
IAES International Journal of Artificial Intelligence (IJ-AI)

Vol. 13, No. 2, June 2024, pp. 2342~2353

ISSN: 2252-8938, DOI: 10.11591/ijai.v13.i2.pp2342-2353 2342

Journal homepage: http://ijai.iaescore.com

Enhancing data retrieval efficiency in large-scale javascript

object notation datasets by using indexing techniques

Bowonsak Srisungsittisunti1, Jirawat Duangkaew1, Sakorn Mekruksavanich1, Nakarin Chaikaew2,

Pornthep Rojanavasu1
1Department of Computer Engineering, School of Information and Communication Technology, University of Phayao, Phayao, Thailand
2Department of Geographic Information Science, School of Information and Communication Technology, University of Phayao, Phayao,

Thailand

Article Info ABSTRACT

Article history:

Received Apr 18, 2023

Revised Sep 29, 2023

Accepted Oct 8, 2023

 The use of javascript object notation (JSON) format as a not only structured

query language (NoSQL) storage solution has grown in popularity, but has

presented technical challenges, particularly in indexing large-scale JSON

files. This has resulted in slow data retrieval, especially for larger datasets. In

this study, we propose the use of JSON datasets to preserve data in resource

survey processes. We conducted experiments on a 32-gigabyte dataset

containing 1,000,000 transactions in JSON format and implemented two

indexing methods, dense and sparse, to improve retrieval efficiency.

Additionally, we determined the optimal range of segment sizes for the

indexing methods. Our findings revealed that adopting dense indexing

reduced data retrieval time from 15,635 milliseconds to 55 milliseconds in

one-to-one data retrieval, and from 38,300 milliseconds to 1 millisecond in

the absence of keywords. In contrast, using sparse indexing reduced data

retrieval time from 33,726 milliseconds to 36 milliseconds in one-to-many

data retrieval and from 47,203 milliseconds to 0.17 milliseconds when

keywords were not found. Furthermore, we discovered that the optimal

segment size range was between 20,000 and 200,000 transactions for both

dense and sparse indexing.

Keywords:

Dense indexing

Javacript object notation

Large scale dataset

Not only structured query

language

Sparse indexing

This is an open access article under the CC BY-SA license.

Corresponding Author:

Jirawat Duangkaew

Department of Computer Engineering, School of Information and Communication Technology

University of Phayao

19 Area 2 Maeka, Phayao, Thailand

Email: 64024804@up.ac.th

1. INTRODUCTION

In the era of data explosion, the demand for javascript object notation (JSON) files as a not only

structured query language (NoSQL) storage solution has surged. However, this growth introduces several

technical challenges, especially regarding indexing techniques for large-scale JSON datasets. Since JSON files

data often exceeds random access memory's (RAM) capacity, it is infeasible to query all data in a single access.

Instead, an equal division of the data is necessary, with each segment queued in RAM for processing by the

central processing unit (CPU), as illustrated in Figure 1. This research posits that retrieving for data by key

eliminates the need to load all segments into RAM, thereby improving processing efficiency. Furthermore, the

index file can help identify the segment containing data that matches the retrieve key, enabling the skipping of

some segments when loading data into RAM and ultimately boosting performance.

https://creativecommons.org/licenses/by-sa/4.0/

Int J Artif Intell ISSN: 2252-8938

Enhancing data retrieval efficiency in large-scale javascript object … (Bowonsak Srisungsittisunti)

2343

Figure 1. The case of no index being made for a large dataset

This study employs the JSON format to investigate indexing techniques for large-scale datasets in

NoSQL systems. A review of related studies offers a comprehensive understanding of the state-of-the-art

research in this area. Prior research on indexing has explored numerous applications, such as improving index

efficiency. Chang et al. [1] proposed a keyword-index-based metadata search method for large-scale file

systems, leveraging spatial locality and load characteristics. The proposed partitioning technique offers

improved efficiency compared to non-partitioning methods. Chopade and Pachghare [2] proposed indexing on

MongoDB's query performance and relevance in database forensics. The study highlights how indexing can

significantly enhance efficiency by reducing document scan time, making it a crucial aspect of application

development and forensic analysis. Yuan and Liu [3] proposed a two-level embedded k-Means algorithm for

approximate nearest neighbor search, using multi-assignment operations and pruning strategies for efficiency.

Experiments show improved performance, lower memory usage, and complexity compared to state-of-the-art

approaches. Zineddine et al. [4] proposed a novel binary tree-based indexing structure to organize image

properties (color, shape, and texture) for efficient large-scale image search. It introduces index construction

and k-nearest neighbors (KNN) search algorithms, utilizing container concepts to enhance complexity

performance evaluated on real data sets. Jin et al. [5] proposed adapting balanced tree plus (B+tree) and log-

structured merge-tree (LSM tree) index structures for zoned namespaces (ZNS) solid state drives (SSDs),

which have lower overhead and over-provisioning costs but only accept sequential writes.

