segment i.  

4. Display final search result 
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Figure 4. Flowchart of retrieving without an index 

 

 

2.3.  Algorithm for retrieving by index 

This research presents an algorithm that enhances the time efficiency of retrieving and accessing data 

in large-scale NoSQL datasets by applying dense and sparse indices from relational databases to the 

Bigdata.json file. Figure 5 displays the pseudocode for retrieving by the index and Figure 6 illustrates the 

flowchart. The algorithm, optimized and divided into dense and sparse indexing for NoSQL datasets sized at 

32 GB, includes keywords and positions to enable efficient referencing from RAM to the data in the 

Bigdata.json file during a query using the retrieve-by-keyword technique. The command imports the large-

scale dataset, Bigdata.json, which is 32 GB and contains 1,000,000 transactions. The Bigdata.json file is 

divided into ten segments, each containing 100,000 transactions. We designate the first segment to correspond 

to positions of transactions 1 to 100,000, the second segment to positions of transactions 100,001 to 200,000, 

until the tenth segment represents positions of 900,001 to 1,000,000. Next, the algorithm checks the position 

of the transaction in each segment against the index file. If the position falls within the segment, the algorithm 

loads the segment into RAM and retrieves it using the keyword to find data matching the specified keyword. 

Upon finding a match, the algorithm retrieves and displays the data within the segment as the retrieved result. 

The size of segments utilized in the algorithm may be altered based on their appropriateness for a 

given dataset. The presented pseudocode serves as an illustrative example of one such configuration, assuming 

a segment size of 100,000 transactions. However, the experimentally determined optimal segment size will be 

reported in result and discussion section. To ensure the validity of our findings, we have provided detailed 

methodology and references supporting our approach. 

 

 

 
 

Figure 5. Pseudocode of retrieving by index 

1. Import files index_position.json, Bigdata.json and Keyword 

2. Divide Bigdata.json (size of 32 GB) into 10 segments. 

3. Search for key in index position.json to get position of Bigdata.json 

4. For segment i = 1 to 10 

A. If position is in segment i. 

A1. Load segment i into RAM 

A2. Search position in segment i 

A3. Retrieve the relevant data from segment i. 

B. Else, skip segment i. 

5. Display search result 
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Figure 6. Flowchart of retrieving in a large-scale dataset by index 

 

 

2.3.1. Dense index in a large-scale dataset 

Researchers have developed a dense index algorithm specifically designed for large-scale NoSQL 

datasets stored in JSON format to improve the efficiency of data retrieval for one-to-one data groups. This 

algorithm creates a dense index of positions for the dataset and utilizes the dense index file to ensure fast and 

effective data retrieval in large-scale datasets. The following sections offer a comprehensive explanation of the 

algorithm and its implementation, detailing the generation of dense indexing for the dataset and how the dense 

index file is employed to retrieve data from large-scale datasets. 

a. Generate dense indexing of position for dataset 

In this study, the term large-scale dataset refers to a simulation file set named Bigdata.json created by 

this study in subsection 2.1. The dense index is a file called Dense_index_position.json generated by scanning 

the Bigdata.json file once to extract non-repeating data in the field that choose to be key. This study contains 

the email and its corresponding position in the Bigdata.json file. This dense index file, which has a structure 

shown in Figure 7, is designed for efficient one-to-one referencing and data access. It contains email and 

position data, where position enables quick access to data from the Bigdata.json file set in RAM. The present 

study incorporates a dense index file, which measures 20 megabytes in size and contains 1,000,000 

transactions. 

 

 

 
 

Figure 7. Example transactions in dense index position.json 

 

{ 

  "Phillip.Headlon@smith.com": 1, 

  "Renetta.Marmon@simon.com": 2, 
  "Annalee@pinnaclewest.com": 3, 

    … 

  "Jonnie@pacificare.com": 1,000,000 

} 
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b. The use of dense_index_position. json for retrieving in a large-scale dataset 

Dense_index_position.json, which facilitates querying and accessing data in a large-scale NoSQL 

dataset stored as JSON. As described in (a. Generate dense indexing of position for dataset), the process is 

initiated by importing the Dense_index_position.json index file and the Bigdata.json data set, followed by 

setting email as the keyword for retrieving and accessing information, in accordance with Figure 7. Upon 

executing a retrieve operation in the Dense_index_position.json file, a position that corresponds to the given 

keyword is obtained. The file's size of 20 megabytes renders it highly efficient for prompt access. However, 

each keyword results in a single position in the dense index file, thus requiring the loading of only a segment 

of the entire index into the RAM for data retrieval. Conversely, when a keyword does not match any 

transactions in the dense index file, no position is retrieved, and therefore, no segment of the index is loaded 

into the RAM. 

 

2.3.2. Sparse indexing in large-scale dataset 

The primary goal of this study was to improve query times and streamline access to one-to-many data 

groups in a large-scale dataset stored in NoSQL JSON format. Researchers developed and implemented a 

sparse index algorithm to achieve this objective. This approach significantly enhances the efficiency of data 

retrieval and provides a scalable solution for managing large datasets. The following sections will delve into 

the specifics of the sparse index algorithm, its creation process, and its impact on data retrieval performance. 

a. Generate sparse indexing of position for dataset 

The present study defines the term large-scale dataset as the Bigdata.json file described in section 2.1. 

To create the sparse index file, named Sparse_index_position.json the Bigdata.json file is scanned once to 

extract unique data, using the first name as the chosen key field. This sparse index file set, as depicted in  

Figure 8, is designed to facilitate one-to-many data retrieve and access. It includes both the first name and its 

corresponding position data, where a single name may have multiple positions. The position data enables 

efficient referencing from RAM to data within the Bigdata.json file set. The use of the sparse index file set 

enables efficient data access by including both the first name and position data, where the latter facilitates 

efficient referencing to data within the Bigdata.json file set. The present study incorporates a sparse index file, 

which measures 8 megabytes in size and contains 5146 transactions. 

 

 

 
 

Figure 8. Example transactions in sparse index position.json 

 

 

b. The use of Sparse_index_position. json for retrieving in a large-scale scale dataset 

To query and access data within a large-scale NoSQL dataset in JSON format, one can utilize the 

sparse index file Sparse_index_position.json, as shown in Figure 8. This index file is particularly well-suited 

for querying and accessing one-to-many duplicate data within the sparse index files, beginning with the data 

import. The index file includes first names and their corresponding positions, which act as reference points to 

the data within the sparse index files stored in the RAM, leading to efficient query times. Subsection 2.1 and 

Figure 2 illustrate the process starting with the import of the Bigdata.json files. In this context, the first name 

is the primary keyword for retrieving and accessing information. When executing a retrieve operation using 

the Sparse_index_position.json file, the command retrieves a position related to the input keyword. The file is 

relatively small, at 8 megabytes, contributing to its remarkable efficiency in providing rapid access to the data. 

However, a keyword retrieve might produce multiple positions within the sparse index file. In such cases, the 

system must load several index segments into the RAM to extract the necessary data. Conversely, if a keyword 

fails to match any transactions in the sparse index file, the command retrieves no position, and as a result, the 

RAM does not load any index segment. 

 

 

3. RESULTS AND DISCUSSION 

This study evaluates the effectiveness of newly developed indexing techniques for NoSQL databases 

that store data in JSON files in retrieving data from large-scale datasets. Specifically, we compare the 

performance of dense and sparse indexes with and without indexing. We conducted the study using a personal 

{ 

  "Bowonsak": [46163, 66867, 88916, 94633, 130606, 150253, 185197, 189917, 214931, 999999], 

   … 

  "jirawat": [46153, 59781, 93151, 94460, 101100, 172271, 244064, 257080, 368397, 439620, 888888] 

} 
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laptop with a 3.3 GHz AMD Ryzen™ processor, 16 GB of RAM, and a 500 GB solid-state drive. We imported 

the large dataset utilized in this study, as described in subsection 2.1, from the Bigdata.json file. To obtain a 

representative sample, we randomly selected 524 transactions from the email and First_name fields, accounting 

for 0.05% of the total simulated transactions, and repeated this process three times. The study aims to 

investigate the time efficiency of data retrieval with and without indexing in the presence or absence of the 

specified data within the Bigdata.json file. We present the experimental results below. 