Abdulkadhem and Assadi [6] proposed a geographic information system (GIS) based method for

constructing important road landmarks using corner points and multimedia data. As a preprocessing step for

roadmap discovery from video films, it aims to enable multimedia queries within the GIS environment. In

addition, we have also studied research related to applying indexes. Alqatawneh [7] proposed a novel technique

for orthogonal frequency-division multiplexing (OFDM) systems using zero-pilot symbols to transmit extra

data bits without affecting channel estimation accuracy or system error performance. Minimum mean square

error (MMSE) based detection is employed, and simulation results show improved system throughput and a

lower error rate at high SNR. Mouneshachari and Pande [8] proposed an electroencephalogram (EEG) based

emotion quantification index using KNN classification, enabling analysis of similarity and dissimilarity

between individual signals and benchmark data. The results demonstrate the potential for understanding basic

emotional feelings in individuals. Zeffora and Shobarani [9] proposed an adaptive attribute selection method

for the random forest, considering structural changes in datasets. Applied to myocardial infarction data, it

improves accuracy and avoids under/over-fitting. Tan and Lim [10] proposed a wireless fidelity (WiFi) sniffer-

enabled surveillance camera system with a 3-stage WiFi frame inspection filter, using WiFi signal strength for

filtering and tagging media access control (MAC) address to video frames. This technique leverages metadata

(smartphone MAC addresses) to prioritize video frame retrieval, reducing manual search efforts in public safety

surveillance. Abdulsada et al. [11] proposed a practical multi-keyword similarity scheme for searchable

encryption using compressed trapdoors generated via key-based hash functions. The scheme computes

similarity scores through hamming distances and offers improved search efficiency and performance compared

to existing methods while maintaining robust security. Finally, we also studied the relevant research on large-

scale data [12]-[29], exploring various techniques and applications in data retrieval, mining, and processing.

Essential techniques include in-memory distributed indexing, internet of things (IoT), indexing and discovery,

text mining, data clustering, and region-of-interest-based image retrieval. These studies improve data

management, information extraction, and knowledge discovery in diverse domains such as media, internet of

things (IoT), health, energy, and supply chain management, enabling more efficient and adequate decision-

making in large-scale data environments.

The hypothesis of this research involves creating a dense index for one-to-one retrieves and a sparse

index for one-to-many retrieves. This experiment aims to investigate how these indexing techniques can reduce

 ISSN: 2252-8938

Int J Artif Intell, Vol. 13, No. 2, June 2024: 2342-2353

2344

retrieving time. Additionally, we will explore the best segment size for efficient retrieving. The design process

incorporated elements of relational dataset techniques, and we developed the research commands using Python.

The results proved that the JSON files indexing technique for large scale datasets significantly improved data

retrieval time.

2. METHOD

2.1. Simulating large-scale dataset in JavaScript object notation files

In this study, we generated a dataset named Bigdata.json, which consists of 32 GB and 1,000,000

transactions. The dataset is formatted as a JSON file and includes fields such as First_name, Last_name, email,

and hex data. These fields originate from transforming picture files into hexadecimal representations. The

dataset's flexibility enables customization to meet specific research requirements. For instance, Figure 2

illustrates some sample transactions from the dataset.

Figure 2. Example transactions in JSON with a size of 32 GB and 1,000,000 transactions

2.2. Algorithm for retrieving without an index

When handling large datasets in the form of NoSQL JSON files without indexing, the dataset, called

Bigdata.json, is 32 GB and contains 1,000,000 transactions, as detailed in subsection 2.1 of this study.

Importing all data into RAM simultaneously is impossible and challenging, making accessing and finding

information problematic. This study presents a technique for retrieving and accessing information without

indexing to address this issue. The pseudocode for retrieving without an index is displayed in Figure 3 and

illustrated by a flowchart in Figure 4. This technique involves dividing the data from Bigdata.json into ten

segments, each containing 3.2 GB and 100,000 transactions. It is important to note that during the process of

segmenting Bigdata.json, the procedure does not involve splitting the file into ten separate files. Instead, it

involves loading individually divided segments, one at a time, into the RAM. Afterward, the system retrieves

information by retrieving each segment within the RAM. If the data matches the specified keyword, the system

extracts and displays it after retrieving all segments. The retrieve covers all Bigdata.json segments. Although

this technique helps retrieve and access data, it has significant drawbacks, such as consuming considerable

RAM resources and processing power, leading to substantial delays.

Figure 3. Pseudocode of retrieving without an index

{
 "position": 1,

 "First_name": "Luciana",

 "Last_name": "Rodden",
 "email": "Luciana.Rod@example.com",

 "hex": "ffd8ffe000104a4649460001010100480048000..." (32MB)

 }, …. ,
 {

 "position": 1000000,

 "First_name": "Maryalice",
 "Last_name": "Kosareff",

 "email": "Maryalice.Kos@example.com",

 "hex": "ffd8ffe000104a4649460001010100480048000..." (32MB)

 }

1. Import Bigdata.json and specify the keyword to search for.

2. Divide Bigdata.json (size of 32 GB) into 10 segments.

3. For each segment (i = 1 to 10):

A. Load the segment i into RAM.

B. Search for specified keyword in segment i.

C. Retrieve the relevant data from segment i.

4. Display final search result

Int J Artif Intell ISSN: 2252-8938

Enhancing data retrieval efficiency in large-scale javascript object … (Bowonsak Srisungsittisunti)

2345

Figure 4. Flowchart of retrieving without an index

2.3. Algorithm for retrieving by index

This research presents an algorithm that enhances the time efficiency of retrieving and accessing data

in large-scale NoSQL datasets by applying dense and sparse indices from relational databases to the

Bigdata.json file. Figure 5 displays the pseudocode for retrieving by the index and Figure 6 illustrates the

flowchart. The algorithm, optimized and divided into dense and sparse indexing for NoSQL datasets sized at

32 GB, includes keywords and positions to enable efficient referencing from RAM to the data in the

Bigdata.json file during a query using the retrieve-by-keyword technique. The command imports the large-

scale dataset, Bigdata.json, which is 32 GB and contains 1,000,000 transactions. The Bigdata.json file is

divided into ten segments, each containing 100,000 transactions. We designate the first segment to correspond

to positions of transactions 1 to 100,000, the second segment to positions of transactions 100,001 to 200,000,

until the tenth segment represents positions of 900,001 to 1,000,000. Next, the algorithm checks the position

of the transaction in each segment against the index file. If the position falls within the segment, the algorithm

loads the segment into RAM and retrieves it using the keyword to find data matching the specified keyword.