In the first experiment, we evaluated the efficiency of using dense indices for retrieving data from the 

Bigdata.json files by comparing the performance of one-to-one query and access times with and without a 

dense index. It is worth noting that all randomly selected keywords were present in the Bigdata.json file. The 

experiment aimed to examine the retrieve time efficiency of using dense indices compared to no indexing, 

focusing on the presence of keywords in the Bigdata.json file. Table 1 presents the experiment results that 

involved retrieving 524 keywords using a dense index. The study was conducted in three rounds, presenting 

the average retrieval time per keyword and round. These findings show that using density indexes can help 

reduce the time to retrieve data compared to not indexing. The average retrieval time per keyword with the 

dense index was 59.175 milliseconds; without indexing, it was 15,635.232 milliseconds. Across all three 

rounds, retrieval using a dense index had an average time of 31,008.210 milliseconds, while retrieval without 

indexing had an average time of 8,192,861.41 milliseconds. The dense index outperforms no indexing because 

it can skip unnecessary data and retrieve information only once. Moreover, it loads data into RAM once per 

keyword, reducing retrieval and processing time. In contrast, retrieval without indexing loads all keyword data, 

leading to significant memory space loss and substantially longer retrieval time based on the data size. 

The second experiment assessed the performance of one-to-one query and access times in the dataset 

using a dense index, compared to not using a dense index, with data from the Bigdata.json files. It is essential 

to mention that the Bigdata.json file did not contain all the randomly selected keywords. The study yielded the 

results of this experiment, as shown in Table 2. In situations where a keyword cannot be found, the retrieval 

time is limited to the time spent retrieving in the index file and does not involve retrieving in RAM. This is 

because there is no corresponding segment to be loaded and no position in the index to retrieve. The experiment 

was conducted using the retrieving by dense index method with 524 keywords for retrieval. The results show 

that the average retrieval time per keyword was 1.097 milliseconds, with an average retrieval time for all three 

rounds of 574.767 milliseconds. In contrast, the retrieving by no index in case not found method was used with 

the exact 524 keywords for retrieval. The results indicated that the average retrieval time per keyword was 

38,300.085 milliseconds, with an average retrieval time for all three rounds of 20,069,244.44 milliseconds. 

The results indicate that the retrieving by dense index in case of keyword not found was more efficient, as 

unnecessary data was skipped, and the data was retrieved only once per keyword, reducing the retrieval time 

and the average retrieval time per keyword to 1.097 milliseconds. On the other hand, retrieving by no index in 

case keyword not found resulted in a much longer retrieval time, with an average retrieval time per keyword 

of 38,300.0848 milliseconds, which caused significant RAM usage for loading all the keywords and retrieving 

the data. 

 

 

Table 1. Comparison of the efficiency in retrieval time with and without dense index and the existence of 

keywords in the data file named Bigdata.json 
Type 524 keywords 

First round 

524 keywords 

Second round 

524 keywords 

Third round 

Average 

524 keywords 

Average 

1 keyword 

Retrieve time by dense 

index. (milliseconds) 

31272.417 30879.134 30873.079 31008.210 59.175 

Retrieve time by no index 
(milliseconds) 

8151247.800 9008687.670 7418648.760 8192861.410 15635.232 

 

 

Table 2. Comparison of the efficiency in retrieval time with and without dense index and the non-existence of 

keywords in the data file named Bigdata.json 
Type 524 keywords 

First round 
524 keywords 
Second round 

524 keywords 
Third round 

Average 
524 keywords 

Average 
1 keyword 

Retrieving by dense index  

in case keyword not found. 
569.960 572.780 581.560 574.767 1.097 

Retrieving by no index  
In case keyword not found. 

20528300.020 20871312.760 18808120.530 20069244.440 38300.085 

 

 

The third experiment evaluated the performance of one-to-many query and access times in the dataset 

using a sparse index, compared to the absence of a sparse index, for data present within the Bigdata.json files. 
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It should be noted that all randomly selected keywords were present in the Bigdata.json file. The results of this 

experiment, as illustrated in Table 3, are the results of an experiment comparing the retrieval time efficiency 

with and without a sparse index, using 524 keywords from the Bigdata.json data file. The experiment involved 

three rounds of tests, and the study presents the average retrieval time per keyword and round. The study reveals 

that using a sparse index significantly improves retrieval time compared to no indexing. The average retrieval 

time per keyword with the sparse index was 36.387 milliseconds, whereas, without indexing, it was 33,726.653 

milliseconds. Furthermore, retrieval with a sparse index had an average retrieval time of 19,067.037 

milliseconds across all three rounds, while retrieval without indexing had an average retrieval time of 

17,672,766.08 milliseconds. The sparse index outperforms no indexing because it can skip unnecessary data 

and retrieve information only once. Additionally, it loads data into RAM once per keyword, even if the keyword 

appears in multiple locations, reducing retrieval and processing time. In contrast, retrieval without indexing 

loads all keyword data, leading to a significant loss of memory space and a much longer retrieval time based 

on the data size. 

The fourth experiment assessed the performance of one-to-many query and access times in the dataset 

using a sparse index, compared to not using a sparse index, with data from the Bigdata.json files. It is essential 

to mention that the Bigdata.json file did not contain all the randomly selected keywords. The study yielded the 

results of this experiment, as shown in Table 4. When a keyword is absent, the retrieval time is restricted to the 

duration required for retrieving the index file and does not entail retrieving in RAM. This is because no related 

segment needs to be loaded, and no position in the index necessitates retrieving. Nevertheless, it is worth noting 

that the retrieval time for a sparse index is typically shorter than that of a dense index since the size of a sparse 

index is smaller. In the experiment, data retrieval was conducted using the sparse index with 524 keywords, 

and retrieving by the sparse index was employed if a keyword was not found. The results indicate that the first 

retrieval round took 93.12 milliseconds, the second round took 90.2 milliseconds, and the third round took 

97.31 milliseconds. The average retrieval time for all three rounds was 93.543 milliseconds, with an average 

retrieval time per keyword of 0.179 milliseconds. In contrast, when retrieving with no index in case keyword 

not found was used with the exact 524 keywords for retrieval, the first retrieval round took 26,873,520.89 

milliseconds, the second round took 23,599,661.86 milliseconds, and the third round took 23,730,331.4 

milliseconds. The average retrieval time for all three rounds was 24,734,504.72 milliseconds, with an average 

retrieval time per keyword of 47203.253 milliseconds. These findings demonstrate that retrieving by sparse 

index without a keyword is more efficient. By skipping unnecessary data and conducting retrieves only once 

per keyword, retrieval time and the average retrieval time per keyword were significantly reduced to 0.179 

milliseconds. In contrast, retrieving by no index in case the keyword was not found resulted in a significantly 

longer retrieval time, with an average retrieval time per keyword of 47203.253 milliseconds. Furthermore, 

given the data size, this approach consumed significant RAM usage for loading all keywords, and the retrieval 

time was longer. 

 

 

Table 3. Comparison of the efficiency in retrieval time with and without sparse index and the existence of 

keywords in the data file named Bigdata.json 
Type 524 keywords 

First round 

524 keywords 

Second round 

524 keywords 

Third round 

Average 

524 keywords 

Average 

1 keyword 

Retrieving by sparse index. 18966.679 19118.347 19116.085 19067.037 36.387 
Retrieving by no index  18462275.870 19661980.150 14894042.220 17672766.080 33726.653 

 

 

Table 4. Comparison of the efficiency in retrieval time with and without sparse index and the non-existence 

of keywords in the data file named Bigdata.json 
Type 524 keywords 

First round 
524 keywords 
Second round 

524 keywords 
Third round 

Average 
524 keywords 

Average 
1 keyword 

Retrieving by sparse index 

in case keyword not found  

93.120 90.200 97.310 93.543 0.179 

Retrieving by no index in 

case keyword not found. 

26873520.890 23599661.860 23730331.400 24734504.720 47203.253 

 

 

Another objective of this experiment was to determine the optimal segment sizes by conducting tests 

in three distinct ranges. The first range spanned from 100 to 1,000, increasing by increments of 100 for each 

segment size. The second range covered 1,000 to 10,000, with increments of 1,000 for each segment size. 

Lastly, the third range extended from 10,000 to 200,000, with increments of 10,000 for each segment size. We 

carried out each trial three times and calculated the average value. Furthermore, Tables 5 and 6 summarize the 
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appropriate segment size values for evaluating the dense and sparse index performance across the three 

specified ranges. The details of the experimental results follow below. 

Table 5 presents the segment size values suitable for evaluating dense index performance, categorized 

into three ranges. The first segment size range, from 100 to 1,000, has an average time per keyword of 67.189 

milliseconds. The second range, from 1,000 to 10,000, has an average time per keyword of 59.872 milliseconds. 

Finally, the third range, from 10,000 to 200,000, has an average time per keyword of 56.314 milliseconds. 