Upon finding a match, the algorithm retrieves and displays the data within the segment as the retrieved result.

The size of segments utilized in the algorithm may be altered based on their appropriateness for a

given dataset. The presented pseudocode serves as an illustrative example of one such configuration, assuming

a segment size of 100,000 transactions. However, the experimentally determined optimal segment size will be

reported in result and discussion section. To ensure the validity of our findings, we have provided detailed

methodology and references supporting our approach.

Figure 5. Pseudocode of retrieving by index

1. Import files index_position.json, Bigdata.json and Keyword

2. Divide Bigdata.json (size of 32 GB) into 10 segments.

3. Search for key in index position.json to get position of Bigdata.json

4. For segment i = 1 to 10

A. If position is in segment i.

A1. Load segment i into RAM

A2. Search position in segment i

A3. Retrieve the relevant data from segment i.

B. Else, skip segment i.

5. Display search result

 ISSN: 2252-8938

Int J Artif Intell, Vol. 13, No. 2, June 2024: 2342-2353

2346

Figure 6. Flowchart of retrieving in a large-scale dataset by index

2.3.1. Dense index in a large-scale dataset

Researchers have developed a dense index algorithm specifically designed for large-scale NoSQL

datasets stored in JSON format to improve the efficiency of data retrieval for one-to-one data groups. This

algorithm creates a dense index of positions for the dataset and utilizes the dense index file to ensure fast and

effective data retrieval in large-scale datasets. The following sections offer a comprehensive explanation of the

algorithm and its implementation, detailing the generation of dense indexing for the dataset and how the dense

index file is employed to retrieve data from large-scale datasets.

a. Generate dense indexing of position for dataset

In this study, the term large-scale dataset refers to a simulation file set named Bigdata.json created by

this study in subsection 2.1. The dense index is a file called Dense_index_position.json generated by scanning

the Bigdata.json file once to extract non-repeating data in the field that choose to be key. This study contains

the email and its corresponding position in the Bigdata.json file. This dense index file, which has a structure

shown in Figure 7, is designed for efficient one-to-one referencing and data access. It contains email and

position data, where position enables quick access to data from the Bigdata.json file set in RAM. The present

study incorporates a dense index file, which measures 20 megabytes in size and contains 1,000,000

transactions.

Figure 7. Example transactions in dense index position.json

{

 "Phillip.Headlon@smith.com": 1,

 "Renetta.Marmon@simon.com": 2,
 "Annalee@pinnaclewest.com": 3,

 …

 "Jonnie@pacificare.com": 1,000,000

}

Int J Artif Intell ISSN: 2252-8938

Enhancing data retrieval efficiency in large-scale javascript object … (Bowonsak Srisungsittisunti)

2347

b. The use of dense_index_position. json for retrieving in a large-scale dataset

Dense_index_position.json, which facilitates querying and accessing data in a large-scale NoSQL

dataset stored as JSON. As described in (a. Generate dense indexing of position for dataset), the process is

initiated by importing the Dense_index_position.json index file and the Bigdata.json data set, followed by

setting email as the keyword for retrieving and accessing information, in accordance with Figure 7. Upon

executing a retrieve operation in the Dense_index_position.json file, a position that corresponds to the given

keyword is obtained. The file's size of 20 megabytes renders it highly efficient for prompt access. However,

each keyword results in a single position in the dense index file, thus requiring the loading of only a segment

of the entire index into the RAM for data retrieval. Conversely, when a keyword does not match any

transactions in the dense index file, no position is retrieved, and therefore, no segment of the index is loaded

into the RAM.

2.3.2. Sparse indexing in large-scale dataset

The primary goal of this study was to improve query times and streamline access to one-to-many data

groups in a large-scale dataset stored in NoSQL JSON format. Researchers developed and implemented a

sparse index algorithm to achieve this objective. This approach significantly enhances the efficiency of data

retrieval and provides a scalable solution for managing large datasets. The following sections will delve into

the specifics of the sparse index algorithm, its creation process, and its impact on data retrieval performance.

a. Generate sparse indexing of position for dataset

The present study defines the term large-scale dataset as the Bigdata.json file described in section 2.1.

To create the sparse index file, named Sparse_index_position.json the Bigdata.json file is scanned once to

extract unique data, using the first name as the chosen key field. This sparse index file set, as depicted in

Figure 8, is designed to facilitate one-to-many data retrieve and access. It includes both the first name and its

corresponding position data, where a single name may have multiple positions. The position data enables

efficient referencing from RAM to data within the Bigdata.json file set. The use of the sparse index file set

enables efficient data access by including both the first name and position data, where the latter facilitates

efficient referencing to data within the Bigdata.json file set. The present study incorporates a sparse index file,

which measures 8 megabytes in size and contains 5146 transactions.

Figure 8. Example transactions in sparse index position.json

b. The use of Sparse_index_position. json for retrieving in a large-scale scale dataset

To query and access data within a large-scale NoSQL dataset in JSON format, one can utilize the

sparse index file Sparse_index_position.json, as shown in Figure 8. This index file is particularly well-suited

for querying and accessing one-to-many duplicate data within the sparse index files, beginning with the data

import. The index file includes first names and their corresponding positions, which act as reference points to

the data within the sparse index files stored in the RAM, leading to efficient query times. Subsection 2.1 and

Figure 2 illustrate the process starting with the import of the Bigdata.json files. In this context, the first name

is the primary keyword for retrieving and accessing information. When executing a retrieve operation using

the Sparse_index_position.json file, the command retrieves a position related to the input keyword. The file is

relatively small, at 8 megabytes, contributing to its remarkable efficiency in providing rapid access to the data.