Figure 9 illustrates that smaller segment sizes, such as those in the 100 to 1,000 and 1,000 to 10,000 ranges, 

yield slower performance due to increased memory access frequency. The high memory access frequency 

causes the system to load only a portion of the segment into the RAM. Rather than examining the entire 

segment, the system investigates its index position to determine its presence, consequently increasing latency. 

In contrast, larger segment sizes, such as 10,000 to 200,000, provide enhanced stability and faster performance 

because they require fewer comparisons between segment levels and do not substantially affect retrieving 

speed. However, if the segment size exceeds the specified value, the system may run out of memory and fail. 

It is essential to emphasize that the optimal range of 20,000-200,000 depends on the machine's testing 

capabilities, and the ideal range may differ based on the system's available resources. 

Table 6 presents the segment size values suitable for evaluating sparse index performance, categorized 

into three ranges. The first segment size range, from 100 to 1,000, has an average time per keyword of 42.776 

milliseconds. The second range, from 1,000 to 10,000, has an average time per keyword of 36.464 milliseconds. 

Finally, the third range, from 10,000 to 200,000, has an average time per keyword of 32.989 milliseconds. 

Figure 10 illustrates that smaller segment sizes, such as those in the 100 to 1,000 and 1,000 to 10,000 ranges, 

yield slower performance due to increased memory access frequency. The high memory access frequency 

causes the system to load only a portion of the segment into the RAM. Rather than examining the entire 

segment, the system investigates its index position to determine its presence, consequently increasing latency. 

In contrast, larger segment sizes, such as 10,000 to 200,000, provide enhanced stability and faster performance 

because they require fewer comparisons between segment levels and do not substantially affect retrieving 

speed. However, if the segment size exceeds the specified value, the system may run out of memory and fail. 

It is essential to emphasize that the optimal range of 20,000 to 200,000 depends on the machine's testing 

capabilities, and the ideal range may differ based on the system's available resources. 

 

 

Table 5. Dense index performance based on segment sizes and keyword frequency 
Segment sizes Average 1 keyword (ms) 

100 to 1000 67.189 
1000 to 10000 59.872 

10000 to 200000 56.314 

 

 

 
 

Figure 9. Dense index performance comparison 

 

 

Table 6. Sparse index performance based on segment sizes and keyword frequency 
Segment sizes Average 1 keyword (ms.) 

100 to 1000 42.776 

1000 to 10000 36.464 

10000 to 200000 32.989 
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Figure 10. Sparse index performance comparison 

 

 

Notice, the retrieval time using dense indexing was found to be longer than that using sparse indexing. 

This can be attributed to the longer keyword search time required to retrieve the position of data in the dense 

index file, as compared to the sparse index file. This difference is also evident when considering the file size 

and number of transactions, where the dense index file has a size of 20 megabytes and contains 1,000,000 

transactions, while the sparse index file is only 8 megabytes in size and contains 5146 transactions. 

 

 

4. CONCLUSION 

This study presents and assesses a novel JSON file indexing approach for large datasets, integrating 

dense and distributed indexing techniques to enhance retrieval efficiency. The findings demonstrated that the 

new indexing method significantly decreased retrieval time across all three test rounds. Moreover, 

experimenting with optimal segment sizes ranging from 20,000 to 200,000 can boost stability and achieve 

quicker performance due to fewer segment-level comparisons. Dense Indexing yields an average fetch time 

per keyword of 59.175 ms., a 1.097 ms. Reduction in fetch time compared to a non-indexed one-to-one fetch 

without keywords. Sparse indexing optimizes the average fetch time per keyword to 36.387 ms. for  

one-to-many data, decreasing fetch time by 0.179 ms. When no keywords are present, these findings suggest 

that the proposed indexing approach enhances data retrieval in NoSQL datasets formatted in JSON, particularly 

when simulating large datasets. Future studies can extend this research by testing the performance of the 

indexing technique on different types of data and different sizes of datasets to determine its scalability and 

generalizability. In future work, improving the searching algorithm for retrieving data positions in dense index 

files could be a potential area of investigation. As dense index files often contain many transactions, the search 

process can be time-consuming and inefficient. Reducing the time required for this process could significantly 

improve the overall efficiency of the indexing approach. Hence, exploring methods to optimize the search 

algorithm for dense indexing could be an interesting avenue for future work. 
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