However, a keyword retrieve might produce multiple positions within the sparse index file. In such cases, the

system must load several index segments into the RAM to extract the necessary data. Conversely, if a keyword

fails to match any transactions in the sparse index file, the command retrieves no position, and as a result, the

RAM does not load any index segment.

3. RESULTS AND DISCUSSION

This study evaluates the effectiveness of newly developed indexing techniques for NoSQL databases

that store data in JSON files in retrieving data from large-scale datasets. Specifically, we compare the

performance of dense and sparse indexes with and without indexing. We conducted the study using a personal

{

 "Bowonsak": [46163, 66867, 88916, 94633, 130606, 150253, 185197, 189917, 214931, 999999],

 …

 "jirawat": [46153, 59781, 93151, 94460, 101100, 172271, 244064, 257080, 368397, 439620, 888888]

}

 ISSN: 2252-8938

Int J Artif Intell, Vol. 13, No. 2, June 2024: 2342-2353

2348

laptop with a 3.3 GHz AMD Ryzen™ processor, 16 GB of RAM, and a 500 GB solid-state drive. We imported

the large dataset utilized in this study, as described in subsection 2.1, from the Bigdata.json file. To obtain a

representative sample, we randomly selected 524 transactions from the email and First_name fields, accounting

for 0.05% of the total simulated transactions, and repeated this process three times. The study aims to

investigate the time efficiency of data retrieval with and without indexing in the presence or absence of the

specified data within the Bigdata.json file. We present the experimental results below.

In the first experiment, we evaluated the efficiency of using dense indices for retrieving data from the

Bigdata.json files by comparing the performance of one-to-one query and access times with and without a

dense index. It is worth noting that all randomly selected keywords were present in the Bigdata.json file. The

experiment aimed to examine the retrieve time efficiency of using dense indices compared to no indexing,

focusing on the presence of keywords in the Bigdata.json file. Table 1 presents the experiment results that

involved retrieving 524 keywords using a dense index. The study was conducted in three rounds, presenting

the average retrieval time per keyword and round. These findings show that using density indexes can help

reduce the time to retrieve data compared to not indexing. The average retrieval time per keyword with the

dense index was 59.175 milliseconds; without indexing, it was 15,635.232 milliseconds. Across all three

rounds, retrieval using a dense index had an average time of 31,008.210 milliseconds, while retrieval without

indexing had an average time of 8,192,861.41 milliseconds. The dense index outperforms no indexing because

it can skip unnecessary data and retrieve information only once. Moreover, it loads data into RAM once per

keyword, reducing retrieval and processing time. In contrast, retrieval without indexing loads all keyword data,

leading to significant memory space loss and substantially longer retrieval time based on the data size.

The second experiment assessed the performance of one-to-one query and access times in the dataset

using a dense index, compared to not using a dense index, with data from the Bigdata.json files. It is essential

to mention that the Bigdata.json file did not contain all the randomly selected keywords. The study yielded the

results of this experiment, as shown in Table 2. In situations where a keyword cannot be found, the retrieval

time is limited to the time spent retrieving in the index file and does not involve retrieving in RAM. This is

because there is no corresponding segment to be loaded and no position in the index to retrieve. The experiment

was conducted using the retrieving by dense index method with 524 keywords for retrieval. The results show

that the average retrieval time per keyword was 1.097 milliseconds, with an average retrieval time for all three

rounds of 574.767 milliseconds. In contrast, the retrieving by no index in case not found method was used with

the exact 524 keywords for retrieval. The results indicated that the average retrieval time per keyword was

38,300.085 milliseconds, with an average retrieval time for all three rounds of 20,069,244.44 milliseconds.

The results indicate that the retrieving by dense index in case of keyword not found was more efficient, as

unnecessary data was skipped, and the data was retrieved only once per keyword, reducing the retrieval time

and the average retrieval time per keyword to 1.097 milliseconds. On the other hand, retrieving by no index in

case keyword not found resulted in a much longer retrieval time, with an average retrieval time per keyword

of 38,300.0848 milliseconds, which caused significant RAM usage for loading all the keywords and retrieving

the data.

Table 1. Comparison of the efficiency in retrieval time with and without dense index and the existence of

keywords in the data file named Bigdata.json
Type 524 keywords

First round

524 keywords

Second round

524 keywords

Third round

Average

524 keywords

Average

1 keyword

Retrieve time by dense

index. (milliseconds)

31272.417 30879.134 30873.079 31008.210 59.175

Retrieve time by no index
(milliseconds)

8151247.800 9008687.670 7418648.760 8192861.410 15635.232

Table 2. Comparison of the efficiency in retrieval time with and without dense index and the non-existence of

keywords in the data file named Bigdata.json
Type 524 keywords

First round
524 keywords
Second round

524 keywords
Third round

Average
524 keywords

Average
1 keyword

Retrieving by dense index

in case keyword not found.
569.960 572.780 581.560 574.767 1.097

Retrieving by no index
In case keyword not found.

20528300.020 20871312.760 18808120.530 20069244.440 38300.085

The third experiment evaluated the performance of one-to-many query and access times in the dataset

using a sparse index, compared to the absence of a sparse index, for data present within the Bigdata.json files.

Int J Artif Intell ISSN: 2252-8938

Enhancing data retrieval efficiency in large-scale javascript object … (Bowonsak Srisungsittisunti)

2349

It should be noted that all randomly selected keywords were present in the Bigdata.json file. The results of this

experiment, as illustrated in Table 3, are the results of an experiment comparing the retrieval time efficiency

with and without a sparse index, using 524 keywords from the Bigdata.json data file. The experiment involved

three rounds of tests, and the study presents the average retrieval time per keyword and round. The study reveals

that using a sparse index significantly improves retrieval time compared to no indexing. The average retrieval

time per keyword with the sparse index was 36.387 milliseconds, whereas, without indexing, it was 33,726.653

milliseconds. Furthermore, retrieval with a sparse index had an average retrieval time of 19,067.037

milliseconds across all three rounds, while retrieval without indexing had an average retrieval time of

17,672,766.08 milliseconds. The sparse index outperforms no indexing because it can skip unnecessary data

and retrieve information only once. Additionally, it loads data into RAM once per keyword, even if the keyword

appears in multiple locations, reducing retrieval and processing time. In contrast, retrieval without indexing

loads all keyword data, leading to a significant loss of memory space and a much longer retrieval time based

on the data size.

The fourth experiment assessed the performance of one-to-many query and access times in the dataset

using a sparse index, compared to not using a sparse index, with data from the Bigdata.json files. It is essential

to mention that the Bigdata.json file did not contain all the randomly selected keywords. The study yielded the

results of this experiment, as shown in Table 4. When a keyword is absent, the retrieval time is restricted to the

duration required for retrieving the index file and does not entail retrieving in RAM. This is because no related

segment needs to be loaded, and no position in the index necessitates retrieving. Nevertheless, it is worth noting

that the retrieval time for a sparse index is typically shorter than that of a dense index since the size of a sparse

index is smaller. In the experiment, data retrieval was conducted using the sparse index with 524 keywords,

and retrieving by the sparse index was employed if a keyword was not found. The results indicate that the first

retrieval round took 93.12 milliseconds, the second round took 90.2 milliseconds, and the third round took

97.31 milliseconds. The average retrieval time for all three rounds was 93.543 milliseconds, with an average

retrieval time per keyword of 0.179 milliseconds. In contrast, when retrieving with no index in case keyword

not found was used with the exact 524 keywords for retrieval, the first retrieval round took 26,873,520.89

milliseconds, the second round took 23,599,661.86 milliseconds, and the third round took 23,730,331.4

milliseconds. The average retrieval time for all three rounds was 24,734,504.72 milliseconds, with an average

retrieval time per keyword of 47203.253 milliseconds. These findings demonstrate that retrieving by sparse

index without a keyword is more efficient. By skipping unnecessary data and conducting retrieves only once

per keyword, retrieval time and the average retrieval time per keyword were significantly reduced to 0.179

milliseconds. In contrast, retrieving by no index in case the keyword was not found resulted in a significantly

longer retrieval time, with an average retrieval time per keyword of 47203.253 milliseconds. Furthermore,

given the data size, this approach consumed significant RAM usage for loading all keywords, and the retrieval

time was longer.

Table 3. Comparison of the efficiency in retrieval time with and without sparse index and the existence of

keywords in the data file named Bigdata.json
Type 524 keywords

First round

524 keywords

Second round

524 keywords

Third round

Average

524 keywords

Average

1 keyword

Retrieving by sparse index. 18966.679 19118.347 19116.085 19067.037 36.387
Retrieving by no index 18462275.870 19661980.150 14894042.220 17672766.080 33726.653

Table 4. Comparison of the efficiency in retrieval time with and without sparse index and the non-existence

of keywords in the data file named Bigdata.json
Type 524 keywords

First round
524 keywords
Second round

524 keywords
Third round

Average
524 keywords

Average
1 keyword

Retrieving by sparse index

in case keyword not found

93.120 90.200 97.310 93.543 0.179

Retrieving by no index in

case keyword not found.

26873520.890 23599661.860 23730331.400 24734504.720 47203.253

Another objective of this experiment was to determine the optimal segment sizes by conducting tests

in three distinct ranges. The first range spanned from 100 to 1,000, increasing by increments of 100 for each

segment size. The second range covered 1,000 to 10,000, with increments of 1,000 for each segment size.

Lastly, the third range extended from 10,000 to 200,000, with increments of 10,000 for each segment size. We

carried out each trial three times and calculated the average value. Furthermore, Tables 5 and 6 summarize the

 ISSN: 2252-8938

Int J Artif Intell, Vol. 13, No. 2, June 2024: 2342-2353

2350

appropriate segment size values for evaluating the dense and sparse index performance across the three

specified ranges. The details of the experimental results follow below.

Table 5 presents the segment size values suitable for evaluating dense index performance, categorized

into three ranges. The first segment size range, from 100 to 1,000, has an average time per keyword of 67.189

milliseconds. The second range, from 1,000 to 10,000, has an average time per keyword of 59.872 milliseconds.

Finally, the third range, from 10,000 to 200,000, has an average time per keyword of 56.314 milliseconds.

Figure 9 illustrates that smaller segment sizes, such as those in the 100 to 1,000 and 1,000 to 10,000 ranges,

yield slower performance due to increased memory access frequency. The high memory access frequency

causes the system to load only a portion of the segment into the RAM. Rather than examining the entire

segment, the system investigates its index position to determine its presence, consequently increasing latency.

In contrast, larger segment sizes, such as 10,000 to 200,000, provide enhanced stability and faster performance

because they require fewer comparisons between segment levels and do not substantially affect retrieving

speed. However, if the segment size exceeds the specified value, the system may run out of memory and fail.

It is essential to emphasize that the optimal range of 20,000-200,000 depends on the machine's testing

capabilities, and the ideal range may differ based on the system's available resources.

Table 6 presents the segment size values suitable for evaluating sparse index performance, categorized

into three ranges. The first segment size range, from 100 to 1,000, has an average time per keyword of 42.776

milliseconds. The second range, from 1,000 to 10,000, has an average time per keyword of 36.464 milliseconds.

Finally, the third range, from 10,000 to 200,000, has an average time per keyword of 32.989 milliseconds.

Figure 10 illustrates that smaller segment sizes, such as those in the 100 to 1,000 and 1,000 to 10,000 ranges,

yield slower performance due to increased memory access frequency. The high memory access frequency

causes the system to load only a portion of the segment into the RAM. Rather than examining the entire

segment, the system investigates its index position to determine its presence, consequently increasing latency.

In contrast, larger segment sizes, such as 10,000 to 200,000, provide enhanced stability and faster performance

because they require fewer comparisons between segment levels and do not substantially affect retrieving

speed. However, if the segment size exceeds the specified value, the system may run out of memory and fail.

It is essential to emphasize that the optimal range of 20,000 to 200,000 depends on the machine's testing

capabilities, and the ideal range may differ based on the system's available resources.

Table 5. Dense index performance based on segment sizes and keyword frequency
Segment sizes Average 1 keyword (ms)

100 to 1000 67.189
1000 to 10000 59.872

10000 to 200000 56.314

Figure 9. Dense index performance comparison

Table 6. Sparse index performance based on segment sizes and keyword frequency
Segment sizes Average 1 keyword (ms.)

100 to 1000 42.776

1000 to 10000 36.464

10000 to 200000 32.989

Int J Artif Intell ISSN: 2252-8938

Enhancing data retrieval efficiency in large-scale javascript object … (Bowonsak Srisungsittisunti)

2351

Figure 10. Sparse index performance comparison

Notice, the retrieval time using dense indexing was found to be longer than that using sparse indexing.

This can be attributed to the longer keyword search time required to retrieve the position of data in the dense

index file, as compared to the sparse index file. This difference is also evident when considering the file size

and number of transactions, where the dense index file has a size of 20 megabytes and contains 1,000,000

transactions, while the sparse index file is only 8 megabytes in size and contains 5146 transactions.

4. CONCLUSION

This study presents and assesses a novel JSON file indexing approach for large datasets, integrating

dense and distributed indexing techniques to enhance retrieval efficiency. The findings demonstrated that the

new indexing method significantly decreased retrieval time across all three test rounds. Moreover,

experimenting with optimal segment sizes ranging from 20,000 to 200,000 can boost stability and achieve

quicker performance due to fewer segment-level comparisons. Dense Indexing yields an average fetch time

per keyword of 59.175 ms., a 1.097 ms. Reduction in fetch time compared to a non-indexed one-to-one fetch

without keywords. Sparse indexing optimizes the average fetch time per keyword to 36.387 ms. for

one-to-many data, decreasing fetch time by 0.179 ms. When no keywords are present, these findings suggest

that the proposed indexing approach enhances data retrieval in NoSQL datasets formatted in JSON, particularly

when simulating large datasets. Future studies can extend this research by testing the performance of the

indexing technique on different types of data and different sizes of datasets to determine its scalability and

generalizability. In future work, improving the searching algorithm for retrieving data positions in dense index

files could be a potential area of investigation. As dense index files often contain many transactions, the search

process can be time-consuming and inefficient. Reducing the time required for this process could significantly

improve the overall efficiency of the indexing approach. Hence, exploring methods to optimize the search

algorithm for dense indexing could be an interesting avenue for future work.

ACKNOWLEDGEMENTS

The authors thank the Research Unit for Development of Intelligent System and Autonomous Robots

(ISAR) and School of Information Technology and Communication, University of Phayao, for facility support.

REFERENCES
[1] J. Chang et al., “Optimization of index-based method of metadata search for large-scale file systems,” in 2017 10th International

Symposium on Computational Intelligence and Design (ISCID), Dec. 2017, pp. 476–481, doi: 10.1109/ISCID.2017.147.

[2] R. Chopade and V. Pachghare, “MongoDB indexing for performance improvement,” Advances in Intelligent Systems and
Computing, vol. 1077, pp. 529–539, 2020, doi: 10.1007/978-981-15-0936-0_56.

[3] J. Yuan and X. Liu, “A novel index structure for large scale image descriptor search,” in 2012 19th IEEE International Conference

on Image Processing, Sep. 2012, pp. 1937–1940, doi: 10.1109/ICIP.2012.6467265.
[4] K. Zineddine, F. M. Amine, and A. Adeel, “Indexing multimedia data with an extension of binary tree–image search by content–,”

International Journal of Informatics and Applied Mathematics, vol. 1, no. 1, pp. 47-55, 2021.

[5] P. Jin, X. Zhuang, Y. Luo, and M. Lu, “Exploring index structures for zoned namespaces SSDs,” Proceedings - 2021 IEEE
International Conference on Big Data, Big Data 2021, pp. 5919–5922, 2021, doi: 10.1109/BigData52589.2021.9671606.

 ISSN: 2252-8938

Int J Artif Intell, Vol. 13, No. 2, June 2024: 2342-2353

2352

[6] A. A. Abdulkadhem and T. A. A. -Assadi, “An important landmarks construction for a GIS-Map based on Indexing of Dolly Images,” Indonesian

Journal of Electrical Engineering and Computer Science, vol. 15, no. 1, pp. 451-459, 2019, doi: 10.11591/ijeecs.v15.i1.pp451-459.
[7] A. Alqatawneh, “Orthogonal frequency division multiplexing system with an indexed-pilot channel estimation,” Indonesian Journal of

Electrical Engineering and Computer Science, vol. 26, no. 2, pp. 808–818, May 2022, doi: 10.11591/ijeecs.v26.i2.pp808-818.

[8] Mouneshachari and M. S. Pande, “Indexing Intelligence using benchmark classifier,” Indonesian Journal of Electrical Engineering
and Computer Science, vol. 18, no. 1, pp. 179–187, Apr. 2019, doi: 10.11591/ijeecs.v18.i1.pp179-187.

[9] J. Zeffora and S. Shobarani, “Optimizing random forest classifier with Jenesis-index on an imbalanced dataset,” Indonesian Journal

of Electrical Engineering and Computer Science, vol. 26, no. 1, pp. 505-511, Apr. 2022, doi: 10.11591/ijeecs.v26.i1.pp505-511.
[10] K. L. Tan and K. C. Lim, “Fast surveillance video indexing & retrieval with WiFi MAC address tagging,” Indonesian Journal of

Electrical Engineering and Computer Science, vol. 16, no. 1, pp. 473–481, Oct. 2019, doi: 10.11591/ijeecs.v16.i1.pp473-481.

[11] A. I. Abdulsada, D. G. Honi, and S. Al-Darraji, “Efficient multi-keyword similarity search over encrypted cloud documents,” Indonesian
Journal of Electrical Engineering and Computer Science, vol. 23, no. 1, pp. 510–518, 2021, doi: 10.11591/ijeecs.v23.i1.pp510-518.

[12] Y. Ma, D. Liu, G. Scott, J. Uhlmann, and C. R. Shyu, “In-memory distributed indexing for large-scale media data retrieval,” Proceedings - 2017

IEEE International Symposium on Multimedia, ISM 2017, vol. 2017-January, pp. 232–239, 2017, doi: 10.1109/ISM.2017.38.
[13] Y. Fathy, P. Barnaghi, and R. Tafazolli, “Large-scale indexing, discovery, and ranking for the internet of things (IoT),” ACM

Computing Surveys, vol. 51, no. 2, pp. 1–53, Mar. 2018, doi: 10.1145/3154525.

[14] T. Silwattananusarn and P. Kulkanjanapiban, “A text mining and topic modeling based bibliometric exploration of information science research,”
IAES International Journal of Artificial Intelligence, vol. 11, no. 3, pp. 1057–1065, 2022, doi: 10.11591/ijai.v11.i3.pp1057-1065.

[15] Bertalya, Prihandoko, L. Setyowati, F. I. Irawan, and S. R. Irlianti, “Formulation of city health development index using data

mining,” Indonesian Journal of Electrical Engineering and Computer Science, vol. 23, no. 1, pp. 362–369, 2021, doi:
10.11591/ijeecs.v23.i1.pp362-369.

[16] Y. Asri, D. Kuswardani, E. Yosrita, and F. Hendrik Wullur, “Clusterization of customer energy usage to detect power shrinkage in

an effort to increase the efficiency of electric energy consumption,” Indonesian Journal of Electrical Engineering and Computer
Science, vol. 22, no. 1, pp. 10-17, Apr. 2021, doi: 10.11591/ijeecs.v22.i1.pp10-17.

[17] M. Jupri and R. Sarno, “Data mining, fuzzy AHP and TOPSIS for optimizing taxpayer supervision,” Indonesian Journal of
Electrical Engineering and Computer Science, vol. 18, no. 1, pp. 75–87, Apr. 2019, doi: 10.11591/ijeecs.v18.i1.pp75-87.

[18] M. K. Yusof and M. Man, “Efficiency of JSON for data retrieval in big data,” Indonesian Journal of Electrical Engineering and

Computer Science, vol. 7, no. 1, pp. 250–262, Jul. 2017, doi: 10.11591/ijeecs.v7.i1.pp250-262.
[19] D. Lee, A. Althoff, D. Richmond, and R. Kastner, “A streaming clustering approach using a heterogeneous system for big data

analysis,” in 2017 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), Nov. 2017, pp. 699–706, doi:

10.1109/ICCAD.2017.8203845.
[20] S. Gebeyehu, W. Wolde, and Z. S. Shibeshi, “Information extraction model from Ge’ez texts,” Indonesian Journal of Electrical

Engineering and Computer Science, vol. 30, no. 2, pp. 787–795, 2023, doi: 10.11591/ijeecs.v30.i2.pp787-795.

[21] A. Althaf Ali and R. M. Shafi, “Test-retrieval framework: Performance profiling and testing web search engine on non factoid
queries,” Indonesian Journal of Electrical Engineering and Computer Science, vol. 14, no. 3, pp. 1373–1381, 2019, doi:

10.11591/ijeecs.v14.i3.pp1373-1381.

[22] M. K. Zuhanda et al., “Supply chain strategy during the COVID-19 terms: sentiment analysis and knowledge discovery through
text mining,” Indonesian Journal of Electrical Engineering and Computer Science, vol. 30, no. 2, pp. 1120–1127, 2023, doi:

10.11591/ijeecs.v30.i2.pp1120-1127.

[23] S. W. Kareem, R. Z. Yousif, and S. M. J. Abdalwahid, “An approach for enhancing data confidentiality in hadoop,” Indonesian Journal of
Electrical Engineering and Computer Science, vol. 20, no. 3, pp. 1547–1555, Dec. 2020, doi: 10.11591/ijeecs.v20.i3.pp1547-1555.

[24] S. Nagendra Prasad and S. S. Kulkarni, “Quality and energy optimized scheduling technique for executing scientific workload in

cloud computing environment,” Indonesian Journal of Electrical Engineering and Computer Science, vol. 21, no. 2, pp. 1039–
1047, Feb. 2020, doi: 10.11591/ijeecs.v21.i2.pp1039-1047.

[25] G. Panatula, K. S. Kumar, D. E. Geetha, and T. V. S. Kumar, “Performance evaluation of cloud service with hadoop for twitter data,” Indonesian

Journal of Electrical Engineering and Computer Science, vol. 13, no. 1, pp. 392-404, 2019, doi: 10.11591/ijeecs.v13.i1.pp392-404.
[26] S. Wilson and R. Sivakumar, “Twitter data analysis using hadoop ecosystems and apache zeppelin,” Indonesian Journal of Electrical

Engineering and Computer Science, vol. 16, no. 3, pp. 1490–1498, Dec. 2019, doi: 10.11591/ijeecs.v16.i3.pp1490-1498.

[27] N. R. Gayathiri, D. D. Jaspher, and A. M. Natarajan, “Big Data retrieval techniques based on Hash Indexing and MapReduce
approach with NoSQL Database,” in 2019 International Conference on Advances in Computing and Communication Engineering

(ICACCE), Apr. 2019, pp. 1–8, doi: 10.1109/ICACCE46606.2019.9079964.

[28] R. S. A. Usmani, W. N. F. Binti Wan Azmi, A. M. Abdullahi, I. A. T. Hashem, and T. R. Pillai, “A novel feature engineering
algorithm for air quality datasets,” Indonesian Journal of Electrical Engineering and Computer Science, vol. 19, no. 3, pp. 1444-

1451, Sep. 2020, doi: 10.11591/ijeecs.v19.i3.pp1444-1451.

[29] E. M. Marouane and Z. Elhoussaine, “A fuzzy neighborhood rough set method for anomaly detection in large scale data,” IAES
International Journal of Artificial Intelligence, vol. 9, no. 1, pp. 1–10, 2020, doi: 10.11591/ijai.v9.i1.pp1-10.

BIOGRAPHIES OF AUTHORS

Bowonsak Srisungsittisunti is assistant professor at Computer Engineering,

School of Information and Communication technology, University of Phayao, Thailand. He

holds a Ph.D. degree in Computer Engineering with specialization in data processing. His

research areas are data processing, data analytic, data mining, and database system. He can

be contacted at email: bowonsak.sr@up.ac.th.

https://orcid.org/0000-0001-5204-4070
https://scholar.google.com/citations?hl=en&user=4K30yuYAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=56021717400

Int J Artif Intell ISSN: 2252-8938

Enhancing data retrieval efficiency in large-scale javascript object … (Bowonsak Srisungsittisunti)

2353

Jirawat Duangkaew received a Bachelor of Science degree in Computer Science

from Rambhai Barni Rajabhat University, Thailand, in 2020. He is currently pursuing a

master’s degree in computer engineering at the University of Phayao, Thailand. His research

interests include indexing techniques, non-relational databases, large databases, and

incremental databases. He can be contacted at email: 64024804@up.ac.th.

Sakorn Mekruksavanich received a Ph.D. in Computer Engineering from

Chulalongkorn University in 2012. He also holds an M.S. in Computer Science from King

Mongkut's Institute of Technology Ladkrabang in 2004 and a B.Eng. in Computer

Engineering from Chiang Mai University in 1999. He is currently a faculty member of the

Department of Computer Engineering, School of Information and Communication

Technology at the University of Phayao, Phayao, Thailand. His research interests are deep

learning, human activity recognition, neural network modeling, wearable sensors, and

applying deep learning techniques in software engineering. He can be contacted at email:

sakorn.me@up.ac.th.

Nakarin Chaikaew Asst. Prof. Dr. Nakarin Chaikaew Ph.D. in Remote Sensing

and Geographic Information Systems, Asian Institute of Technology (AIT). Assistant

Professor in Geographic Information Science, University of Phayao, Thailand. He can be

contacted at email: nakarin.ch@up.ac.th.

Pornthep Rojanavasu received a Ph.D. in Electrical Engineering from King

Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand, in 2010. He also

received a B.Eng. degree in computer engineering from Chiang Mai University, Chiang Mai,

Thailand, in 1999 and an M.Eng. degree in Computer Engineering from King Mongkut's

Institute of Technology Ladkrabang, Bangkok, Thailand, in 2004. He is currently a faculty

member of the Department of Computer Engineering, School of Information and

Communication Technology at the University of Phayao, Phayao, Thailand. His research

interests are large-scale data mining, distributed data mining, problem decomposition,

learning classifier systems, and neural network. He can be contacted at email:

pornthep.ro@up.ac.th.

https://orcid.org/0009-0002-2132-4728
https://scholar.google.com/citations?user=9iUYbbwAAAAJ&hl=th
https://orcid.org/0000-0002-3735-4262
https://scholar.google.com/citations?hl=en&user=BElkl-MAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=35174894700
https://orcid.org/0000-0003-1650-7503
https://scholar.google.com/citations?hl=en&user=KfBBb-UAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=27967464000
https://orcid.org/0000-0001-9109-6228
https://scholar.google.com/citations?hl=en&user=pGxD1nkAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=24464512600

